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We have examined the current correlation functions in statistical mechanics from a scattering theory 
viewpoint. In the light of low energy theorems, we study the connection between the long wavelength, 
low-frequency correlation functions of conserved currents and the on-shell scattering matrix elements 
which describe the collision processes taking place in the thermodynamical system of interest. Explicit 
general formulas are derived for the leading correction terms to the ideal gas correlation functions. 
These correction terms include the effect of two-body scatterings and double scatterings in three-body 
events. They are expressed in terms of two-body cross section, time delay, and the quantum analog of 
the distance of closest approach. Their connection to the second virial coefficient is established through 
sum rules. Relationship between our results and the Boltzmann equation is discussed. 

1. INTRODUCTION 

The statistical mechanics of gaseous systems has 
been formulated with the dynamical information fully 
expressed through the on-shell S matrix.1. 2 The basic 
motivation, as discussed in Ref. 1, was that the S 
matrix as a form of dynamical information is more 
general and, on occasion, even more useful than the 
nonrelativistic interaction Hamiltonian. The S matrix 
was introduced through a generalized virial expansion 
for the grand potential. Each term in the vi rial series 
can be expressed in terms of on-shell S matrix ele
ments. The first few terms, sufficient for describing a 
dilute system, involve the S matrix for collisions among 
a small number of particles. In this paper, we inquire 
into the question of introducing the S matrix in a 
similar fashion into the theory of correlation functions. 

The correlation functions describe the fluctuations 
of dynamical variables and the responses of the 
system to weak space-time varying external fields 
coupled to these dynamical variables. The most often 
encountered dynamical variables are the local densities 
and fluxes of particle number, charge, spin, etc. We 
shall refer to them simply as currents. We shall write 
the Heisenberg operators representing them as f'ex), 
with jO(x) denoting the density at (x, t) and ji(x), 
i = 1,2,3, denoting the flux. The correlation functions 
are commonly expressed as Fourier transforms of 
grand canonical averages: 

J dtxeik-ilJ(jJl(x)/(O), (Ll) 

where k . x == wt - k • x. We shall restrict our dis
cussion to currents which are conserved in the sense 
that a continuity equation 

0.0 

...L + V • j = 0 (1.2) 
dt 

is satisfied. This local conservation law will play a 
major role in our discussion. Examples of conserved 
currents are the electrical current and the various 
particle probability currents in the nonrelativistic 
case. With essentially trivial modifications of the 
techniques developed here, one could treat conserved 
tensor densities 1r(x). An important example of such 
an object is the energy-momentum tensor which is 
built out of the densities and fluxes of energy and 
momentum. 

To introduce the S matrix into the theory of 
correlation functions, one can begin by writing down 
for any correlation function an expansion in powers 
of a certain fugacity z as was done for the grand 
potential -p V. The real question is whether it is 
possible, as it is for -pV, to express the expansion 
coefficients in terms of on-shell S-matrix elements. 
The answer to this question for general k and w is 
negative as is evident in view of the following simple 
arguments. 

Recall that, in the usual expansion for -p V in 
powers of z, the coefficient bn of zn depends on the 
nobody dynamics through the density of states. The 
density of states depends on the boundary condition 
for the wavefunctions at the walls of the box in which 
the system is quantized. For a very large box, the 
asymptotic wavefunctions, which are completely 
determined by the S matrix, are sufficiently accurate 
at the walls. That is why bn is completely determined 
by the nobody S matrix. In the expansion for a corre
lation function, the coefficient of zn is likewise 
determined by the nobody dynamics. However, for an 
arbitrary k = (k, w), the dynamical information 
concerning the variation of currents over a finite 
distance and time interval is needed. One necessarily 
probes into regions where interactions take place. 
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The on-shell S matrix determines only the wave
functions in the asymptotic region, i.e., far out of the 
region of interaction, and is therefore insufficient for 
determining the current correlation over a finite 
space-time interval. 

What we have just pointed out is that the S matrix 
cannot be expected to provide information about 
correlation functions when either Ikl-l is on the order 
of the size D of a typical constituent gas particle or 
w-l is on the order of a typical interaction time 7'. 

However, if one is studying the properties of the gas 
as a whole rather than the properties of individual 
particles, often the interesting regions are either 
Ikl-l » D or w-l » 7' or both. When both conditions 
Ikl-l » D and w-l » 7' are satisfied, the S matrix does 
determine, to a degree to be specified later, essentially 
all of the correlation function. This is because, in the 
limit of small k and w, rapid variations of currents are 
smoothed out by the integration over a large region 
of order k-l in size. Most of the current is carried by 
particles which are free before and after a collision, 
and the wavefunctions describing these free particles 
are determined by the S matrix. 

It seems obvious that the leading order term in k-l 

in the n-particle contribution to the correlation 
function should be determined by the S matrix. This is, 
in fact, true, and furthermore this leading term 
involves only cross sections rather than the complete 
scattering amplitude. However, it turns out that this 
leading term is not entirely adequate. For example, 
the I-sum rule and compressibility sum rule are not 
satisfied. For conserved currents of the type mentioned 
above, one can also compute the next to leading term 
in k-l . This term involves not only cross sections but 
also the phase of the scattering amplitude. A large 
portion of this paper is devoted to explicitly demon
strating this in the two-body case. The improvement 
obtained by keeping this term is significant. Among 
other things, the sum rules are now satisfied. 

Since the terms which are most singular in k- l 

depend, as mentioned above, only on cross sections, 
the reader will probably not be surprised to learn that 
a correlation function computed in the approximation 
of keeping only the most singUlar terms is just what 
one would obtain from a linearized Boltzmann 
equation. The equilibrium solution to the Boltzmann 
equation is a perfect gas. This is why the sum rules are 
not satisfied by this simplest small k approximation to 
the correlation functions. In some sense, then, what 
we obtain by keeping the next terms in k-l is a 
correction to the Boltzmann equation which takes 
account of finite interaction distances and times. The 
reader will see later that it is current conservation 

which allows one to take account, to first order at 
least, of finite interaction distances and times while 
still working with the strictly on-shell S matrix. 

In this paper we will not actually prove all the 
statements made above. In fact, we will restrict 
ourselves to the two- and three-body contributions to 
the correlation functions. The generalization to n

body contributions appears to be straightforward 
although very difficult. 

An ultimate goal of the program would be to obtain 
S-matrix expressions for correlation functions which 
are. (i) accurate whenever Ikl-l » D and w-l » 7', 

(ii) have the correct analytic behavior for small k and 
w, and (iii) satisfy the sum rules and other constraints 
which link correlation functions to equilibrium 
statistical mechanics which has already been formu
lated in terms of the S matrix. Let us look at some 
basic ideas as to how this might be done. 

Recall that the correlation function measures the 
response to a weak external field coupled to the 
currents. Think of the external field as describing 
another particle, which we shall, for the simplicity of 
discussion, refer to as "photon" or simply "y". It is 
not hard to see that the correlation function is directly 
related to the scattering amplitude of the process 

particles + y ~ particles + y. 

For the simplest case of one particle, the amplitude is 
simply the "Compton scattering" amplitude. If there 
are two particles, the amplitude would involve the full 
dynamics of the two-body interaction at the presence 
of the photons. 

At this point we recall that there are the so-called 
"low energy theorems" for amplitudes of scattering 
processes involving small k photons.3 It was shown, 
for example, that, for the Bremstrahlung process 

PI + P2 ~ PI + P2 + y 

in which particles I and 2 collide and emit a photon of 
momentum k, the amplitude can be expressed in terms 
of kinematic variables of free particles and the on
shell scattering amplitude for PI + P2 ~ PI + P2 to 
the two leading orders in k-l . In the case of Compton 
scattering, it was shown that, to the first two orders in 
k-1 , only the charge and magnetic moment of the 
particle appear, no matter how complicated the 
structure of the particle is.3 In proving these low 
energy theorems, the conservation of the electro
magnetic current played an important role. The 
physical picture behind the low energy theorems is 
clearly the same as what we described above, i.e., the 
current, which is the source of photons, comes 
dominantly from the free particles. before and after 
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the scattering. The physical reason behind the fact that 
the next term in k-1 is also determined by on-shell 
amplitudes is less trivial and will be discussed in detail 
later in the text. 

The above qualitative discussion suggests that we 
can set up the following program for introducing the 
S matrix as the input of dynamical information into 
the theory of correlation functions: 

(i) Expand the correlation function of interest in 
powers of z: 

C = correlation function = ~ cnzn (1.3) 
n 

so that the coefficient Cn summarizes the contribution 
of n-particle states. 

(ii) Derive an identity to relate cn to the scattering 
amplitude for the schematic process 

n particles + y ---+ n particles + y. (1.4) 

(iii) Derive a low energy theorem to express the 
amplitude for (1.4) to some leading orders in k-1 in 
terms of the scattering amplitudes for 

n particles ---+ n particles, (1.5) 

i.e., the n-particle S-matrix elements. 
(iv) Obtain the desired Cn by using the identity 

derived in (ii) and the low energy theorem (iii). 
This program is clearly analogous to that in Refs. 1 

and 2 for expressing the virial coefficients in terms of 
S-matrix elements. The structure of correlation 
functions is far more complex than that of virial 
coefficients. In practice the program is very difficult to 
carry out, although it makes good sense in principle. 
What we explicitly do in this paper is to compute the 
leading and next to leading term in k-1 for C2 and the 
leading term only for Ca. From this calculation, which 
is itself quite difficult, the reader should be able to see 
the pattern suggested above beginning to emerge. 
Furthermore, we obtain an expression for C2 which is 
quite interesting from a theoretical point of view and 
could have some practical application. Our expression 
for C2 has all the desired properties such as satisfying 
the sum rules and is accurate when the above-men
tioned inequalities 

(1.6) 

are both satisfied. A proper quantum mechanical 
definition of D and T can be given in terms of the 
energy E and momentum transfer q derivatives of the 
scattering amplitude f One defines 

1-1
0 f T'" -

OE ' (1.7) 

which are known to be estimates of the interaction 
time and range.4 

The practical usefulness of our result for C2 depends, 
of course, on how closely c is approximated by the 
two terms ZC1 and Z2C2 • (The one-body term C1 is 
essentially trivial to calculate.) Since (1.3) is essentially 
a density expansion, it is clear that the density must be 
low. In addition, it turns out that Ikl and w must not 
both be too small. This may be seen as follows. 

In a gas the correlation function must be singular 
near wand k equal to zero because of the possibility 
of exciting sound waves. Since the propagation of 
sound is a collective effect, an expansion to any finite 
order in density will never give these acoustic singular
ities correctly. By definition, the wavelength 27T/k of 
sound is long compared to the mean free path I and 
the period of a sound wave must be long compared to 
the mean free, time Te. Evidently, to avoid the col
lective region where (1.3) converges slowly at best we 
must require that 

where we have used the standard estimates for I and 
Te in terms of the density N, the two-body cross 
section G, and the thermal velocity v. We emphasize 
that only one of the inequalities in (1.8) need be 
satisfied. Thus we have upper bounds on both k and w 
(1.6), which are necessary in order that our expression 
for C2 be valid, and a lower bound on either Ikl or w 
(1.8) which is necessary to make 0.3) converge rapidly. 
For a dilute system where the density of particles N 
is very small compared to the volume of particle D3, 
the inequalities are completely compatible. One can 
estimate 

(1.9) 

where we have set G = D2 and T = vD. To take a 
physical example, for argon gas at standard temper
ature and pressure, we haveS 

D "-' 3.6 A, 1,,-, 700 A, Te'" 1.7 X 10-10 sec, (1.10) 

and T is probably of order 1O-1a sec. Clearly, in this 
case there is a quite reasonable range of k and w over 
which our result for C2 could be useful. 

It is evident that the density expansion of corre
lation functions is rather peculiar, especially near k 
and w equal to zero. We would like now to give a 
qualitative discussion of this expansion. It turns out 
that the coefficient Cn of zn in (1.3) will contain a piece 
which goes like k-n for small k, another which 
behaves like k-n+1, another going like k-nH , and so 
on. In addition, there are pieces of Cn which have 
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finite limits as k ~ O. The latter are generally outside 
the scope of our S-matrix formalism. Also there are 
almost certainly terms going like k-n+2 log k, k-n+3 x 
log2 k, etc. These log k terms will be ignored in the 
present discussion. The k-n singularity in Cn can be 
shown to come from an nobody scattering process 
made up of n - 1 successive two-body scatterings. A 
k-nH term in Cn can be generated by a succession of 
n - 2 two-body events followed by one true three
body scattering and so on. The fact that the degree of 
singularity in k-1 increases with n suggests that the ex
pansion in (1.3) should re rearranged so that all the 
terms of order znk-n are summed first, then all the 
terms of order Znk-"H, etc. To do this, it is convenient 
to define 

z' = min «kl)-l, «(1)'Tc)-I), 

, = max (D/l, 'TIT c) R:; 'iii D3. (l.ll) 

Notice that both z' and, are proportional to density. 
Evidently , is always small for a dilute system and 
never exceeds order of unity for even the most dense 
gas. On the other hand, for small k and (1), z' can 
become large even for the most dilute gas. Now we can 
write 

z"c" = (z')"c"o + (Z')"-l,C"l + (Z'),,-2 

X {2Cn2 '" + z',n-lC",t-l + 0(1), (1.12) 

where 0(1) means terms which are finite as k and (1) 

tend to zero and, as mentioned above, we suppress 
possible log k terms. Note that, as it should be, each 
term in (1.12) contains a factor (density)". The term 
containing (z'),,-m has a singularity like k1l1

-
n for 

small k. Summing over n, one has 

C = 2: cnzn = 2: (z,)"-m{mc,,m + 0(1) (1.13) 
n n,rn<n 

or 

C = lO<z') + {Nz') + ,'12(Z') + ... + 0(1), (1.14) 

where 

lm(z') = 2: (z,)ncnm · 
n>m 

Since L unlike z', is always small, (1.14) is a more 
sensible density expansion than (1.3). We remind the 
reader that the 0(1) in (1.13) represents terms in c 
which are finite as k and (1) go to zero and appear to 
be outside the scope of our S-matrix formalism. 

In this language, we will explicitly compute the 
first three terms in the expansion of to in powers of z' 
and the first two terms in the expansion of It. We are 
sure, but strictly speaking have not proven, that to all 

orders in z' 

(i) to is what one would obtain from the Boltzmann 
equation, 

(ii) /1 can be expressed in terms of strictly on-shell 
scattering amplitudes. 

We do not know much about/" for n ~ 2. 
It is expected that one should be able to obtain /1 

from a generalized Boltzmann equation. There is a 
vast amount of literature on the subject of generalized 
Boltzmann equations in connection with the theory of 
transport coefficients, where one is interested in the 
limiting case k ~ 0, i.e., z' ~ 00.6 Note that the 
Boltzmann equation is valid for { ~ 0 and arbitrary 
z'. The task of obtaining a generalized equation valid 
to am and for arbitrary z' is expected to be more 
difficult than that of obtaining one valid only for 
z' -+ 00. If such an equation does exist, its iteration 
solution must reproduce (1.13). In particular, it must 
reproduce C20' C21' and C30, which will be furnished by 
this paper, and serve as a hint as well as a test for any 
proposed generalization of the Boltzmann equation. 

The outline of the paper is as follows. 
In Sec. 2, we summarize for later references our 

notation convention, well-known identities relating 
correlation functions of various kinds, and sum rules. 

Section 3 is devoted to the steps (i) and (Ii) of the 
S-matrix program for (1.3). Here the basic formu
lation and special techniques are developed. 

In Sec. 4, we discuss the physical basis for the low 
energy theorem and the basic idea behind the mathe
matical technique in taking advantage of the conser
vation law. The low energy theorem for Compton 
scattering is worked out as an illustration. 

In Sec. 5, we illustrate the basic idea and technique 
further by deriving a low energy theorem for the 
Bremsstrahlung process. Then the low energy theorem 
for the process (l.4) with n = 2 in (1.3) is worked out. 
Step (iii) is then completed for n = 2. 

The correlation function up to terms of n = 2 is 
established in Sec. 6, completing step (iv) for n = 2. 

In Sec. 7, we verify that our results for n = 2 
satisfy the fsum rule and the compressibility sum 
rule, and thereby establish the connection between the 
2-body contribution to the correlation function and 
the second vidal coefficient. 

In Sec. 8, the three-body contribution to the corre
lation functions is examined, in order to gain some 
qualitative understanding of the role of multiparticle 
scattering. The leading term O(k-3), i.e., the C30 term 
in (1.I3), is evaluated. This completes the formula for 
the correlation functions with three correction terms 
to the ideal gas term in a consistent approximation. 
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The connection of our approach to the Boltzmann 
equation is studied in Sec. 9, in order to shed some 
light on possible improvements of the kinetic equation. 

Concluding remarks are included in Sec. 10. 
In this paper, generality is emphasized. Only the 

basic notions of scattering theory and statistical 
mechanics are needed for discussion and derivations. 
No reference is made to the interaction Hamiltonian. 
As a result, our conclusions will be applicable to fully 
relativistic problems. 

2. DEFINITIONS AND IDENTITIES 

In this section, we establish our notation, and list 
definitions and well-known general formulas for later 
references. 

A. Basic Notations 

Imagine a large uniform system in thermal equilib
rium at temperature {J-l. Let N be a conserved 
extensive quantity and fl, the corresponding chemical 
potential. For definiteness and simplicity, we consider 
a gas of spinless particles and N is the conserved 
particle number. The density matrix is 

p = {exp [- {J(H - fl,N)]}jTr {exp [- {J(H - fl,N)]}. 

(2.1) 

Associated with N, there is the local current rex), 
fl, = 0, 1, 2, 3.jO(x) denotes the Heisenberg operator 
at time t for the local density at x so that 

N = f d 3x/(x) (2.2) 

and/(x), i = 1,2,3, denote those for the components 
of the local flux. We are adapting the notational 
conventions in relativistic problems. We shall always 
use All to denote (A, AO), All for (-A, AO), A . B for 
AIlBJl = AOBo - A· B, in particular, 

kJl = (k, w), xJl = (x, t), aJl = (v, :J 
k . x = wt - k • x. (2.3) 

The current operators satisfy the continuity 
equation and the usual commutation rules: 

alljl'(x) = 0, [lex, t),l(x', t)] = 0, 

[lex, t),l(x', t)] = iaio(x - x')l(x, t), (2.4) 

where the commutator of jO and i given here is only 
correct in the nonrelativistic limit. We will not need 
the relativistic form which is, in any case, not known. 

B. Correlation Functions 

There is a whole set of functions describing the 
correlation of current fluctuations and responses to 

weak external fields coupled to the currents. They are 
Fourier transforms of various products of current 
operators averaged over the grand canonical en
semble, and are usually referred to as "correlation 
functions," "response functions," "structure func
tions," and many other names. Let us list a few. We 
define 

(2.5) 

Let 

S'IlV(X) = ({jI'(x),t(O)}), SJlV(x) = (W(x),t(O)]), 

PV(x) = -i(T(j!l(x)F(O»), (2.6) 

RIlV(X) = -1([jI'(X),t(O»)O(t), 

where the curly bracket denotes the anticommutator. 
We are mainly interested in their Fourier transforms 
defined by (2.5). We shall refer to these four functions 
of k as "correlation function," "commutator," "time 
ordered product," and "response function," respec
tively. They are linearly related to each other. One 
verifies that 

S'lV(k) = S'/ll'(k) tanh t{Jw, 

SJlV(k) = i[RJlV(k) _ R*VIl(k)], 

S'IlV(k) = i[PV(k) _ F*VJl(k)], 

RJlV(k) =f dw' SJlV(k, 0/) . 
27T w - w' 

(2.7) 

In the dispersion integral for RIlV, w is supposed to be 
immediately above the real axis. Clearly, Rllv is well 
defined by the integral as a function of complex w. 
On the other hand, notice that the rest in (2.7) 
including pv is defined for real w only. We shall 
assume the system is invariant under time and space 
inversion so that all the above-defined functions are 
symmetric in fl, and y. It follows from (2.7) that 

SIlV(k) = -21m RJlV(k), S"1V(k) = -21m PV(k). 

(2.8) 

From the continuity equation and commutation rules 
(2.4), one can derive the identities 

where 

kJlS'JV(k) = k"S'JlV(k) = 0, 

k"F'''V(k) = k"R'JlV(k) = 0, 

F'OV(k) = FOV(k), R,oV(k) = ROV(k), 

F,u(k) = Fii(k) + Oil Rjm, 

R'il(k) = Rii(k) + oiiRjm, 

(2.9) 

(2.10) 

where R is the average density. We shall take the 
volume of the system to be unity so that R = (N). 
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We can also write 

F"H(k) = - if eik''''d4x(T'(j''(x)/(0»), 

T'(/(x)/(O» = T(/(x)/(O», 

T'(/(x)/(O» = T(/(x)/(O» + i~ik~(X) l(O). (2.11) 
m 

The definition of T' given here is nonrelativistic. 
However, there is a relativistic object with the same 
properties, see for example the third work cited in 
Ref. 3. 

From (2.9) and (2.10), one easily deduces the well
known fsum rule: 

f dw wSOO(k) = k 2 R. (2.12) 
21T m 

From the definition of the correlation function, one 
obtains the compressibility sum rule: 

lim! f dw S,OO(k) = «N - R)2) 
k-+O 2 21T 

aR 
= z - (2.13) oz ' 

where z =eP" is the fugacity. 

3. FUGACTITY EXPANSION AND THE 
SCATTERING MATRIX 

A. Fugacity Expansion 

We want to expand the correlation and the related 
functions in powers of the fugacity z in analogy to the 
virial expansion for the pressure p, which is 

00 

p = (~;'3rl I b"z", (3.1) 
,,=1 

;'-3b" = (Tr e-PH)".c> A = (21T{J/m)!. (3.2) 

The subscripts n, c restrict the trace to states with 
N = n and include only "connected terms." The sum 
of connected terms is obtained by subtracting from the 
full trace all those traces where there are no inter
actions between two or more clusters of particles. 
Indeed, if one goes through a counting procedure 
similar to that leading to (3.1) and (3.2), one obtains 
analogous expansions for the correlation and related 
functions. It is sufficient to discuss one of the functions. 
We have, for F'I/V defined by (2.10) and (2.11), 

00 

F'''' = I znF;t', 
,,=1 

(3.3) 

F,/:' = - if d4xeik'''(Tr e-PHT'(j"(x)f(O»)n.c· (3.4) 

Equation (3.4) shows that the dynamics of n particles 
in an infinite volume must be known to determine 

F':'. 

In the Introduction, we have examined the question 
whether the (on-shell) S-matrix elements between 
states of N = n supply sufficient dynamical infor
mation for determining F~'H. It was concluded from 
qualitative arguments that, for small k, the leading 
term in k-1 is completely determined by the S matrix. 
In fact, the next leading term is also determined by the 
S matrix. To verify these statements explicitly, we 
need the low energy theorems, which we shall discuss 
in detail in Sees. 4 and 5. We now devote the remainder 
of this section to transform (3.4) into a form suitable 
for the application of scattering theory. 

B. Small Angle Limit 

For reasons which will be apparent shortly, we state 

(Tr e-PHr(O» = lim (Tr e-PHr(O)eiJa6) (3.5) 
n,c 8-+0 n,c' 

(Tr e-PHj"(x)/(O»".c 

= lim (Tr e-PHj"(x)/(0)eiJa6)".c> (3.6) 
0-+0 

where J3 is the angular momentum operator along 
the z axis or any other axis through the origin. 
Intuitively, (3.5) and (3.6) are obviously true, since 
reO) measures the current at the origin only. Rotating 
the wavefunction around the origin cannot have much 
effect. Rigorous proof follows the steps in Appendix 
A of Ref. 2. It is also true that 

f d4xeik''''(Tr e-flHj"(x)/(O»".c 

= lim fd4xeik''''(Tr e-PHr(x)r(0)eiJa6)".c (3.7) 
6-+0 

if, as we shall assume, the integrand falls off (except 
for a constant term irrelevant for k :;I; 0) fast enough 
for x ---+ 00. We can therefore rewrite (3.4) as 

F;tv = lim - ifd4xeik''''(Tr e-PH[T'(j"(x)/(O»] 
6-+0 

X ei6Ja)".c' (3.8) 

C. Photon Scattering Amplitude 

We want to write the trace in (3.8) as a sum over a 
complete set of eigenstates of H. Scattering theory 
tells us that the set of "in states" form such a set and 
so does the set of "out states": 

! la in)(a inl = 1, 

" ! Ib out)(b outl = 1, 
b 

(3.9) 

(3.10) 

where a and b label the momenta of the incoming and 
outgoing particles. The S-matrix elements are given 
by 

(bl S la) = (b out I a in). (3.11) 
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Writing the trace of (3.8) as a sum over in states and 
inserting a sum over out states to the left of e-fJH , we 
obtain 

F;;V = lim! (e-fJEa (a 1St Ib) (bl TI'V(kk') la'»c, 
8-->Oa.b (3.12) 

where Ea is the energy of la in) and it is understood 
that a and b are states with N = n, and 

(bl Tl'V(k, k') la') 

= -i J d4x eik
'
X (b outl T'(jl'(x)/(O» la' in) (3.13) 

and 
la' in) == eiJs8 1a in). (3.14) 

The matrix element (3.13) is formally identical to the 
amplitude for the scattering process a' - b with an 
additional "photon," i.e., for the process 

a' + y'-b + I' (3.15) 

via the coupling -ejl'AI' + (e2j2m)A2jo to O(e2). The 
polarizations and momenta for 1" and yare, respec
tively, (k', v) and (k, /1-), with k' fixed by over all 
momentum conservation. Of course, even though We 
use the word "photon," we do not have w = c Ikl 
here. The components of k are completely arbitrary. 

Since [J3, H] = 0, it follows that Ea = Ea" The S 
matrix conserves energy. Therefore, in (3.12), we have 

(3.16) 

Owing to the rotation, we have, 

Pb = Pa ~ Pa', k ~ k', (3.17) 

where Pa is the total momentum of la in), etc. We now 
see the purpose of the rotation bye. Without it, (3.12) 
would be undefined in the momentum representation 
because of the singularity in the forward amplitudes, 
which was studied in detail in Refs. 1 and 2 for the 
virial coefficients. The simplest example of singular 
terms is shown in Fig. 1, where, including the photon, 
there are three particles. The p~ energy denominator 
would vanish owing to momentum conservation if 
e = O. For finite e, no such problem occurs. 

The next step is to see how the photon scattering 
amplitude given by (3.13) can be expressed in terms 
of (bl S la') for small k. This is the subject of low 

FIG. 1. A term in Tl'v given by (3.13). If k = k', 
PI = p~, and P. = P;, then pf = PI and the energy 
denominator for p~ will vanish. 

FIG. 2. Compton 
scattering by a 
point particle. 

+ II' 
k P I 
P,X. k p' 

energy theorems, which we shall study in the next 
two sections. 

D. The Case n = 1 

Let us apply our results to the trivial case of n = 1, 
i.e., to the ideal gas. The S matrix is simply unity, and 
we may set e = 0 from the start. The amplitude (3.13) 
is simply the "Compton scattering" amplitude shown 
in Fig. 2. We have, for arbitrary p, p', and k, 

2 (I TI'V(k k') I ') = (2p + k)I'(2p' + kT 
m p ,p 2p . k + k2 

(2p - kT(2p' - kY _ 2 v 

+ -2p' . k + k2 t'. (3.18) 

The 4-vector pI' will always denote the energy
momentum of a free particle. A positive infinitesimal 
imaginary part is understood in the denominators. 
gOO = _ gii = I, 0 otherwise. Substituting (3.18) in 
(3.12), we obtain F?v. The correlation function S'I'V 
for an ideal gas can thus be obtained by taking the 
imaginary part of F?V (see (2.8) and (2.10)]: 

S'I'V = zS?V + 0(Z2), 

S?V = -21m F?V, 

FtV = J d3p(2-rrr3 ~ (pi TiJV(k, k) Ip)e-t , 

(3.19) 

(3.20) 

€ = (p2 + m2)t. (3.21) 

The general formula for S{iJv is complicated. The 
nonrelativistic limit is quite manageable. We have, 
after a little algebra, 

S~oo(k) = (m2j1T{3lkl)e-fJmw2/2k'(e-fJk'/8m cosh !(3w), 

S~03 = S{30 = (wjlkI)S{OO, 

S~33 = (w2jk2)S{OO, (3.22) 

S{ll = S{22 = (m/(J)S{oo. 

All other components of S?V vanish. The third axis is 
taken to point in the direction of k. 

4. LOW ENERGY THEOREMS 

In this section and the next, we consider the 
scattering amplitude 

TI'V == (bl TI'V(k, k') la') 

= -i J d4xei k'll'(b outl T'(jl'(x)/(O» la' in) (4.1) 

with small k and k' and arbitrary b and a', 

• 
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B B 

+ + + ••• 

B B 
FIG. 3. Compton scattering by a bound state. The intermediate 

state can either be a bound state or a state in a continuum. 

In order to illustrate the basic idea and technique 
without getting involved in too much algebra right at 
the beginning, we shall first obtain TIl> for the case of a 
bound state, i.e., the case 

la' in) = IB, p'), Ib out) = IB, p). (4.2) 

T'" = T'j/ is thus the "Compton scattering" amplitude 
for a composite particle B. The diagrams are shown 
in Fig. 3. The intermediate state can be the same 
bound state, or another bound state, or a multi
particle state in the continuum. To obtain the full 
amplitude, one would have to sum over all these 
intermediate states. However, for very small k, the 
dominant contribution comes from IB) itself and 
other bound states IB') with the same binding energy, 
and has the form 

A"'/(2p· k + k2
) + A''''/( -2p . k' + k,2), (4.3) 

where p is the momentum of the bound state. AIt' 
and A'Ii' will be discussed later. The contribution 
from all other intermediate states are of 0(1) as 
k -+ 0 since there is an energy gap between these 
states and IB) and the energy denominator will not 
vanish as k -+ O. Now comes the important obser
vation that T'j/ satisfies the conservation law 

(4.4) 

• Suppose one finds an amplitude Tl!' which includes 
the singular term (4.3) and which also satisfies the 
conservation law, i.e., 

(4.5) 
Write 

(4.6) 

where the remainder r"V is nonsingular and is of 0(1) 
as k -+ O. By (4.4) and (4.5), we have 

(4.7) 

Since rllv is independent of k as k -+ 0, we conclude 
therefore thatr ll' must vanish as k -+ O. Thus, 

T;'= T~t + O(k), (4.8) 

i.e., Tl!' not only counts for the leading term, but also 
the next leading term, the 0(1) term. Therefore, if we 
add to (4.3) some nonsingular term so that it satisfies 
the conservation law exactly, we will have found the 
Tl!' in (4.8). To accomplish this, let us evaluate the 
numerators in (4.3) first. Let the first photon vertex in 
Fig. 3 be 

Mjw.(p, P + k) = n(2p + k)ltbBB, + MifB' , (4.9) 

M1B' =je-ik
•
X (BI/,(X)IB')d3x - nbgoBB" (4.10) 

where n. is the number of particles making up the 
bound state. Equation (4.10) is evaluated in the center 
of mass frame of the composite particle and IE) and 
IB') are the bound state wavefunctions. Thus, 

AIlV = 2: Mjw'(p, p + k)M~'B(P + k, p'), (4.11) 
B' , 

and a similar expression can be written down for A'''v 
in (4.3). For small k, (4.10) gives 

M:B , = 0(k2
), 

(4.12) 
where 

na~B' = i j d3x (BI xi/ex) I B') 

= ti j d3x (BI [xi/ex) - X]j(x)] IB'), (4.13) 

may be interpreted as the matrix element of the 
"magnetic moment." If we define aliO = 0'0" = 0, we 
have a simple expression for (4.9): 

Miw.(p, P + k) 

= n[(2p + ktOBB' + k;.a1B'] + 0(k2
). (4.14) 

Note that all' = _avil so that k/lk).O'AIl = O. Sub
stituting (4.14) in (4.11), one can calculate All' and 
A'/l'. Finally, we have for (4.3) 

T';v = (n 2/2M)(C"V + k"aA/lAV 
- k;a).vjj"), (4.15) 

where 

C'" = (2p + k)Il(2p' + kT 
2p' k + k2 

(2p - kT(2p' - k)1l 2 liV 

+ -2p' k' + k,2 - g (4.16) 

is the Compton amplitude for a point particle, 

_ (2p + k)" (2p' - k)1t 
B"= + , 

2p' k + k2 -2p' . k + k 2 

A
-v __ (2p' + kT + (2p - k')' 

2p' . k' + k,2 -2p' k' + k,2' 
(4.17) 
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and we have added the -2g1lY term to (4.3) so that the 
conservation law is satisfied exactly. We have also 
written aAIl for a1tB' Nondiagonal matrix elements do 
not contribute to this order. We have thus arrived at 
the well-known conclusion that the two leading terms 
in the Compton scattering amplitude depend only on 
the mass, the "charge" n, and the "magnetic moment" 
nallY, in suitable units. 

What we have demonstrated is that, by using the 
conservation law, one is able to obtain the next leading 
term by considering the leading diagrams only. The 
same idea and technique can be applied when the in 
and out states involve more than one particle, as we 
shall see in the next section, although the algebra will 
be more involved. 

5. LOW ENERGY THEOREMS, TWO PARTICLES 
A. Bremsstrahlung 

The main result of this section will be a low energy 
theorem for the amplitude Tllv defined by (4.1) with 
two particles in the incoming and outgoing states. For 
clarity of presentation and better understanding of the 
physical meaning of various terms, we shall first look 
at a simpler problem, that is, the bremsstrahlung 
amplitude P shown in Fig. 4, i.e., the amplitude for 
emitting a photon by one of the colliding particles. 
As Fig. 4 indicates, the photon can be emitted by one 
of the external lines, i.e., by the initial or the final free 
particles, or emitted when I and 2 are interacting. 
Clearly, only the diagrams (a) and (b) contribute to 
O(k-l). In terms of two-body T-matrix elements, we 
have 

T" = [(2PI + k)"j2PI' k + k2
] (PI + k, P21 T Ip~p~) 

+ (PIP21 T Ip~ - k, p;) 

x [(2p{ - kYI-2p{ . k + k2] 

+ diagram (c) + (1 ~ 2), (5.1) 

where (1 ~ 2) denotes the same diagrams with 
particle labels I and 2 interchanged to account for the 
case where the photon is emitted by particle 2 instead 
of I. The contribution of (c) is of 0(1) and nonsingular 
as k -+ O. We now parametrize the two-body T
matrix elements in the usual relativistic terminology: 

(pql T Ip'q') = f (p2, q2, p'2, s, t), (5.2) 
where 

s = (p + q)2, t = (p - p')2, U = (p' - q)2. (5.3) 

FIG. 4. Bremsstrahlung 
amplitude T". 

(a) (b) (e) 

The u variable turned out to be irrelevant. When the 
T matrix is "on-shell," we must have 

We define the on-shell matrix elements by 

f(s, t) = f(m 2 , m2 , m,2 s, t). (5.4) 

In this case 
t = _(p _ p')2 

s = E2, in c.m. frame, (5.5) 

where E is the c.m. energy of the two-body system. 
Now let us look at the 2-body T-matrix elements in 
(5.1). For the first one, we have 

(PI + kl P21 T Ip~p~) 

= J«PI + k)2, m2, m2, (PI + P2 + k)2, (P2 _ p;)2) 

= J(s, t) + ?1 [2(PI + P2) . k + k2] + O(b l ), (5.6) 
as 

where 
(5.7) 

The O(bl ) term in (5.6) contributes an 0(1) non
singular term to Til. Note that the second term 
contribution to TIl is formally 0(1) but is singular as 
k -+ 0, i.e., it can have a value from - (Yj to (Yj 

depending how k approaches zero. Similar arguments 
apply to the second two-body T-matrix in (5.1); we 
obtain 

(PIP21 T Ip~ - k, p;) = f(s, t) + O(al), (5.8) 

al == -2p{ . k + k2
• (5.9) 

Again, the O(al) term contributes a nonsingular 0(1) 
term to P. Substituting (5.8) and (5.6) in (5.1), we 
have 

Til = Bif(s, t) + (2PI + k)1l [2(PI + P2) . k + k2] aJ 
2PI . k + k2 as 

where 

- [2(PI + P2) + kY' af + r" + (l ~ 2), (5.10) 
as 

fjll = (2p + kY/(2p . k + k2
) 

+ (2p' - kY/(-2p' . k + k2
), (5.11) 

which appeared earlier in (4.17). We have introduced a 
term - [2(PI + P2) + kJlloflos so that T" satisfies the 
conservation law k"TIl = 0 without the remainder rll. 
In arriving at (5.10) we have left out terms of 0(1) as 
k -+ O. However, since k"r ll = 0 and rl' must be 
independent of k, we conclude that 

rll = O(k). (5.12) 
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Let the anti symmetric tensor f3;1l be defined as 

f3).1l _ (2P + k)A(2pI + k)ll - (2P + k)ll(2pI + k)A 
1 - 2PI . k + k2 ' 

P~PI+P2' (5.13) 

Then (5.10) has the form 

- A of 
T Ji = BiI(s, t) + kAf3I Il - + (1 ~ 2) + O(k). (5.14) os 
This is the low energy theorem for bremsstrahlung. 
We have thus demonstrated that the on-shell two-body 
scattering amplitudes are sufficient to determine the 
two leading terms in Til. 

B. Physical Interpretation of the Bremsstrahlung Low 
Energy Theorem 

The amplitude Br, as shown in (5.11) has two 
terms. The first is the amplitude for photon emission 
by the outgoing plane wave PI which is switched on at 
time t = 0, and the second is that by the incoming 
plane wave p~ switched off at t = 0. The two-body 
amplitude fin the first term of (5.10) is the probability 
amplitude for switching off p~ and switching on PI . 
The meaning of the second term in (5.10) is less 
transparent. It can be understood if we construct a 
wavepacket to describe particle 1. The effect of 
of/as,....., of/oE is a modification of the shape and a 
delay in the switching on time of the outgoing wave
packet.4 Notice that of/oE here is taken at constant 
momentum transfer. Classically, we are fitting the 
exact trajectory of particle I by two straight paths 
which agree with the asymptotic parts of the exact 
trajectory, with the delay of the appearance of the 
final path counted for. In fixing up the time delay, 
one has to patch up the paths so that there is a 
continuous current going when the initial path is off 
and the final path is not on yet. The third term of 
(5.10) does this job. One moment of reflection shows 
that the 0(1) term in TIl is just the space-time integral 
of the current. A trajectory patched up with straight 
lines having the right asymptotic behavior and 
conserving the current therefore describes correctly 
the process to O(k-I ) and to 0(1). 

C. Emission and Absorption, Asymptotic Amplitudes 

We now proceed to derive a low energy theorem 
for TIlV defined by (4.1) for n = 2. The diagrams for 
TIl V are shown in Fig. 5. In order to make the physical 
meaning of our formulas explicit and also to save 
writing, we introduce the following notation. 

1. Absorption of the Photon (k', v) 

AV is the amplitude for absorption by the outgoing 
plane wave P, and AfV is that by the incoming plane 

] >A ~ 4i 
(t) (2) (31 (4J 

FIG. 5. Diagrams for TIlV with 
n = 2. The small square with 
two photon lines attached de
notes the Compton scattering 
amplitude GIlV orC'llvdefined by 
(5.19). (a) Photon lines attached 
to external particle lines only. 
(b) One or both photon lines 
attached to internal particle line. 
(c) Disconnected terms in Tilv. 
(d) Exchange diagrams due to 
the identity of the two particles. 

JfAJt1t 
'" 16' (7' (8' 

(0) 

Ib) 

(e) (d) 

wave p': 

(2p - k')" 
A" = ---'--..!-----'-

-2p' k' + k,2' 
A'" _ (2p' + kT 

- 2p' . k' + k,2' 
( 5.15) 

a == -2p' k' + k,2, a' == 2p' : k' + k,2, 

tX
AV == (2P - k')AAV - (2P - kTAA. (5.16) 

We shall always associate primed quantities with 
incoming plane waves and unprimed ones with out
going plane waves. The vector P is always the total 
momentum PI + P2' 

2. Bremsstrahlung, Emission of the Photon (k, /1) 

Bil is the amplitude for emission by the outgoing P 
and B'I' is that by the incoming p': 

Bil = (2p + k)ll, B'I' = (2p' - k)1l (5.17) 
2p . k + k2 -2p' . /( + /(2' 

b == 2p' k + k2, b' == -2p' . k + /(2, 

f3AI' == (2P + k)A81' - (2P + kYB A
• (5.18) 

3. Compton Scattering, Emission of (k, /1), and 
Absorption of (k', v) 

Cil" is the amplitude for Compton scattering by the 
outgoing wave P and C'IJV is that by the incoming 
wave p': 

eel''' = (2p + k)Il(2p + 2k - kT 
2p' k + k2 

(2p - k'Ye2p + k - 2k')" 2 Il" 
+ 2 k' k,2 - g , - p' + 

e'C'l'v = (2p' + kT(2p' + 2k' - k)lt 
2p'· k' + k,2 

(2p' - k)l'(lp' + /(' - 2k)V 2 1''' 

+ 2 ' k k 2 - g , - p' + 
c == 2p . (k - k') + (k - k'?, 

e' == -2p' . (k - k') + (k - k')2. 

(5.19) 

(5.20) 
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4. Particle Labels 

Note that the letters A, B, C, a, b, and e used above 
remind us of the names of the processes. The particle 
labels will be carried explicitly as subscripts, for 
example, 

a~ means P~ . k' + k,2. (S.21) 

5. Conservation Lav.'s 

The above defined A, B, and C amplitudes satisfy 

k~AV = -1, 

kllBIl = 1, 

kllCllv = A" 

k~AIV = 1, 

kllB'1l = -1, 

k;Cllv = _BIl, 

kIlC'IlV = _AIV, k~C"" = Bill. 

(S.22) 

These equations may be interpreted as the "diver
gence" or the "source" of the photon amplitudes 
owing to the switch on and off of the outgoing and 
incoming plane waves. 

D. Matrix Elements 

Clearly the eight diagrams in Fig. Sea) are of 
0(k-2). The leading terms are proportional to 

(ba'tl, (e'd)-I, (e'b')-I, etc. 

The first four diagrams in Fig. S(b) are of O(k-I ), 

proportional to 
(S.23) 

The last diagram in Fig. S(b) is of 0(1). The dis
connected terms in Fig. S(c) will be discussed later. 
It is not hard to notice that c i and e'- I never appear 
alone. They are always accompanied by the a and b 
denominators in Cllv and C'/V. We also notice that a-I 
and a'- l are singular in k' but nonsingular in k since 
they do not depend on k. Likewise b-I and b'-l are 
singular in k but not in k'. 

Suppose that a certain quantity r"v is of O(a-I, 
ai-I, b-I , b'-l), i.e., it is of O(k-l ) and it contains 
terms singular in either k or in k' but none in both. 
Suppose further that r"V satisfies the conservation law 
in both k and k', i.e., 

kllrltv = 0, k;rllv = 0. (S.24) 

Then we must have 

r"V = 0(1), as k ---+ 0, (S.2S) 

instead of O(k-l). Therefore, if we find the contri
bution to pv which includes all terms singular in both 
k and k' and satisfies the conservation law in both k 
and k', then we will have found T"V to the first two 
leading orders in k-l . This is the same situation as 
that in the low energy theorems we discussed prev-

iously. We have to consider only the leading diagrams 
(1)-(8) in Fig. S which contain terms singular in both 
k and k'. 

Similar to (S.6) and (S.8), the eight two-body T
matrix elements in (1)-(8) are found to be 

where 

(1) I(s, t") + 'Y) ?!. + O(b, a' ), as 
(2) I(s, til) + O(c' ), 

(3) I(s, t") + A?!. + O(e), os 
(4) I(s, 1") - 'Y)' ?i + O(a, b' ), os 

) ') 01 ( I (5 I(s, t + 'Y) - + 0 b, a ), os 

(6) I(s, t' ) + A?i + O(b, a), 
os 

(7) I(s, t') + O(b' , a'), 

(8) I(s, t') - 'Y)1?i + O(b' , a), os 

1) == 2P . k + k2, 'Y)' == 2P . k' - k '2 , 

(S.26) 

A == 2p· (k - k') + (k - k')2, (S.27) 

l' == (PI - P~ - k')2, (" == (PI - P~ + k - k')2. 

Since only O(k) terms in these matrix elements are of 
interest, we set 

I(s, t' ) = I(s, t) - 2k' . (PI - p~) ~ , 

I(s, t") = I(s, t) + 2(k - k') . (PI - pD ?i, (S.28) ot 
t == (PI _ p~)2. 

We see that we have not only the derivative of/with 
respect to energy appearing, but also that with 
respect to the momentum transfer. While the former 
gives the effect of time delay in switching on the 
outgoing wave, the latter counts for besides a dis
tortion also a space displacement of the outgoing 
wave. The vector 2(PI - p~)oxlo( plays the role of the 
distance of closest approach in a classical description. 7 

Qualitatively, the derivative term will count for the 
fact that the outgoing particles are created at a 
delayed time and at a distance apart instead of at the 
space time origin. Now it is a matter of writing down 
the A, B, and C amplitudes for the outgoing and 
incoming plane waves and substituting (S.26) for the 
two-body matrix elements. Collecting terms, we 
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obtain 

T llv = Mil,,! + Nllv ~ + QIIJV?1 + rll", (5.29) 
os ot 

where Mil", N"v, and Q'''V depend only on the kine
matic variables k, k', p, and p'. All the relevant 
dynamical information is summarized in the on-shell 
amplitude and its derivatives. M "V is the total ampli
tude for the absorption and bremsstrahlung by the 
incoming and the (undelayed, unshifted) outgoing 
waves. We have 

MiJV(p, p') 

= (AI + A~ + A2 + A~rcBl + B~ + B2 + B~)" 
+ [cr v 

- BiA; + CtV - B?A~V + (1+-+2)], 

(5.30) 

where the first term is the product of absorption and 
that of emission, as if these two processes were 
independent, and the second term corrects for the 
deviation of the Compton scattering by a plane wave 
from the absorption and emission by the same plane 
wave taken as independent processes. The second 
term of (5.29) corrects for the delay of switching on 
the outgoing waves. We have 

N""(p, p') 

= kiPI + P2i'''(AI + A2 + A~ + A~r 
- kirxl + rx2f'V(BI + B2 + B{ + B~)" 
+ (crv - ArB\, + qv - A~B~)(k - k')' 2P. 

(5.31) 

Finally, the third term in (5.29) counts for the effect 
of a displacement of the outgoing waves, i.e., the 
fact that they are created at a distance apart: 

Q"IlV = -2(Al + A~r 
x (B2 + B~)"k' . (PI - pD + (1 +-+ 2), (5.32) 

Q"'iJV = 2[ArB? + A~vBr + Cr + ctV
] 

x (k - k') . (PI - p~) + (1 +-+ 2). 

Similar to the third term in (5.10), there are terms in 
(5.31) which are added in by hand so that T"V without 
the remainder r"" satisfies 

k"Tllv = k;Tllv = O. 

Thus rllv satisfies (5.24), and we conclude that 

rllv = 0(1). (5.33) 

Equation (5.29) is thus the desired low energy theorem. 
Note that each of M"v, N"", and Q'''V satisfies the 
conservation law in both k and k'. 

The disconnected terms in Fig. 5(c) and the ex-

change terms in Fig. 5(d) are trivial. They will playa 
part in the correlation function as will be seen shortly. 

6. CORRELATION FUNCTION, EFFECT OF TWO
BODY INTERACTION 

With the low energy theorems (4.15) and (5.29), we 
are now in a position to calculate the two leading 
terms of F:':v in k-l for n = 2. The imaginary part of 
F~iJV then gives the two-body contribution to the 
correlation function S'''v: 

S?V(k) = -21m F?V(k), (6.1) 

S'iJV = zS?V + z2S?V + 0(Z3), (6.2) 

where zS?V is the ideal gas approximation given by 
(3.22). For quicker reference, let us write (3.12) here: 

F?V = lim I e-PEr(rl Sf Is)(sl TPV(k, k') Ir'), 
0-+0 T,S 

(6.3) 

A. Two-Body Bound States 

According to the low energy theorem (4.15), a two
body bound state acts just like a point particle with 
"charge" 2 and a "magnetic moment" as far as the 
0(k-1) and 0(1) terms in TIl v are concerned. Only the 
O(k-I ) term is of interest here since only the contri
butions 0(k-2) and O(k- I ) are kept in the low energy 
theorem for two-body scattering states. The magnetic 
moment term, which is of 0(1) (and in fact zero when 
all orientations of the moment are counted), will be 
ignored. We have 

S~"V(bound states) = 4S?''(m ~ 2m) I e-PEB + 0(1), 

B (6.4) 

where S~"v is the one-particle contribution given by 
(3.22) and - EB is the binding energy of the state B. 

B. Exchange Diagrams 

The diagrams shown in Fig. 5(d), coming from the 
identity of particles, give rise to the following terms 
to (PIP21 T"V(k, k) IPIP2): 

(6.5) 
and 
±[ -27Tio(2pl . k + k2)(2pI + k)iJ(2pl + kr 

x (1/2m)(E2/m)o(pl + k - P2)], (6.6) 

where the ± signs refer to the cases of bosons and 
fermions, respectively, and CIlV is the forward Compton 
scattering amplitude 

CP" = (2p + kY(2p + kr 
2p' k + k2 

+ (2p - kY(2p - k)" _ 2g1lV. (6.7) 
-2p' k + k2 
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Note that CJ1V is the same as CJ1V with k = k' except 
for a factor of c [see (S.]9)]. Integrating (6.S) and (6.6) 
over d3PI d3p2(21T)-6(m2/€1€2)e- fJ «I+<.', we obtain 

S;Il\'(exchange) = ±S?V(I1_ 211) + 0(1). (6.8) 

C. Scattering States 

In (6.3), we make the replacements r ---+ PIP2' s
Qlq2' Similarly to €1,2, let us define 

o (2 + 2)! Vl = ql = Ql m . (6.9) 

To simplify the notation, let 

E = €l + €2, P = Ft + P2 = ql + q2' (6.10) 

For the frequently occurring phase space integrals, we 
write 

dp = d3Ft d3p2(21T)-6{m2/€1€2)' 

dq = d3q) d3q2{21T)-6{m2/v1vJ(21T)4t5(vl + V2 - €l - €2) 

X J(Pl + P2 - ql - Q2)' (6.11) 

Then (6.3) has the form (see Fig. 6) 

F~r = lim tfdP e-fJE ((PIP21 PV{kk') Ip~p~) 
o~o 

+ tifdq!*(s,t)(qlQ2IPV(kk')IP~P2)t (6.12) 

where the factors t in front of dp and dq are to count 
for the identity of the two particles. 

The next step is to substitute the expression (S.29) 
and the disconnected terms in Fig. S(c) for TJ1V in 
(6.]2), simplify, and carry out the limit e - o. 

D. Small Angle Limit 

Since p~ and p~ are obtained by rotating PI and P2, 
it is obvious that 

(6.13) 

Notice that w = w' does not imply Ikl = Ik'i. The 
vector k' is completely determined by momentum 
conservation. The geometry is shown in Fig. 7. 

Evidently, as e ---+ 0, k -->- k'. The only terms in 
TIlV which are not defined for k = k' are the Compton 
amplitudes Cr,v2 and C~~~ as is shown clearly by (S.20). 

FIG. 6. Kinematic variables in the product StTJ1v. 
The photon lines are not shown. The horizontal 
dashed line indicates a factor of energy conser
vation t5 function. 

FIG. 7. Geometry for k, k', P = 
PI + P. and P' = p~ + p~. The z
components of P, P' are not shown. 
The axis of rotation points along k. 

These amplitudes appear in MIIV and in Q"'PV [see 
(S.30) and (S.32»). Those in (S.31) are suppressed by 
the condition w = w' and the fact that k - k' is 
perpendicular to P to the order of interest. 

We now concentrate on the contribution of these 
Compton amplitudes to F?v. Consider the terms in 
MJ1V first: 

F'6IV(e) = f dp e-PE ( Cf" + C?V)f(s, t) 

,+ tifdq If(s,t'W(CI'V(ql) + cry»). 
(6.14) 

Figure 8(a) shows the corresponding diagrams. The 
meaning of CJ1V(ql) is clear: The P1 in the Cfv defined 
before is replaced by ql' Notice that the last diagram 
in Fig. 8(a) vanishes since energy-momentum conser
vation is violated. Keeping in mind that the rotation 
operator eiJ 

3
9 commutes with the T matrix and 

applying the optical theorem, we can reduce (6.14) 
down to the diagrams shown in Fig. 8(b). 

k 

F'r(e) = f dp e-PE'(qv + CiV)!*(s, t). (6.1S) 

The axis of rotation is entirely arbitrary. We shall 

Pl Pz PI Pz 

f* f* -- - - --
QI Q2 

p[ P~ 

Co) 

( b) 

FIG. 8. (a) Contribution of the Compton amplitude to 
(pi StTJ1V Ip'). The last diagram comes from a disconnected term in 
TI'V. It vanishes by kinematical constraints. (b) The diagrams in (a) 
reduce down to these two terms. 
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choose the axis along k (see Fig. 7). It follows that 

PI . k = p~ . k, P2' k = p~ . k. 
We define 

~ = k - k'. 
Then 

~=(k-k',O), k'~=O, k'2=k2+~2. (6.18) 

To see explicitly how Ct' and C?' behave, we go back 
to (5.19) and (5.20). In terms of ~, we have 

Cl = 2Pl . ~ + e, c~ = -2p~ . ~ + ~2, 
2p~ . k' + k,2 = 2Pl . k + k 2 + c{, (6. t 9) 

-2Pl' k' + k,2 = -2Pl . k + k2 + Cl' 

All the other factors of k' can be expressed in terms of 
k and ~. We now change the integration variable PI 
in the second term of (6.15) so that 

P~ ->- PI + ;. (6.20) 

Under this change of variable, 

c~ ->- -Cl , P~ ->- (PI + ;)2 = P~ - Cl , 

€~ = m2 + P~ ->- €~ - Cl • (6.21) 

The integrand of (6.15) now becomes 

(2Pl + k + ~rc2Pl + k)1l 

( 
Y(€D Y(€~ - c1) )-1 

X - Cl 
2Pl . k + k2 2Pl . k + k2 - Cl 

+ (2Pl - k + 2~)Il(2Pl - k + ~r 

( 
Y(€~) Y(€~ - Cl) )-1 

X - ~ 
- 2Pl . k + k 2 + Cl - 2Pl . k + k 2 

- 2gIlV[y(€~) - Y(€~ - cl)]c1\ (6.22) 

where Y( €D is the part of the integrand that depends 
on 101 including the factor 1/101 in dp [see (6.11)]: 

Y( €~) oc (1/€l)f*e-PE. (6.23) 

In (6.22), we have ignored terms of O(w/m), i.e., the 
frequency is assumed to be small compared to the 
mass of the particle. Now the limit 0 ->- 0 can be taken 
easily in (6.22). We simply let ~, Cl' and t approach 
zero and obtain 

F';:" = lim F;jV(O) 
0"'0 

= f dP( -e-PE(B~A~V + B~IlADp=pf*(s, 0) 

+ Cf O~l [e-PE(m/€l)/*(S, 0)]), (6.24) 

where ell' is the forward Compton scattering ampli
tude defined by (6.7). 

Next, we consider the contribution of Ci v and C?V 

in Q/l/IlV [see (5.32)]. Similar to (6.14), we have 

+ Ii f dq /*(s, t) :t f(s, t) 

X [CIlV(ql) + C~/l"]2(ql - p~). ~), 

t = (qt - pD2. (6.25) 

In the limit 0 ->- 0, by (6.7), (6. t 9), and (5.20), we 
have 

2(C/lV(qt) + C~/lV)(qt _ p~) . ~ 

= C""(qt) (qt - Pt) . ~ + Ci" (qt - Pt) . ~ (6.26) 
ql . ~ -PI . ~ 

and the first term of (6.25) vanishes. Taking advantage 
of the p f--t q symmetry in (6.25), we have 

lim F~"V(O) = ifdP e-PEIfdq f* ?l 
0"'0 ot 

xCiv 2(pt - qt) . ~ . (6.27) 
Pt . ~ 

Recall that ~ = (;,0) and, in the e ->- b limit, the 
vector; is perpendicular to k and P = Pt + P2' Thus, 
in (6.27), we may write 

; = k x P, Pl' ~ = HPI - P2)'~' (6.28) 

Clearly, only the values of Pt and ql in the c.m. frame 
are relevant in evaluating the last factor of (6.27). 
The dependence on ~ can be removed by further 
exploiting the symmetries. In all the other terms of 
T"", 0 can be set to zero directly. Multiplying T"V by 
st and taking into account the diagram in Fig. 9, we 
obtain 

F'.j'v = Ii f dpe-PE dq (If(s,t)1 2 [M''''(q,P) - M"V(p,p)] 

+ N"V(q, p)/* fsf + Q"V(q, p)/* ~f) 

+ f dP[ e-PE (;'''(Pl);'V(P2)/*(S, 0) 

+ N"V(p, p) of~; 0») 

+ C"V(Pl) 1.- (!!! /*(s, o)e-PE) 
O€t lOt 

+ (2mrt(27T)2t5(at)t5(b2) 

X (2Pl + k)"(2p2 - k)"f*(s, O)e-/lEJ + 0(1), 

(6.29) 
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FIG. 9. A term in SfT/IV contributed by a dis- ~ 
connected term in pv, the last one in Fig. 5(c). ft 
where 

QI'V(q, p) = Q"I'V(q, p) 

+ 2(Cf"{[(Pl - ql) . ~]/(pl . ~)} 

+ (I ~ 2» (6.30) 

[see (6.27) and (5.32)] and MJ1V is given by the first 
term of MJ1V [see (5.30»), i.e., it is simply the product 
of total absorption amplitude and the total emission 
amplitude: 

Ml'v = (AI + A2 + A{ + A~rcBI + B2 + B{ + B~Y', 
(6.31) 

and AI' is the forward absorption or emission amplitude 

A.lI(p) = (2p + k)I'/(2p . k + k2
) 

+ (2p - kY/( -2p' k + k2
) 

= BI'(p) + B'I'(p) 

= AI'(p) + A'I'(p). (6.32) 

NI'V and CJ1V are, respectively, defined by (5.31) and 
(6.7). 

E. Summary of the Two-Body Terms 

What is left to be done is to take the imaginary part 
of (6.29) to obtain S?v. Since the result contains 
many terms, it may be more instructive to present 
them term by term, and discuss their origin and 
implication in each case. 

(i) Terms of o (k-2): 

_ dpe-IlE(vda)4 Re ~ __ 1_1 +..-L.!. _ ~ . 
J [p

I'P'V pl'pV pl'p'V pl'pV] 

dId; d~ dld~ d1d2 

(6.33) 

Here v da = tdp'lf(s, t)12 [see (6.11) for the abbrevi
ation dp'] is the rate of the transition p~ + p~ ----+ PI + 
P2' The first two terms in the square bracket come 
from the diagrams (1)-(4) in Fig. 5(a) and the other 
two from (5)-(8). The symbol d will always denote 
the denominator 

d=p ·k. (6.34) 

A positive infinitesimal imaginary part in d is under
stood. Equation (6.33) has a simple classical interpre
tation. Notice that (in the nonrelativistic case, for 
simplicity) 

~ = - i J d4
xe

ik
'
x ~ 15 (x - t !) ()(t) (6.35) 

describes the photon emission amplitude by a point 
charge created at x = 0 going out with velocity p/m. 

Equation (6.33) may be interpreted as owing to 
particles coming with momenta p;p~ and making a 
sudden change at x = 0 to PI, P2 and then moving out. 
The effect of a decrease in the intensity of forward 
moving particles is counted for by the two negative 
terms. 

(ii) Terms of O(k- l ) , energy derivatives of the 
scattering amplitudes, "time delay" terms: Define f = 
If I eiX

• We have7 

- JdP e-IlE(v da) aX 
as 

x 81m [p. k p~ (P~\' + P;V) - -(2'1 (pl'pr + Pl'pi)], 
til d{ d~ 

_ (~) JdP e-PE2 Re 01(5, 0) 
m2 as 

x 1m [P. k Pi(E! +~) _2:..(Pllp~ + Pl'P~)]' 
d1 dl d2 d1 

(6.36) 

As was mentioned before, the derivative oxlos '"'"' 
OX/OE can be interpreted as a "time delay." The real 
part off(s, 0) describes the energy shift of a particle 
due to scattering with other particles in the medium. 
Its derivative describes the time delay in forward 
scattering. 

(iii) Terms of O(k-1), derivative of the amplitude with 
respect to momentum transfer: 

JdP e-PE(v da) aX 8 1m (PI _ p;) . k pip;v 
at dld~ 

1 ( 2t ) [ I' v 1 ( I' v I' V)J] (6 37) + ~ 5 _ 4m2 PIPI + :2 PIP2 + P2Pl , . 

where 2tJ(s - 4m2) is just (I - cos () in the c.m. 
frame. The fact that (6.37) satisfies the conservation 
law can be shown in a few steps although they are not 
directly obvious. 

(iv) Terms of O(k- l ), involving no derivative off: 
First, there is a term from (1)-(4) in Fig. Sea): 

(2:..) JdP .E... (!!:. Re /(s, Ole-PI<;) 27rb(dl)pip~. (6.38) 
m OEI El 

The differentiation operator is easily removed by 
integrating by parts. Then there is a term from (5)-(8) 
in Fig. 5(a): 

-2 J dp e-IlE 1m [AI'(P1)A V(P2)] Re/(s, 0) 

= J dp e-PBJ Re /(s, 0)2m:5(d1) 

x (P~kV + p~kl1) ~ + 2k2(p~p~ + p~p~)~' ~), 
(6.39) 
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where:]' denotes the principal part and :]" its deriva
tive. 

These two terms (6.38) and (6.39) are the only 
terms in the weakly interacting limit in the sense that 
if we keep only the first order in the two-body coupling 
constant, all other terms would not appear, since they 
are at least second order. 

(v) The bound state contribution (6.4) and exchange 
term (6.8): To sum up, we have 

S?V = (6.33) + (6.36) + (6.37) + (6.38) + (6.39) 

+ (6.4) + (6.8) + (J(t). (6.40) 

This is the Z2 correction term to the ideal gas term. 
Before discussing three-body terms, we shall examine 
S?V in more detail. 

7. SUM RULES AND CONNECTIONS TO THE 
SECOND VIRIAL COEFFICIENT 

To gain further insight into our results, let us 
examine how S?V satisfies a couple of nontrivial sum 
rules and establish its connection to the second virial 
coefficient. 

By the nature of our approach, the conservation 
law 

(7.1) 

is satisfied at every stage of calculation. It is easily 
verified that each term in (6.40) satisfies (7.1) separately. 

A. Sum Rules and the Virial Coefficients 

Recall that the coefficients bn are defined by 

rIJ 

P = ({3A3r1 I bnzn. 
n=l 

(7.2) 

For the average density N and the average density 
fluctuation, we have 

- {3 op ,-3" b n N = z - = II. 4. n nZ , 
OZ n 

«N - N)2) = Z aN = A-3 I n2bnzn . (7.3) 
OZ n 

Therefore, the f-sum rule and the compressibility sum 
rule [see (2.12) and (2.13)], written as expansions in 
powers of z, have the form 

J dw wS~O(k) = k 2J dw S!3(k) = r3nbn(~)' (7.4) 
27T 27T w m 

where S~JlV and S~v are defined in the sense of (3.3). 
The third axis is taken along k. Using the first identity 

of (2.7), we can write the f-sum rule (7.4) as 

= im{3 J ~: S~oo(k) ~J22 + (J(lkj). (7.6) 

Notice that S:,;" as a function of w falls off rapidly 
when w/kv » I, where v estimates the average velocity 
of a particle, v I"-..J (m{3)-!. These sum rules relate the 
moments of the correlation functions to the virial 
coefficients. They also provide rather nontrivial tests 
for the validity of formulas for the correlation 
functions. 

We recall that a two-particle bound state is equiv
alent here to a point particle of mass 2m and "charge" 
2. Since the correlation functions offree particles satisfy 
both sum rules, the bound state contribution to these 
sum rules is trivial and will be ignored for simplicity. 

B. The Compressibility Sum Rule 

Let us check (7.5) for n = 2 with S~oo given by 
(6.40). For simplicity, let us discuss the nonrelativistic 
case. For ft = 11 = 0, we set pO = m and obtain 

S;oo(k) 

= 4m2 J dp e-fJE(v da) 

X [-Re (_1 _ 1 + _1 __ 1 ) 
dld~ d~ dld~ d1d2 

+ 1m (~ + ~ _ i) AX 
dld~ dld~ d1 O€ 

+ 21m (PI - p{) . k _1_ + 2 (1 - cos lJ»)OX] 
dld~ dl at 

- 2m
2J dP[e-

fJE 
Re ~ 

X 27T(Wb l (dl ) + OJ'!' 1m _1_ + i b(dl ») 
7T dl d2 m 

- ~ e-PE Ref(€, 0) 27T b(dl )] 

O€ m 

- 2 J dp e-PE 1m [AO(PI)Ao(P2)] Ref(€, 0) + (J(1), 

(7.7) 

where the exchange term (6.8) is left out for simplicity, 
€ is now the c.m. kinetic energy, and lJ the c.m. 
scattering angle. Again notice that there is no k 
dependence in the scattering amplitudes, which 
contains all the dynamics in the problem. The k 
dependence only appears in kinematical factors du 
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and d~.2' Since 

(7.8) 

the w integration (7.5) can be performed easily. Also, 
under the 1 +-+ 2 symmetry, we have, writing u for 
k' p/m, 

1m [J.°(Pt)A.o(P2)] = -27T15(dl)~(Ul - U2)-2 + 0(1). 

(7.9) 
It follows from (7.9) that 

f ~: f dp e-PE 1m [J.°(Pl)J.°(P2)] Ref(e, 0) 

= - f dp e-PE[k' (PI - P2)r2 Ref(e, 0)2m 

= -fdP ~ [e-PE Ref(e, 0)]. ae (7.10) 

The contribution of the aX/at term in (7.7) is inter
esting. After the w integration, we have, for the 
ax/at term in the integrand of (7.7), 

since 

Since 

ax 
-8m(1 - cos 0) at ' (7.11) 

(7.12) 

t =-2me(1 - cos 0), (7.13) 
we have 

-2m(1 - cos 0) aX = aX(~\ = (aX) , (7.14) 
at at aeJo ae 8.0 

which combines with the contribution of the aX/ae 
term in (7.7) to give (aX/ae)o' Putting terms together, 
we obtain 

f ~: S~OO(k) 
= [ - f dp e-fJEe-! Re :e e!f( e, 0) 

+ f dp e-PE(v da)(~~)J x 4 + O(Jkl). (7.15) 

It can be verified easily that the quantity in the square 
bracket of (7.15) is just 2J.-3b2 in view of the formula1 

J.-3b2 = ! f dE(47Ti)-1 Tr (S-l(E) a~ S(E») , 

SeE) = 1 - 27Tib(E - Ho)T(E), (7.16) 

where the trace is taken over two-body states. 

C. The f-Sum Rule 

We now proceed to verify (7.6) for n = 2 with S~oo 
given by (7.7). We want to carry out the integral 

f 
dw S'OO(k) w

2 
• 

27T 2 k2 
(7.17) 

In spite of the two extra powers of w, the integral is 
Well defined. This is easily seen if we use S~33(k) 
instead of S~oo(k). 

Again, one finds that the first term in (7.7), i.e., 
the 0(k--2) term, does not contribute to the w-integral. 
The other terms can be integrated easily but the 
combination of the integrated terms is somewhat 
delicate. We shall show a few less trivial steps. 

Let us define the quantities U1 , u2 , u~, and u; by 

u = k. p/m, u' = k . p'/m, (7.18) 

i.e., the component of the velocity along k. Consider 
the last term of (7.7). We have, using (7.9).and under 
the 1 +-+ 2 symmetry, 

I == - 1m [J.°(Pl)J.°(P2)] 2 
f 

dw w2 

27T k 

::::;: -4U~(Ul - u2)-2(2mr1 

= [-(u 1 + U2)2(Ul - U2)-2 - 1] . (2mrl. (7.19) 

Now we notice that Ul + U2 is a conserved quantity in 
two-body scattering by momentum conservation. 
Therefore, we may replace (u1 + U2)2 in (7.19) by its 
average value, i.e., 

where the last step is obvious in view of the equi
partition law. Similar to (7.10), we obtain from (7.19) 

-2 f dp e-PE Ref(e, 0)/ 

= (mfJrlfdP i [e- fJE Ref(e, 0)] ae 
+ m-1 f dp e-PE Ref(e, 0) (7.21) 

for the last term of (7.7). We see that the u variables 
have disappeared. Next we consider the term preceding 
the one we just considered in (7.7), i.e., 

2fdP Re ~ e-flEf(e, O)f dw 27Tb(d1) w
2 

ae 27T· k 2 

= 2 f dp :e [e-PEf(e, 0)] . u~. (7.22) 
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Again, by 1 +--+ 2 symmetry and by (7.20), we write 

u~ = HU I + U2)2 + HU I - U2)2 

= (2mf3)-1 + HU I - U2)2. (7.23) 

By the spherical symmetry in the c.m. frame, we have 

Furthermore, we have 

JdPie E- Re f( e, O)e-P< ae 

(7.24) 

= -1 J dp(l + t) Ref(e, O)e-P<, (7.25) 

where we have integrated e by parts and noted the e! 

dependence of dp. Substituting (7.25) and (7.23) in 
(7.22), we have 

(mf3rI JdP E- [Re e-PEf(e, 0)] ae 
- m-I J dp Re e-PEf(e, 0), (7.26) 

for the next to the last term in (7.7). We see that the 
second term in (7.26) cancels the second term in (7.21) 
while the first terms add. There is no such nontrivial 
cancellation for the other terms in (7.7). Using the 
fact that 

(7.27) 

we can always combine the u variables to form 
(UI + U2)2, which can be replaced by 2Imf3. The net 
effect may be summarized as replacing u~, u~, UIU2 , 

UIU; by HUI + U2)2 = t(2Jmf3). Our results can be 
summed up as 

J ~: S~OO(k) :: = (2mf3)-1 J ~: S~OO(k) 
= -±- ).,-3b2 • 

mf3 
(7.28) 

We have thus verified that our result (6.40) satisfies 
the two sum rules in the nonrelativistic case, which are 
rather nontrivial tests for (6.40). 

8. THREE-BODY TERMS 

The results obtained above for the case n = 2 could 
be trivially generalized to n ~ 3 if the scattering 
amplitudes for multiparticle processes were well
behaving functions like the two-body amplitude. One 
would conclude that TI'~ is of O(k-2) always. The low 
energy theorems and the correlation functions would 
appear just like the n = 2 case with more particle 
labels. However, in real life the multiparticle scattering 

01& t 
(ci) (b) 

(e) 

FIG. 10. (a) A 
double -scattering 
event in three
body scattering. 
(b) Triple-scatter
ing events in four
body scattering. 
(c) Rescattering in 
three-body scat
tering. 

amplitudes Have various Singularities. These singu
larities invalidate a naive extension of the n = 2 
results. Physically this is easy to understand. In the 
above study of the two-body low energy theorems and 
correlation functions, the size of the space-time 
region of interaction is considered as small compared 
to k- I , so that the currents carried by the incoming 
and outgoing plane waves dominate. However, a 
multiparticle scattering event may take place in an 
infinitely extended space-time, as indicated mathe
matically by the singularities of the amplitudes. For 
example, the double- and triple-scattering, and the 
rescattering process shown in Fig. 10 are not localized 
when the incoming and outgoing momenta are such 
that the intermediate particles become real on-shell 
particles instead of just transient intermediate states. 

To understand the 'main features of multiparticle 
contribution to correlation functions, let us study the 
three-body terms in some detail. After a qualitative 
discussion, we shall evaluate the leading three-body 
contribution to S'I'". Then the next leading terms will 
be examined qualitatively. 

A. Disconnected Terms and Double-Scattering Terms 

Before we begin, let us be reminded of the simple 
fact that, in the theory of multiparticle scattering, the 
disconnected terms of the scattering amplitude play an 
important role. For example, the n-particle unitarity 
relation is not satisfied by the connected n-particle 
amplitude alone. It is satisfied only when both dis
connected and connected terms are included. The 
interference of disconnected and connected terms is 
the quantum mechanical description of damping. 
Generally, in calculating physical quantities such as 
the correlation functions, one computes the products 
of full T matrices and then takes the connected part of 
the product. Figure 11 shows some examples of dis
connected terms in TI'". 
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FIG. II. (a) Some 
disconnected terms 
in the three-body 
contribution to 
T""v. 

(b) Some double
scattering contri
bution to Tilv. 

(a) 

(b) 

The most serious singularity of the connected three
body amplitude comes from the double-scattering 
diagram, as shown in Fig. lO(a). Figure I I (a) shows 
the corresponding TIlY. The amplitude is infinite when
ever the intermediate particle is on-shelP 

Figure 12 shows some of the diagrams of the 

(a) (b) 

• • 

• • 
(I) (g) 

FIG. 12. Some of the diagrams for stT/IV contributing to the 
O(k-3 ) term in F;llv. The symbol • indicates the Hermitian conjugate 
of the T matrix or propagator. These diagrams'and others obtained 
from them by moving photon lines to different external lines all 
have a factor k-1 from the intermediate state propagator. We have 
moved around the T matrices in some of the diagrams when allowed 
by cyclic permutations under trace. The O(k-3 ) part of (0 is given 
by the first diagram of (g). We put (f) here only to remind the 
reader where (g) comes from. 

FIG. 13. Some of the 
diagrams for stTllv con
tributing to the O(k-3 ) 

term in F;llv. 

product StTIlY contributing to F~llv. It is not difficult to 
see that their contribution is of 0(k-3). Each photon 
on an external line gives rise to a factor k-1 , and the 
propagator in the intermediate particle is of 0(k-1) 

forced by momentum conservation. The extra k-1 

coming from a propagator is a new feature not found 
in two-body terms. Evidently, for n-body terms, there 
will be contribution of O(k-n). 

There are other terms contributing to 0(k-3). 

Figure l3 shows some of them. They count for, besides 
other effects, the emission and absorption of photons 
by the intermediate particles, which can propagate 
over a long distance. These terms are necessary to 
assure the conservation of currents to the leading 
order, i.e., 0(k-3). One may view these terms as the 
correction to the Compton amplitude and the two
body pv due to the presence of other particles in the 
medium, i.e., some kind of "self-energy" correction to 
the external lines. By using the small angle limit 
technique used in Sec. 6, one can show easily that the 
leading contribution of these terms is of o (k-3) , being 
the second derivative of the Compton amplitude and 
the first derivative of the two-body TIlY with respect to 
k. 

B. Evaluation of the Leading Terms 

We proceed to evaluate the leading term in S~IlV. 

The result, together with the S;IlY in (6.40), completes 
the approximation to S'IlY up to the C30Z,3 term dis
cussed in the Introduction. 

There are a large number of diagrams contributing 
to 0(k-3). Instead of evaluating all of them, we shall 
again exploit the conservation law so that we only have 
to evaluate a fraction of them. Let us observe the 
following facts. F~IlY(k) is an integral over momenta. 
The 0(k-3) terms in the integrand always appear in 
the form 

pll p'v 1 
--- x 0(1) 
d d'd" ' 

(8.1) 

where the denominators are given by d = P . k, d' = 
p' . k, and d" = p" . k. 0(1) is a sum of products of 
scattering amplitudes and the Boltzmann factor. 
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There are terms where two or all of the three denomi
nators in (8.1) are equal, i.e., terms proportional to 

pllp'Yjd2d', pllpV /d3, (8.2) 

which come mainly from diagrams in Fig. 13 and also 
from other diagrams. By suitable change of integration 
variables, any subsum of terms of the type (8.2) in the 
integrand for F?" can be written as 

give the answer: 

rllV = rVIl = (pllp'v/d2d' + pVp'lljd2d')rl(p, p', p", ... ) where 

+ (pllpv/d3)r2(p, p', p", .. '). (8.3) dp = d3Pl d3p2 d3p3(27T)-9(m3/ElE2E3) , 
It follows that 

kllrllv = (l/d)(p'v/d' + pV/d)rl + (pv/d2)r2' (8.4) 

Suppose that we know also that this subsum of terms 
satisfies the conservation law 

kllrllv = 0, (8.5) 

for arbitrary momenta; then we must have 

(8.6) 

In other words, it is not possible to have a conserving 
r/J v of 0(k-3) with only two different denominators d 
and d'. 

Now let I/Jv be the integrand for F~llv. Let 

(8.7) 

where Ii v includes all terms in Illv with three different 
denominators. Furthermore, nv satisfies 

kif V = 0. (8.8) 

Of course, Ii" may also have to include some terms of 
type (8.2) in order to satisfy the conservation law (8.8). 
It then follows that the rllv in (8.7) satisfies (8.5). 
Since it has no term with three different denominators, 
it must vanish by the above reasoning. In short, if we 
find a conserving Ii" including all terms of three 
different denominators, we will have found Illv. 

With this conclusion in mind, we proceed to find 
the sum of diagrams giving three different denomi
nators and then patch it up so that the conservation law 
is observed. The relevant diagrams are simply those in 
Fig. 12 with the photon lines attached on various lines 
in such a way that the momentum k is passed through 
three particle lines of different momenta. We have thus 
by-passed the analysis of other diagrams such as those 
in Fig. 13. Although the cancellations among the 
terms with three different denominators are very 
delicate, it is a straightforward algebraic task to collect 
terms. The main instructive feature in going through 
the calculation is seeing how various interference 
terms between connected and disconnected pieces 
combine to give cross sections. Here we shall simply 

E = El + E2 + E3, 

V d(]l2 = V d(](l' + 2' ---+ 1 + 2"), 

V d(]23 = V d(](2" + 3' ---+ 2 + 3). 

(8.10) 

The notation should be otherwise self-explanatory. 
Note that in (8.9) only the two-body cross sections 
appear. As we shall show later, (8.9) can also be 
obtained by iterating the Boltzmann equation. 

C. The Rescattering Singularity 

Let us take a brief look at the 0(k-2) terms. They 
come from two sources: first, from the derivative of 
the scattering amplitudes in the diagrams contributing 
to 0(/(-3) and, second, from the three-body T-matrix 
diagrams with at least one closed loop and with 
photons attached to external lines. In principle, one 
can show by the low energy theorem technique that 
the 0(k-2) terms can be expressed in terms of on-shell 
two-body and three-body amplitudes and their 
derivatives. This is a very tedious task in practice, and 
we shall not go into it here. However, one does have 
to notice that the three-body T-matrix elements in the 
second source mentioned above are not free of 
singularities. It is known that the one-loop triangular 
rescattering diagram [see Fig. 10(c)] does blow up for 
certain external momenta. Let us examine this 
singularity. 

The rescattering amplitude blows up whenever the 
external and intermediate momenta are such that 
energy-momentum conservation is observed at each 
of the three two-body l' matrices, i.e., when the 
internal lines are on-shell so that the intermediate 
particles can traverse an infinite distance. When the 
loop integral over the internal momentum is per
formed, the singularity is smoothed out, except for a 
limited set of external momenta. It has been shown9 

that if 

Ip3 - p~1 = IPI - p~1 + Ip2 - p~l, (8.11) 

then the rescattering amplitude Trs blows up. It is 
not difficult to demonstrate that, near the singularity 
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FIG. 14. A term in F;llv containing the square of 
the rescattering amplitude. This term is of 
O(k-' In k) in two dimensions and O(k-') in three 
dimensions. 

given by (8.11), 

• 

Trs '"" In (lP3 - p~1 - IPI - p~1 - Ip2 - pm (8.12) 

for Pi =;C p;. There is no singularity for forward 
scattering. Thus, Trs and I Trsl2 are integrable over 
momenta. No additional singularity in k will be 
introduced to S?, by this singularity in the amplitude. 

On the other hand, in a two-dimensional world, the 
rescattering singularity is more severe: 

Trs '"" [lp3 - p~1 - IPI - p{i - Ip2 - pm-i. (8.13) 

Thus ITrsl2 is not integrable. In Fig. 14 if we ignore 
the k dependence of the amplitudes for the triangular 
T-matrix elements, we would get a logarithmic diver
gence. It is evident then there are terms of o (k-2 In k) 
in the correlation function for a two-dimensional gas 
if no cancellation occurs. 

9. HIGHER-ORDER TERMS AND KINEMATIC 
EQUATIONS 

We shall comment briefly on the connection between 
our results and the kinetic equation in transporttheory. 

Having examined the two-body and three-body 
contributions to the correlation functions, let us 
return to the over-all picture of the expansion (1.13), 
which is 

S'IlV = .2 z,n-m,mcnm + 0(1), (9.1) 
n,m<n 

where z' and, are defined by (1.11). This expansion is 
well defined if z' and, are both very small. 

In transport theory, one is interested in correlation 
functions with very small k, i.e., with large z' in (9.1). 
Clearly, if z' is not small, (9.1) must be summed 
formally first in order to be meaningful. One does not 
start with an expansion like (9.1) in transport theory, 
but with a kinetic equation, which generates an 
expansion when it is iterated. The (nonrelativistic) 
Boltzmann equation is the kinetic equation at the low 

density limit: 

of + oH • of _ oH • of 
ot op ox ox op 

= I(~~3 (v da)[J(p)f(q) - f(p')f(q')], (9.2) 

where the notation is standard and the x, t dependence 
of the distribution function f is implicit. Since we now 
have explicit formulas for c2o, Cn, and C30 , it should 
be instructive to compare them with those which we 
now proceed to obtain from the Boltzmann equation 
(9.2). 

Consider a weak external (momentum-dependent) 
potential 

H' = APvc!>ve-ik'X, H = p2j2m + H'. (9.3) 

Letfo(p) be the Maxwell distribution and define 

f = fo(p) + Abf (p)e- ik'''', (9.4) 

fo(p) = z exp (-fJp2j2m). (9.5) 

To O(A), the average current is, by the definition of 
the response function RIlV and by (9.4), 

<r(x» = ARIlV(k)c!>ve-ik-x 

= AI d
3
p pil bf(p)e-ik''''. (9.6) 

(21T)3 m 

The response function is related to the correlation 
function S'llv via the identities (2.7) and (2.8): 

S'IlV = -21m Rllv coth tfJw. (9.7) 

Substituting (9.4) in (9.2) and keeping only O(A) 
terms, we obtain a linearized Boltzmann equation: 

bf(p) = ~(-:. p fJfo(p)pvc!>v + i I d3q(21Tr 3(V da) 

X Lfo(p )bf( q) + fo( q)bf(p) - fo(p')bf( q') 

- fo(q')Of(P')]) , (9.8) 

where d = P . k as before. Substituting (9.8) in (9.6), 
we find 

RIlVc!>v = -fJ r d3p(21T)-3fo(p)(k' P)PV c!>v 
~ m d 

+ i I d3PI d3p2(21Tr6
(V da) 

x (~: - ~: + ~: - ~:)fo(PI)Of(P2)' (9.9) 

where the first term is the free-particle contribution. 
For the second iteration term, we substitute the first 
term in (9.8) for bf into the second term of (9.9) and 
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obtain the 0(Z2) term for Rllv: 

z2R~lJ = - itJwz2 J d3Pl d3p2(27T)T6(V da)e-PE 

X l!1 _ l!.L + !!J. _ 12 P2 . 
( 

Il 'll Il Ill) v 

dl d~ dz d~ d2 

In view of (9.7), it is evident that the function 

S'IlV - -±- 1m Rllv 
2B = - tJw 2B 

(9.10) 

(9.11) 

is the same as (6.33) for the O(k-Z) term of S?v. 
For the third iteration, we first get the second 

iteration of of from (9.8) and substitute it in the 
second term of (9.9). We obtain the 0(Z3) term for 
Rllv; 

z3R~~ = -2tJwz3 J d3Pl d3pz d3p3(27T)-9 

X e-PE(v dO'l2)(V d0'23) 

X (P~ _ p? + p~ _ P~Il) 
dl d~ d2 d~ 

X l(P~ p~ _ p~v _ P~V) 
d2 d3 + d2 d~ d~' 

E = El + E2 + E3 , dcJ12 = da(1/2' -+ 1 2), 

da23 = da(2 3 -+ 2"3/). (9.12) 

Like (9.11), Z3S?V can be obtained from (9.7) and 
(9.12). It is obvious that the result is the same as (8.9), 
at least in the nonrelativistic limit. 

What we have just demonstrated is that the leading 
terms in S?V and S?V [i.e. the C20 and C30 terms in (9.1)] 
are in fact the same as the iteration solution of a 
Boltzmann equation. Clearly the next leading term in 
S?V is completely missed by the Boltzmann equation. 
Notice that, as we have shown, the next leading term 
in S?V hears the full information concerning the 
second virial coefficient, whereas the Boltzmann 
equation contains no information concerning equilib
rium properties of the system. 

At this point, it seems very reasonable to assert that 
the O(k-n) term in S~IlV is in fact the nth-iteration term 
obtained from the Boltzmann equation. It is natural 
to expect that the Cnl terms in (9.1) should turn out to 
be the nth iteration from a more general kinetic 
equation. In view of our result for C2l and qualitative 
discussions· on Cal' we expect that a modified Boltz
mann equation should contain terms depending on 
derivatives of two-body amplitudes as well as two
body and three-body cross sections. Unfortunately, the 
first correction term, i.e., CZl in (9. I) is already very 
complicated according to our formula. Therefore, a 
more general kinetic equation may not be very simple. 

10. GENERAL REMARKS 

It seems evident in view of the above analysis that a 
concise general S matrix formula for the expansion 
coefficients for correlation functions does not exist, 
in contrast to the case of virial coefficients, where a 
concise formula does exist formally. We have eluci
dated the basic limitations of an S-matrix approach to 
correlation functions. The most general result one can 
hope to achieve seems to be a kinetic equation whose 
kernal is expanded in terms of S-matrix elements. 
It would be ideal if the first few terms for the kernal 
are simple. Much labor is needed in this direction. 

Here we have succeeded in obtaining the leading 
corrections to the conserved current correlation 
functions of an ideal gas. These corrections are 
unfortunately not expressible in very short formulas. 
Let us sum them up as 

S'IlV(k) - S'Il\k)idealgaS 

= (6.40) + (8.9) + 0(Z/2~) + 0(Zl4) + 0(1), (10.1) 

with z' and , defined by (I.I I). Equation (10.1) is a 
formula fully expressed in terms of on-shell two-body 
S-matrix elements (even though it involves three-body 
scattering) and is the formula corresponding to the 
phase shift formula for the second vi rial coefficient. 

The fact that (10.1) is obtained from a very general 
analysis should be emphasized more than the details 
of the formula. We notice that kinetics offree particles, 
on-shell S-matrix elements, and conservation laws are 
the only concepts appearing in our discussion besides 
thermodynamics. A link between the concept of S 
matrix and that of correlation function in statistical 
mechanics is thus established on firm grounds. lo 

It is evident that the conservation of currents is 
essential in our analysis. This requirement on the 
currents limits the generality of our results somewhat, 
since not all currents are conserved. However, there 
are many cases where the currents of physical interest 
are strictly or approximately conserved. Let us 
comment briefly on two examples as an illustration. 

(i) Consider the spin correlation in a nonrelativistic 
gas. The spin current is conserved only if no spin
orbit force is involved in collisions. This condition is 
met to a very good approximation for example when 
the atomic spin is zero while the nuclear spin is not, 
e.g., He3

• If there is an external uniform magnetic 
field, there will be a net average spin density. There is 
then an additional chemical potential ('"'-'magnetic 
field) associated with the spin, as well as a conserved 
spin (vector) current. 

(ii) Consider a gas of strongly interacting baryons. 
The current of baryon number and the current of 
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isotopic spin are conserved. Our results can thus be 
generalized to apply to the study of baryon number 
correlation and isotopic spin correlation in such a gas 
and to obtain information concerning responses to 
electromagnetic and weak perturbations. When there 
is a net average isotopic spin density, we have to 
introduce a chemical potential for the total isotopic 
spin in addition to the chemical potential for the 
baryon number. Evidently, this case is very much the 
same as the previous example, where the atom 
number and the ordinary spin are conserved, except 
that in this case the baryon number is allowed to be 
negative. 

In conclusion, we hope that our results will also find 
applications to cases where the systems are not dilute 
but special features would allow useful extrapolation 
and where the generality emphasized in this paper is 
not of primary importance. 
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Feynman formulation. It is shown that operator ordering arbitrariness in the quantum Hamiltonian is 
directly related to arbitrariness in the algorithmic definition of the functional integral. Examples are 
cited which demonstrate this fact. 

INTRODUCTION 

In the Feynman formulation of quantum mechanics,l 

the linear character of the system dynamics is exploited 
by the use of the propagator representation 

1jJ(q", til) = J K(q", q', til - t')1jJ(q', t') dq', (1) 

where K(q", q', t" - t') is the propagation kernel and 
dq is the volume element in q-space. The propagation 
kernel must satisfy the semigroup composition law 

for t' ~ t ~ tlf, together with the initial condition 

lim K(q", q', t) = o(q" - q'). 
t-O 

From this one can easily show that 

iii :~ (q", t") = f A(q", q')1jJ(q', til) dq', 

where 

A( " ') = 'Ii l' (aK(qll, q', t») q,q _ I 1m . 
t-o at 

(3) 

(4) 

K(q", q', til - t') 

= J K(q", q, t" - t)K(q, q', t - t') dq (2) 

A representation for the propagation kernel may 
be constructed in either of two ways. The first or 
"Feynmanl,2 way" is to postulate the form of the 



                                                                                                                                    

S MATRIX AND LOW ENERGY THEOREM 1471 

isotopic spin are conserved. Our results can thus be 
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electromagnetic and weak perturbations. When there 
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spin in addition to the chemical potential for the 
baryon number. Evidently, this case is very much the 
same as the previous example, where the atom 
number and the ordinary spin are conserved, except 
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INTRODUCTION 

In the Feynman formulation of quantum mechanics,l 

the linear character of the system dynamics is exploited 
by the use of the propagator representation 

1jJ(q", til) = J K(q", q', til - t')1jJ(q', t') dq', (1) 

where K(q", q', t" - t') is the propagation kernel and 
dq is the volume element in q-space. The propagation 
kernel must satisfy the semigroup composition law 

for t' ~ t ~ tlf, together with the initial condition 

lim K(q", q', t) = o(q" - q'). 
t-O 

From this one can easily show that 

iii :~ (q", t") = f A(q", q')1jJ(q', til) dq', 

where 

A( " ') = 'Ii l' (aK(qll, q', t») q,q _ I 1m . 
t-o at 

(3) 

(4) 

K(q", q', til - t') 

= J K(q", q, t" - t)K(q, q', t - t') dq (2) 

A representation for the propagation kernel may 
be constructed in either of two ways. The first or 
"Feynmanl,2 way" is to postulate the form of the 



                                                                                                                                    

1472 F. J. TESTA 

infinitesimal propagation kernel and then to use (2) 
and (3) to obtain an algorithm for computing 

K(q", q', t" - (I). 

By virtue of (4), the "Feynman way" is tantamount 
to postulating the form of the quantum Hamiltonian 
operator or, equivalently, the kernel A(q", q'), which 
clearly contains operator ordering arbitrariness.3 The 
second or "alternative way" to secure a functional 
integral "sum over histories" representation for the 
propagation kernel is to put 

K(q", q', t" - t') 

== exp~ p'--H dtD(q,p), I . it" (dq ) 
e Ii t' dt 

where 

C == {q(t), pet): q(t') = q', q(t") = q", t E [t', t"]} 

and 

D(q, p) == II dq(t) II dp(t)/C27Tlir (5) 
t'<t<t" t':St:St" 

for all finite positive values of (t" - t'). In (5), p and 
q denote n-tuples, and H is the classical Hamiltonian. 

Naively, it would appear that quantum operator 
ordering arbitrariness is completely avoided in the 
functional integral representation since only c-number 
functions appear. However, we show in the present 
paper that different algorithms for computing the 
functional integral in the propagation kernel yield 
different Hermitian orderings for the quantum 
Hamiltonian. Recently, other authors have purported 
to show that the functional integral representation 
yields a preferred Hermitian ordering for the quantum 
Hamiltonian associated with a given classical Hamil
tonian.4,5 Their error lies in not taking pro her account 
of the fact that the number of functional integration 
variables remains infinite for arbitrarily small (t" - (I). 
It is shown by the work which follows that one cannot 
approximate the functional integral in K(q", q', t) for 
small t by a finite number of integrations and assume 
that the errors (in such a drastic approximation) will 
tend to zero as t --+ O. 

CALCULATION OF A(q", q') 

To simplify the calculation of A(q", q') defined by 
(4) and to avoid the error mentioned above, we 
introduce the variable u == (t - t')/(t"- t') which 
gives 

P . .-!1 _ H dt = p . - du - (t" - t') H du it" (d ) 11 dq 11 
t' dt 0 du 0 

and thus, by substitution into (5), 

K(q", q', t) 

= { exp (.!. (lp.d
q

du )exp (_!.!. (lHdU) Du(q,p), 
Jeu Ii Jo du Ii Jo 

where 

Cu == {q(u), p(u): q(O) = q', q(1) = q", U E [0, 1]} 

and 

DuCq, p) == II dq(u) II dp(u)/(27Tlit. (6) 
O<u<l 0:Su:S1 

Partitioning the unit interval for the u integration into 
N cells, we obtain 

N-1 N dp 
DuCq, p) = lim II dqk II _k_ , (7) 

N--+ 00 k=l k=l (27TIi)n 

where qo = q', qN = q". To approximate the integral 
Hp' dq/du du for finite N by a Riemann sum, dq/du 
and p must be taken over a uniform lattice of points on 
the unit interval. By symmetry and the fact the (6) 
must satisfy the semigroup composition law, we 
obtain the prescription 

qk = q(k/N), h = p«k - t)/N). (8) 

Note that h is halfway in between qk and qk-1 on the 
unit interval. We must now represent (dq/du) and h 
at the same value of the parameter u by using a finite 
difference approximation for (dq/du)k' Clearly, any 
such representation must be subject to the constraint 
implied by (3). Consider the finite difference approxi
mation 

( d
q

) == (qk - _~k-1) = N(qk - qk-1)' (9) 
du k N 

Using (6), we obtain 

lim K(q", q', t) = K(q", q', 0) 
t--+o 

i (i i1 dq ) = exp - p' -du DuCq, p) 
eu Ii 0 du 

which, by virtue of (7), (8), and (9), yields 

lim K(q", q', t) 

t--+o f (. N ) N-I N dp 
= lim exp.!.. L,Pk' (qk - qk-1) II dqk IIC2 lik)n 

N --+ 00 Ii k=l k=1 k=l 7T 

= l5(q" - q') 

as required. Next, we make use of (4) and (6) to 
obtain the functional integral representation of 
A(q", q'): 

A(q", q') = { exp (i ep . dq dU) (lH duDuCq, p). 
Jeu Ii Jo du Jo 

(10) 
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Using Riemann sums in place of integrals as before, 
from (10) we obtain 

A(q", q') = lim fexp (~ IPk . (qk - qk-l») 
N-+oo Ii k=l 

N N-l N dp 
X N-l ~ Hm II dqk II _k_, (11) 

m=l k=l k=l (27Tlit 

where Hk is H evaluated at some point in the kth 
subdivision of the unit interval. Clearly, since qk and 
h refer to q(u) and p(u) at different points on the 
interval, the approximation to Hk must be made 
subject to the condition 

N il lim N-l ~ H m = H du 
N-+oo m=l 0 

(12) 

for any path q(u) , p(u). Further evaluation of (11) can 
be effected by employing the Taylor series expansion 
of the classical Hamiltonian 

00 

H = H(q, p) = ~ AI(q)pl. (13) 
1=0 

Substituting the expansion (13) into (11) yields 

A(q", q') = !i!! N-lf lll~ Ami 

X IT exp (~ Pk' (qk - qk-l») 
k=l Ii 

d N-l 
X I Pk II d (14) 

Pm (27Tlit k=l qk' 
in which 

so that 
00 

Hm == ~Am!P~' 
1=0 

After performing the integrations in (14), we obtain 

A(q", q') = lim N-l i I Am!bW(q" _ q,)(~)I, (15) 
N-+oo m=l 1=0 I 

where a superscript in parentheses denotes differenti
ation with respect to the argument and where 

Am! == [Amll1;=q',km' 
fli=q",i?:.m 

Since the quantum Hamiltonian must be Hermitian, 
we require 

A(q", q') = A *(q', q"). 

Hence, from (15) we obtain the condition 

Aml(q", q') = Aml(q', q"), 

(16) 

which, in addition to condition (12), must be satisfied 

by the quantities Ami' To obtain the form of the 
quantum Hamiltonian, we evoke the Schrodinger 
equation: 

iii O'IjJ(q", t) == fI'IjJ(q", t) =fA(qll, q')'IjJ(q', t) dq'. 
ot 

Substitution of (15) yields 

fI'IjJ(q", t) = lim N-l ~ I (~~)I[Aml'IjJ(q" t)]q'=q'" 
N-+oo m=l 1=0 I oq 

(17) 
If Ami does not depend upon m, we then obtain 

00 k (k) (Ii) (OIA) (Ok-I'IjJ(q' t») fI'IjJ(q",t) = ~ ~ _ _,k , , , 
k=O 1=0 1 i oq I q'=q" oq k-I q'=q" 

where 

== and Ak==A mk . (
k) k! --
1 l!(k-l)! 

Hence, we find the quantum Hamiltonian 

H q, - - = ~ ~ - - A --~ ( Ii 0) 00 k (k) [(Ii 0 )1 - ] (Ii 0 )k-I 

i oq k=O 1=0 1 i oq' k q'=q"=q i oq , 
(18) 

where we have assumed that Ak is independent of m. 
Because the quantum Hamiltonian in (18) possesses a 
degree of arbitrariness in the approximation A mk , 
distinct q-p operator orderings are associated with 
different assignments for A mk . Suppose, for example, 
we take Amk = Ak(!(qm + qm+1»; then we obtain 
Ak = Ak(Hq" + q'», which together with (18) gives 

fI(q, ~~) = I i (k) (!!..)IOIAk(q) (~~)k-I (19) 
i oq k=O 1=0 1 2i oql i oq , 

a quantum Hamiltonian prescribed by the Weyl
McCoy ordering rule. As a second example, suppose 
we take Amk = ![Aiqm) + Ak(qm-l)]; then we obtain 
Ak = ![Ak(q") + Ak(q')] which together with (18) gives 

H q,-- -~ ~ - - ---- --~ ( Ii 0) _ 00 k (k) (1i)IOIAiq) bzo + 1 (Ii 0 )k-I 
i oq k=O 1=0 1 i oql 2 i oq , 

(20) 

a quantum Hamiltonian prescribed by the sym
metrized ordering rule. It is apparent that there are an 
infinite number of admissible expressions for Amk , 
and each admissible expression gives a distinct 
Hermitian ordering for the generic quantum Hamil
tonian H. We have shown that this ordering arbitrari
ness in the quantum Hamiltonian is directly related to 
arbitrariness in the algorithmic definition of the 
functional integral (5), and we conclude that the two 
ways of prescribing the Feynman formulation are 
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equivalent with regard to operator ordering arbitrari
ness. 
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We investigate the possible factorizations of the confluent hypergeometric equation and show that 
this leads to a formal equivalence of the usual hydrogen atom problem with that of a set of multidimen
sional harmonic oscillators of appropriate classical frequency in a space of varying (even) dimensionality 
ranging from 41 + 4 to 2. We next use this method to investigate the solutions of some relativistic 
bound-state equations. As specific examples we consider Goldstein's eigenvalue problem and the Wick
Cutkosky scalar meson equation. A formal similarity also exists between the Goldstein problem and 
the scalar meson equation in the zero binding limit. The factorization of either of these equations leads 
to an infinite ladder of nonsquare integrable solutions. On the other hand, for arbitrary nonvanishing 
binding energies a complete solution of the scalar meson problem has been obtained by investigating the 
zero-energy factorization of the equation. 

1. INTRODUCTION 

A wide variety of physical problems in relativistic 
and nonrelativistic quantum mechanics can be 
formulated in terms of linear second order differential 
equations. The factorization method originated by 
Schrodinger1 and Infeld and HulJ2 provides a powerful 
technique for treating a class of such problems. In the 
factorization method a single second-order linear 
differential equation is replaced, if possible, by an 
equivalent pair of first-order differential-difference 
equations of the form 

D~Jn = fn±l , 

where D; are first-order differential operators. Thus, 
if we have one solution, we can use these operators to 
go up or down to other solutions and continuing this 
procedure we can obtain a ladder of such solutions. 
Recently Humi3 has shown that it is also possible to 
extend the formalism of the factorization method for 
arbitrary displacements in the spectrum space of any 
second order differential equation. In recent years it 
has been possible to identify the operators with a Lie 
algebra, and the possible factorizations can be classified 
according to these Lie algebras. Many of the properties 
of the special functions can be obtained in this way. 

This approach has been thoroughly investigated by 
MilIer4 and Kaufman.5 

The factorization method is especially suited for 
problems involving bound states. Once the proper 
factorization is found, the eigenvalue solutions, if they 
exist, follow as a necessary condition which determines 
the "top" or the "bottom" of the ladder of solutions 
depending upon the nature of the specific problem. 
The successive solutions can then be easily generated 
by going up or down the ladder. Another distinctive 
feature of the method is that it provides a unified 
technique for treating a large class of such problems. 
Since the various factorizations corresponding to 
definite pair of D; are interrelated,6 the investigation 
of the possible factorizations of a particular equation 
which appears in various physical problems may lead 
to an understanding of the possible interrelationships, 
if any, between two or more apparently unrelated 
problems. 

In the present paper we concentrate our attention on 
these two particular aspects of the factorization 
method. First, we show that the factorization of the 
confluent hypergeometric equation7 leads to a formal 
equivalence between the hydrogen atom and a multi
dimensional harmonic oscillator in a space of even 



                                                                                                                                    

1474 F. J. TESTA 

equivalent with regard to operator ordering arbitrari
ness. 

ACKNOWLEDGMENT 

I would like to thank Professor G. Rosen for his 
assistance and encouragement. 

JOURNAL OF MATHEMATICAL PHYSICS 

• Work supported in part by a National Science Foundation 
Grant. 

1 R. Feynman, Rev. Mod. Phys. 20, 367 (1948). 
2 See, for example, G. Rosen, Formulations of Classical and 

Quantum Dynamical Theory (Academic, New York, 1969), pp. 22-41. 
3 L. Cohen, J. Math. Phys. 11,3296 (1970). 
4 E. Kerner and W. Sutcliffe, J. Math. Phys. 11,391 (1970). 
5 C. Garrod, Rev. Mod. Phys. 38, 483 (1966). 

VOLUME 12, NUMBER 8 AUGUST 1971 

Formal Equivalence of the Hydrogen Atom and Harmonic Oscillator 
and Factorization of the Bethe-Salpeter Equations 

DEBABRATA BASU· 

Department of Physics and Astrophysics, University of Delhi, Delhi-7, India 

(Received 19 August 1970) 

We investigate the possible factorizations of the confluent hypergeometric equation and show that 
this leads to a formal equivalence of the usual hydrogen atom problem with that of a set of multidimen
sional harmonic oscillators of appropriate classical frequency in a space of varying (even) dimensionality 
ranging from 41 + 4 to 2. We next use this method to investigate the solutions of some relativistic 
bound-state equations. As specific examples we consider Goldstein's eigenvalue problem and the Wick
Cutkosky scalar meson equation. A formal similarity also exists between the Goldstein problem and 
the scalar meson equation in the zero binding limit. The factorization of either of these equations leads 
to an infinite ladder of nonsquare integrable solutions. On the other hand, for arbitrary nonvanishing 
binding energies a complete solution of the scalar meson problem has been obtained by investigating the 
zero-energy factorization of the equation. 

1. INTRODUCTION 

A wide variety of physical problems in relativistic 
and nonrelativistic quantum mechanics can be 
formulated in terms of linear second order differential 
equations. The factorization method originated by 
Schrodinger1 and Infeld and HulJ2 provides a powerful 
technique for treating a class of such problems. In the 
factorization method a single second-order linear 
differential equation is replaced, if possible, by an 
equivalent pair of first-order differential-difference 
equations of the form 

D~Jn = fn±l , 

where D; are first-order differential operators. Thus, 
if we have one solution, we can use these operators to 
go up or down to other solutions and continuing this 
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has been possible to identify the operators with a Lie 
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according to these Lie algebras. Many of the properties 
of the special functions can be obtained in this way. 

This approach has been thoroughly investigated by 
MilIer4 and Kaufman.5 

The factorization method is especially suited for 
problems involving bound states. Once the proper 
factorization is found, the eigenvalue solutions, if they 
exist, follow as a necessary condition which determines 
the "top" or the "bottom" of the ladder of solutions 
depending upon the nature of the specific problem. 
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by going up or down the ladder. Another distinctive 
feature of the method is that it provides a unified 
technique for treating a large class of such problems. 
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of the possible factorizations of a particular equation 
which appears in various physical problems may lead 
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problems. 

In the present paper we concentrate our attention on 
these two particular aspects of the factorization 
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dimensional harmonic oscillator in a space of even 
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dimensionality. We start from Kummer's differential 
equation for the function IFI(a; c; z); the first two 
factorizations of the equation'lead to simple recur
rence relations between the contiguous hypergeo
metric functions. However, there exists still another 
factorization which corresponds to simultaneously 
raising a by one unit and c by two units so that 
(c - 2a) is held fixed. The transformations involved in 
obtaining such a factorization correspond to trans
forming an equation resembling that of a harmonic 
oscillator to an equation resembling that for a 
hydrogen atom. This suggests a formal equivalence 
between these two problems. A closer inspection 
shows that the lth eigenstate of the hydrogen atom is 
equivalent to any of the n = 0, 1, 2, ... , (21 + l)th 
eigenstates of a harmonic oscillator of appropriate 
classical frequency in a space of (41 + 4 - 2n) 
dimensions. Such a connection between these two 
apparently unrelated problems was pointed out 
earlier by Bergmann and Frishman8 and recently by 
Cisneros and McIntosh9 using different arguments. 

We next use this method to investigate the solutions 
of some relativistic bound state equations. Although 
the formulation of the Bethe-Salpeter equationlO has 
solved the fundamental problem of constructing a 
fully relativistic two-body equation in the framework 
of quantum mechanics, the equation exhibits several 
unfamiliar features which are not encountered in the 
nonrelativistic Schrodinger equation. The use of the 
factorization method leads to an understanding of 
some of these unfamiliar features. A typical example 
of such a problem is Goldstein's eigenvalue problem,H 
which is known to lead to a continuous spectrum 
rather than a discrete one. A variety of explanations 
of this paradox have been offered, blaming mostly the 
highly singular nature of the relativistic interaction 
function. However, once the singularities of the 
interaction kernel are removed by Wick rotation,12 
both the Goldstein problem and the Wick-Cutkosky 
scalar meson equationI3 can be treated on an equal 
footing within this framework. Unlike the scalar 
meson equation, however, the factorization of 
Goldstein's eigenvalue equation corresponds to an 
infinite ladder of solutions without any bottom, 
thereby leading to a continuous spectrum unless some 
extra boundary conditions which are not manifestly 
contained in the Wick-rotated integral equation are 
imposed. 

Using the bipolar transformations,14,15 the scalar 
meson equation can also be factorized in the limits of 
vanishing total center of mass energy (E = 0) and 
vanishing binding energy (E = 1). For E = 0, a top of 
the ladder of square integrable solutions actually does 

exist and leads to all the results of 0(5) symmetry 
which have been obtained previously by several 
authorsI6 using different methods. We also show how 
one can obtain exact eigenvalue solutions for arbitrary 
nonvanishing energies once the zero-energy factori
zation is known, and the subsequent solutions agree 
with the results obtained in an earlier paper.17 In the 
limit of vanishing binding energy, however, the 
factorization of the equation leads to an infinite ladder 
of nonsquare integrable solutions, a situation similar 
to the one encountered in Goldstein's problem. 
Consequently, extra boundary conditions are again 
required to reproduce a discrete spectrum. These extra 
boundary conditions implicitly enter into the problem 
whenever one adopts Wick's method of matchingI8 

the so-called "internal" and "external" solutions and 
may be held responsible for the abnormal eigenvalues 
(A = t) which do not possess a nonrelativistic limit. 

2, FACTORIZATION OF THE CONFLUENT 
HYPER GEOMETRIC EQUATION AND FORMAL 

EQUIVALENCE OF THE HYGROGEN ATOM 
AND HARMONIC OSCILLATOR 

A differential equation of the form 

d2y 
-2 + rex, m)y + AY = 0, (2.1) 
dx 

whele m = mo, mo + 1, ... , is said to be factorizable 
provided it can be replaced by each of the following 
two equations: 

Dt,+lD;+lY;'(x) = [A - L(m + l)]y;'(x), 

D;;P;'y;'(x) = [A - L(m)]y;'(x), (2.2) 
where 

D;, = k(x, m) ± ~. 
dx 

A large class of differential equations of the Sturm
Liouville type are reducible to the standard from (2.1) 
by appropriate transformations.19 

We start from the confluent hypergeometric 
equation 

d2F dF 
z - + (c - z) - - aF = 0. (2.3) 

dz2 dz 

To reduce it to the standard form, we introduce 

x = z!, F = x-c+!e",2 /2y. (2.4) 

Equation (2.3) is then transformed into 

d2
y [(c - l)(c - :).) ] 

- _. 2 2 + x 2 
_ 2c + 4a y = 0. 

dx 2 x 2 
(2.5) 

We now replace c by c + m in the above equation, 
which resembles that for a harmonic oscillator; the 
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subsequent equation admits of a factorization 

± c+m-! d 
Dm = + x ± -, L(m) = -4(c + m). 

x dx 
(2.6) 

The equivalent pair of first-order differential-difference 
equations now easily follows from Theorem 1 (see 
Appendix), and these lead to the recurrence relations 

F(a; c + 1; z) = _C_[1 - ~JF(a; c; z), 
c - a dz 

F(a; c - 1; z) = [1 + _z_ !!...]F(a; c; z). (2.7) 
c - 1 dz 

To obtain the a-changing recurrence relations, we 
regard the term (c - 1)2 in (2.5) as the eigenvalue 
parameter to be held constant in the ladder. For this 
we introduce the transformation 

x = eU , y = eu / 2q;. 

Equation (2.5) with a replaced by (a + m) is trans
formed into 

d
2

q; [4U 4( 1 ) 21<] 0 - - e + m + a - 2C e q; = . 
du 2 

The factorization of this equation is given by 

D± = C + 1 - 2m - 2a - e2u ± .!!... 
m ~' 

L(m) = -(2m - c + 1), 

and this leads to the recurrence relations 

F(a + 1; c; z) = [1 + ~ :zJF(a; e; z), 

F(a - 1; c; z) = [1 - _z - + _z_ !!...]F(a; c; z). 
e - a e - adz 

(2.8) 

So far we have obtained the basic factorizations 
determining the fundamental recurrence relations 
which may be used to construct all the recurrence 
relations given by Erdelyi et al.20 We shall now show 
that there is another new factorization (i.e., a new 
operator pair 1Yn) which simultaneously raises a by 
one unit and c by two units so that (c - 2a) is held 
fixed. We therefore consider Eq. (2.5) with e replaced 
by (e + 2m) and a by (a + m): 

d2y _ [(C + 2m - t)(c + 2m - !) 
dx2 x2 

+ x 2 
- 2(c - 2a)]y = O. (2.9) 

Although this equation does not admit of a direct 
factorization, by a suitable change of variables,21 
namely, 

it can be recast into the factorizable form 

d
2
tp [2 (m + el2 - 1)(m + e12) 

d/ + ; - / 
- (_2_)2J tp = O. (2.10) 

e - 2a 

The factorization of the above equation is given by 

D:l:' = m + ic - 1 _ 1 ± ~ 
m p m + ~e - 1 dp , 

, 2 

L(m) = -em + ie - 1)-2. 

Without elaborating any further on the subsequent 
recurrence relations which are not important, we note 
that Eq. (2.10) becomes that for a hydrogen atom if 
we identify 

m + tc = 1+1, (_2_)2= -Ah , 

e - 2a 

where Ah is negative. With this identification, the Eq. 
(2.9), which is equivalent to (2.10), becomes 

d
2

y _ [(21 + t)(21 + !) + x 2 _ 4
1
-A

h
l-!]Y = o. 

dx2 x2 

(2.11) 

The hydrogen atom. equation is thus equivalent to 
an equation resembling closely that of a harmonic 
oscillator and we are led to suspect an interconnection 
between them. As we shall see presently, Eq. (2.11) 
represents the nth "eigenstate of a harmonic oscillator 
in a space of (41 + 4 - 2n) dimensions. To show this, 
we consider the radial equation of a p-dimensional 
harmonic oscillator: 

which on the substitution 

reduces to 

d2y _ [en + !p - !)(n + tp - !) 
dx 2 x2 
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This equation reduces to (2.11) on setting 

p/2 = (21 + 2 - n), Ao = 41-Ah l-!, 

and, since n ~ 0, p > 0, we have 2 ~ P ~ 41 + 4 
according as 21 + I ~ n ~ 0. Thus Eq. (2.11), which 
is equivalent to that of a hydrogen atom, represents a 
harmonic oscillator in a space of varying dimen
sionality ranging from 41 + 4 to 2. From this we can 
immediately infer that the lth eigenstate of the 
hydrogen atom corresponding to the eigenvalue 
parameter Ah, Ah < 0, is equivalent to any of the 
n = 0, I,··· (21 + I)th eigenstates of a harmonic 
oscillator corresponding to the eigenvalue parameter 
Ao = 41-Ah l-! in a (41 + 4 - 2n)-dimensional space. 

3. FACTORIZATION OF THE BETHE-SALPETER 
EQUATIONS 

A. Goldstein's Eigenvalue Problem 

The integral equation considered by Goldsteinll 

[Goldstein's Eq. (9)] for the singlet state of a 
pair of fermions bound to zero total mass by a 
massless scalar boson after Wick rotation can be 
written as 

2 A f 4, cp(p') 
1p(p)=(l+p)cp(p)=li dp '2' (3.1) 

7T (p - p) 

where we have written Pp = mpp. Using the identity22 

D;(p - p,)-2 = -41T20(p _ p'), 

we obtain from -(3.1) the following differential 
equation: 

This differential equation is equivalent to (3.1) 
provided that 

1p(0) is finite, and lim p21p(p) is finite. (3.2) 
p-+oo 

Separating the four-dimensional spherical harmonics, 
we obtain from the above 

1 d 3 dUn n(n + 2)un 4AUn 
p3 dp p dp - p2 + (1 + l) = 0, (3.3) 

where un(p) is the radial part of lp(p). We first reduce it 
to the standard form (2.1) by means of the transfor
mations 

p = sinh x, Yn(x) = sinh~ x cosh-! XUn. 

By virtue of the boundary conditions (3.2) the 
function Yn(x) defined in this fashion vanishes at the 
end points of the interval ° ~ x ~ 00 corresponding 
to ° ~ p ~ 00, and is therefore square integrable. 

Equation (3.3) is now transformed into 

d
2
Yn + [_! __ (n + i)(n + !)] +" = ° 

2 2 • 2 Yn AYn , 
dx cosh x smh x 

(3.4a) 

where A' = 4A - (n + 1)2. To investigate the square
integrable solutions of (3.4a), we introduce a function 
Yn(fl; x) depending on an auxiliary parameter fl which 
satisfies 

d2Yn(fl) 

dx 2 

+ [en - fl + i)(n - fl + !) _ (n + i)(n + !)] () 
cosh2 x sinh2 x Yn fl 

+ A'(fl)Yn(fl) = 0. (3.4b) 

The required solution is then merely Yn(n; x). Part 
of the dependence of this solution on n will be provided 
by the ladder operators while the remainder of this 
dependence will be introduced at the end of the 
ladder operations by setting fl = n. The factorization 
of the above equation is given by 

D! = (n + i) coth x + (n - fl + i) tanh x ± !L, 
dx 

L(n) = -(2n - fl + 1)2, 

since L(n) is a decreasing function of n, by Theorem 2 
(see Appendix) the bottom of the ladder of eigen
solutions, if it exists, is determined by 

DtYN = 0, 

and, since this condition is necessary, any ladder of 
square integrable solutions must satisfy this require
ment. However, as can be readily verified, the above 
equation does not admit of a square-integrable 
solution consistent with the boundary conditions 
(3.2). We are therefore confronted with an infinite 
ladder of solutions without any bottom leading to a 
continuous spectrum unless some other boundary 
conditions which are not contained in the integral 
equation are imposed. 

B. Factorization of the Wick-Cutkosky Equation 

In this section we proceed to show that the factor
ization of the Wick-Cutkosky equation 

1p(p) = [(p2 + 1 _ €2)2 + 4€2p~]cp(p) 
= ~ (d4p' cp(p') (3.5) 

7T2 " (p _ p')2 

leads to a complete solution of the problem. Here 2€ 
is the total center-of-mass energy in units of m, m 
being the mass of the interacting particles assumed 
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equal. The differential equation equivalent to (3.5) is 
given by 

[:;; + \7 2
] 1jl(p) = -4Ap(p), (3.6) 

and this is subject to the boundary conditions similar 
to (3.2). This equation can be recast into a separable 
form by using the bipolar transformationsl 4.15 

PI = Ps sin e cos p, Pz = Ps sin e sin p, 

P3 = Ps cos e, Ps = 0) sin f31(cosh ~ - cos f3), 

P4 = 0) sinh ~/(cosh ~ - cos 13), 0) = (1 - E2)!, 

so that Eq. (3.6) takes the form 

[
a a2 l(l + 1)J 
O~2 + of32 - sin2 f3 (Ps1jl) 

0)2 cosh2 ~ + E2 sinh2 ~ . 

The above equation, on separating the variables, 
leads to 

By virtue of the boundary conditions, the functions 
g(f3) and f(~) are square integrable in the domains 
o ~ 13 ~ 1T and - 00 ~ ; ~ 00, respectively. As we 
shall see presently, unlike the Goldstein problem, 
solutions satisfying this boundary condition actually 
do exist whenever 0 ~ E < 1. 

We first consider the factorization of the equation 
(3.7a). If we regard v2 as the eigenvalue parameter to 
be held constant in the ladder, the factorization of the 
equation is given by 

Dt = [cot f3 ± .!L, L(l) = [2. 
df3 

Since L(l) is an increasing function of I by Theorem 2, 
the ladder of square integrable solutions, if it exists, 
must have a top given by 

D;+lg~(n) = [en + 1) cot f3 - d~J g~(n) = 0, (3.8a) 

so that 
v2 = v2(n) = L(n + 1) = (n + 1)2, (3.8b) 

where n = I + K, K = 0, 1,2' .. n. The square
integrable solutions of (3.8a), 

g~«(J) = A~ sinn+! (J, 

where A~ is a suitable normalization constant, can be 
used to generate the successive ladder of solutions 
through the recurrence relation 

g~(f3) = [en - l)(n + [ + 2)tt 

X [(l + 1) cot 13 + :f3J g~+\ (3.9a) 

which follows from Theorem 1. In the above we have 
relabeled the functions g in terms of the quantum 
number n. The corresponding I-raising recurrence 
relation is given by 

g~+\f3) = [en - 1)(n + I + 2)rt 

X [(I + 1) cot f3 - d~Jg~(f3)· (3.9b) 

The eigenfunctions g~, g~-\ g~-2, etc., corresponding 
to I = n, n - 1, n - 2, are found to be expressible in 
terms of Gegenbauer polynomials, and we can easily 
show by induction that the Kth step of the ladder from 
the top is given by 

g~-"(f3) = A~-K sinn-K+l f3C~-K+\cos f3). (3.10) 

That this is true for K = 0, 1, 2, 3 can be verified 
directly. Let us therefore assume that this is true for 
K = k. If we now use (3.9a) to obtain the next step 
down the ladder and use the recurrence relation 

(2~ - 2) sin2 f3 d C~(cos f3) 
d(cos f3) 

= (2~ - 2)(2~ - 1) cos f3C%(cos f3) 

- (2~ + k - l)(k + l)C%:;:~(cos f3), 
we easily obtain 

g~-k-I(f3) = A~-k-I sin n-k f3C~:;:~( cos f3). 

Thus, if solution (3.10) is true for K = k, it is also true 
for K = k + 1 and therefore it is true in general. 
Finally, setting K = n - I in (3.10), we obtain 

g~(f3) = A~ sinHl (JC~~~(cos f3). (3.11) 

We can also obtain n-changing rec\lrrence relations by 
substituting (3.8b) in (3.7a) and regarding Al = 
l(l + 1) as the eigenvalue term to be held constant in 
the ladder. For this we introduce 

x = In tan (f312), y~ = cosh! xg~, 

so that - 00 ~ x ~ 00 corresponds to 0 ~ (J ~ x. 
The function y~ defined in this fashion satisfies 

d2y~ + (n + t)(n + !) y~ _ (AI + t)y~ = 0. 
dx2 cosh2 

X 
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This equation admits of a factorization 

D~ = (n + t) tanh x ± .E..., L(n) = -en + t)2. 
dx 

The subsequent recurrence relations can be expressed 
in terms of g and (J and is given by 

g~+l({J) = [en - 1 + 1)(n + 1 + 2W! 

x [-(n + 1) cos {J - sin (J d~}~({J) 
g~({J) = [en - I + l)(n + 1 + 2)r! 

x [ -en + 1) cos f3 + sin (J dd{JJg~+l({J). 
Having obtained the complete solution of Eq. 

(3.7a), we now investigate the factorization of Eq. 
(3. 7b) corresponding to € = O. The subsequent equation 
takes the form 

d
2n _ [en + 1)2 - ~Jn = o. (3.12) 

d;2 cosh; 

If we regard A as the eigenvalue term to be held 
constant in the ladder, the required transformation is 

x = 2 tan-1 (eS), Y~ = sin! xn, (3.13) 

so that, by virtue of the boundary conditions, Y~ is 
square integrable in the interval ° ~ x :::;; n corre
sponding to - 00 :::;; ; :::;; 00 and satisfies 

d
2
Y1 (n + t)(n + !) n + At n _ ° 

d 
2 - • 2 y). Y). - , 

x sm x 

where A' = A + t. The factorization of the above 
equation is given by 

d 
DO; = (n + t) cot x ± -, L(n) = (n + t? 

dx 
(3.14) 

Again L(n) is an increasing function of n and the top 
of the ladder of square integrable eigenfunctions are 
given by 

D"iI+1Y% = [(N + !) cot x ± :JY~ = 0, (3.1Sa) 

At = AN = L(N + 1) = (N + %)2, 

:. A = (N + 1)(N + 2), (3.1Sb) 

N = n + x, x = 0, 1, 2 ... N. 

The recurrence relations23 

n.r = [(N + n + 3)(N - n)]-! 

X [en + 1) cot x - ~JiN' (3.16a) 

iN = [(N + n + 3)(N - n)]-! 

x [en + 1) cot x + d~JiN+l, (3.16b) 

in conjunction with the solution of (3.1Sa), can be 
used to generate the ladder of eigenfunctions as 
before. These eigenfunctions are again expressible in 
terms of Gegenbauer polynomials, and, repeating the 
previous arguments, we can show that the (N - n)th 
step of the ladder from the top is given by 

i n . -! n r n ' n+l Cn+i( ) (317) N = sm XYN = N sm X N- n cos X , . 

where rN is a suitable normalization constant. To 
obtain the N-changing ladder operators, we sub
stitute A = (N + I)(N + 2) in (3.12) and regard the 
term (n + 1)2 as the eigenvalue. The factorization of 
the equation is then given by 

D,V = (N + 1) tanh; ± .E..., L(N) = -(N + 1)2, d; 
and this leads to the recurrence relations 

iN+l = [(N - n + 1)(N + n + 3W! 

X [(N + 2) cos x + sin x :JiN' 

iN = [(N - n + 1)(N + n + 3)r! 

X [(N + 2) cos x - sin x :J.n+l' (3.18) 

We shall now show how one can obtain exact eigen
value solutions of (3.7b) for arbitrary nonvanishing 
energies (0:::;; € < 1) once the zero-energy factor
ization is known. If we introduce the transformation 
(3.13), Eq. (3.7b) can be rewritten in terms of the 
zero-energy factorization as 

Ay1- (w 2 + €2 cos2 x)[D~+lD;+l 

+ L(n + 1) - t]y1 = 0, (3.19) 

where D; and L(n) are given by (3.14). 
We now attempt a solution in the form 

y1(x) = L akYNH(x), (3.20) 
k 

where the functions YNH appearing in the sum are the 
zero-energy eigenfunctions given by (3.17). The 
invariance of (3.19) under reflection x ---+ 7T - x 
further ensures that summation runs over even or 
odd values of k only. The solution (3.19) satisfies the 
boundary conditions (i.e., square integrability) pro
vided Lk lak l2 < 00. This condition, as we shall see 
presently, can be satisfied whenever 0 :::;; € < 1. 

From the fundamental equations of factorization, 
namely, Eqs. (2.2) and our previous discussions of the 
zero-energy solutions, it is apparent that the functions 
YN appearing in (3.20) are eigenfunctions of the 
operator Dt+1D;+1 + L(n + 1) with the eigenvalue 
given by (3.i5b). Thus, if we substitute (3.20) in 



                                                                                                                                    

1480 DEBABRATA BASU 

(3. 19) and use the recurrence relations (3. I 8), we 
obtain (3.20) as a solution of (3. 19) provided the 
coefficients satisfy 

(3.21) 

where Ak, Bk, Ck depend on energy. The condition for 
the existence of nontrivial solutions to this difference 
equation determines the eigenvalue problem. Follow
ing the method developed in an earlier paper,17 the 
difference equation can be solved and one can show 
that there exists a fundamental system of solutions of 
(3.21) for which limk~00Iak+2/akl < 1 whenever 0 ~ 
E < I; the condition.L lakl2 < 00, necessary for square 
integrability, is therefore satisfied. The subsequent 
eigenvalue condition can be expressed in terms of an 
infinite continued fraction 

Bo/Ao = C2/A 2 

B2/A2 _ C4/A4 

For E = 1, W = 0 which corresponds to vanishing 
binding energy, the solution (3.20) is not valid since 
the convergence criteria limk-> 00 I ak+2/ak I < 1 cannot be 
satisfied. The point E = I, therefore, needs a separate 
investigation. Since, for this particular value of energy, 
the differential equation (3. 7b) develops an extra 
singularity at the midpoint ~ = 0 which is absent when 
E < 1, it is necessary to investigate the solutions of the 
equation 

d
2n _ [en + 1)2 - _A_Jn = 0 (3.22) de sinh2 ~ 

separately in the region 0 ~ ~ ~ 00 and - 00 ~ ~ ~ 
O. However, owing to the invariance of the equation 
under reflection ~ -+ - ~, it is sufficient to investigate 
the solutions in the domain, say 0 ~ ~ ~ 00. For 
o ~ ~ ~ 00 we introduce the transformations 

x = In coth (~/2), y~ = sinh-! ~f~, 

so that 00 ~ x ~ 0 corresponding to 0 ~ ~ ~ 00. 

Equation (3.22) is now transformed into 

d
2
Yl _ (n + t)(n + t) n + (A. _ 1) n = O. 

d 2 . h2 Y;. 4 Y;. x· sm x 

The factorization of this equation is given by 

D;, = (n + t) coth x ± ~, L(n) = -en + W. 
dx 

L(n) is thus a decreasing function of n and, as there is 
no square-integrable solution of the equation 

DtY~ = 0, 

we are again led to an infinite ladder of solutions 
without any bottom. However, it should be empha
sized that, for E = I, the requirement of square inte
grability, namely, 

J [yl(xW dx = J d~[fl(~)]2/sinh2 ~ < 00, 

involves an extra condition which demands that 
Da) should behave at least as sinh ~ in the vicinity of 
~ = O. Unlike the previous cases, therefore, the 
square integrability is not a boundary condition 
guaranteed by the integral equation. 24 There may be 
other boundary conditions which can lead to the 
discrete values of A.. Precisely it is these extra boundary 
conditions which may be held responsible for the 
abnormal eigenvalues which do not possess a non
relativistic limit. These boundary conditions implicitly 
enter into the problem, through the substitution 
tanh ~ = z = wx in the vincinity of z = 0 (which 
requires that z -+ 0 in the same way as w -+ 0) and in 
the subsequent matching of the so-called "internal" 
and "external" solutions. 

4. CONCLUSION 

We have seen that the correspondence between the 
hydrogen atom and the harmonic oscillator is one of 
a homomorphism: Corresponding to a particular 
angular momentum state I of the hydrogen atom, a 
set of equivalent multidimensional oscillators, in 
varying angular-momentum states ranging from 0 to 
21 + I in spaces of correspondingly varying dimensions 
ranging from 4/ +4 t02,is obtained. Such a connection 
may be attributed to the fact that the hydrogen atom 
and harmonic oscillator problems of quantum 
mechanics may be regarded as two possible factor
izations of the same equation, namely, the confluent 
hypergeometric equation, the factorizations them
selves being interrelated. A group theoretic explan
ation of this interconnection has been recently provided 
by Cisneros and McIntosh,9 who showed that a class 
of levels of the hydrogen atom which ordinarily 
transform according to an orthogonal group may 
form an irreducible representation of the unitary 
group which is the symmetry group of the harmonic 
oscillator.25 The factorization of the Bethe-Salpeter 
equations on the other hand reveals a formal similarity 
between Goldstein's eigenvalue problem and the 
relativistic scalar meson equation for zero binding. 
In either of these cases we obtain an infinite ladder of 
nonsquare integrable solutions without any bottom. 
This similarity may again be attributed to the fact that 
both of these problems correspond to the same 
factorization of the hypergeometric equation. 
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Thus, unlike the nonrelativistic Schrodinger equa
tion, the square integrability may not always be a 
realizable boundary condition for the covariant wave 
equations. Our observation is similar to that of 
Keam,26 who showed that the solutions to the ladder 
approximation Bethe-Salpeter equation for the fer
mion-antifermion system bound to zero total mass by 
a massless vector or axial vector particle do not 
satisfy a set of integrability criteria. Some extra 
boundary conditions which are not manifestly con
tained in the integral equation may therefore be 
necessary to obtain an eigenvalue of the coupling 
constant. Precisely such extraboundary conditions 
were previously used by Biswas and Green,27 who 
were able to obtain some radially symmetric solutions 
to the relativistic nucleon-nucleon problem by 
demanding that the wavefunction together with its 
spatio-temporal derivatives should be finite and 
continuous everywhere and particularly on the light 
cone. The abnormal eigenvalues (A = 1-) of the Wick
Cutkosky equation corresponding to zero binding, as 
we have argued, also originate from such an extra 
requirement which implicitly enters into the problem 
through the matching of the "internal" and "external" 
solutions. The factorization of the scalar meson 
equation for € = 0 (maximal binding), on the other 
hand, leads to a complete solution of the problem: 
Here, unlike the previous cases, a ladder of square
integrable solutions which is truncated at the top does 
exist. The solutions are expressible in terms of 0(5) 
polynomials, and the various ladder operators ob
tained by us may be used to construct the Lie algebra 
of the 0(5) group. The zero-energy factorization once 
known, the exact eigenvalue solutions for arbitrary 
nonvanishing energies, € < I, easily follow by re
writing the subsequent equation in terms of the zero
energy factorization. The corresponding eigenfunctions 
are expressible as infinite sums of the zero-energy 
eigenfunctions and the eigenvalue condition is 
expressible in terms of an infinite continued fraction. 
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APPENDIX: FUNDAMENTAL THEOREMS OF 
FACTORIZATION 

Theorem 1: If y~(x) is a solution of the differential 
equation (2.1) for m = n, then 

a~Yrl(x) = D-;;-+lY~(x), 

b~Y1-\x) = D;;y1(x) (Al) 

are also solutions corresponding to the same value of 
A and m = n + 1 and m = n - 1, respectively. Here 
a and b are appropriate normalization constants. 

Theorem 2: If L(n) is an increasing function of n 
for 0 ~ n ~ k and A ~ the larger of L(k), L(k + I), 
then a necessary condition for quadratically integrable 
solutions is that 

so that 
A = AN = L(N + 1), 

where N is an integer and n = 0, 1, 2 ... N. 

(A2) 

(A3) 

If L(n) is a decreasing function of n, the corre
sponding requirement for the existence of square
integrable solutions is 

D,ty;:(x) = 0, 
so that 

A = L(N), 

where N is an integer and n = N, N + I, .... 

(A4) 

(AS) 

Since these conditions are necessary, the non
existence of square-integrable solutions of (A2) or 
(A4) which determines the top or the bottom of the 
ladder is equivalent to the nonexistence of square
integrable solutions of the original differential equation. 
The proof of these theorems can be found in the 
original paper of Infeld and Hull (Ref. 2). 
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A local normal form under canonical transformation is found for n independent functions of 211 
variables, with the condition that the Poisson bracket of each pair of the functions be constant. The 
normal form, closely related to work of Lie, is used to prove a conjecture of Avez on I-forms in involution 
and to obtain a criterion for II independent functions of 211 variables to be extendable to a canonical 
coordinate system. The last result has been obtained in different ways by Lie and Kruskal. 

INTRODUCTION 

The book of Abraham and Marsden l on the 
foundations of mechanics attributes to A vez the 
following conjecture which we have reworded in local 
form. (The global form admits simple counter
examples.) 

Conjecture: Let fl, ... ,fn be functions on a 2n
dimensional symplectic manifold (M, OJ) such that 
{dfi' dh} = ° for all i, j and, at a point x E M, 
dfl' ... ,dfn are linearly independent. Then there 
exist functions gl, ... ,gn' defined in a neighborhood 
U of x, such that /1,'" ,In' gl"" ,gn form a 
coordinate system on U and such that following 
formulas are satisfied: 

{dg,;, dg j } = 0, 

{d/;, dg j } = 0, 

for all i,j; 

for i ¥= j; 

{d/;, dgJ vanishes nowhere, for all i. 

In this paper, we first show that the truth of A vez's 
conjecture follows from a theorem of Lie on "function 

groups." We then present a simple proof of that case 
of Lie's theorem (Theorem 1) which is necessary for 
the proof of the conjecture. In fact, we found Theorem 
1 in the effort to solve Avez's problem, and it was only 
later that we found out about the result of Lie. (One 
of the authors2 has obtained a generalization of 
Theorem 1 which extends part of Lie's result to 
infinite-dimensional manifolds and unifies many local 
equivalence theorems in symplectic geometry.) In the 
last section, we present an application of Theorem 1 
to systems of functions which satisfy the Poisson 
bracket relations of "half" of a canonical coordinate 
system. 

1. DEFINITIONS, NOTATION, AND BASIC 
FORMULAS 

We follow, with slight variations, the notation of 
Godbillon,3 which may be converted into that of other 
authors by the judicious insertion of minus signs and 
the factor t. 

Recall that a symplectic manifold is a pair (M, w), 
where M is a 2n-dimensional manifold and w is a 
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and to obtain a criterion for II independent functions of 211 variables to be extendable to a canonical 
coordinate system. The last result has been obtained in different ways by Lie and Kruskal. 

INTRODUCTION 

The book of Abraham and Marsden l on the 
foundations of mechanics attributes to A vez the 
following conjecture which we have reworded in local 
form. (The global form admits simple counter
examples.) 

Conjecture: Let fl, ... ,fn be functions on a 2n
dimensional symplectic manifold (M, OJ) such that 
{dfi' dh} = ° for all i, j and, at a point x E M, 
dfl' ... ,dfn are linearly independent. Then there 
exist functions gl, ... ,gn' defined in a neighborhood 
U of x, such that /1,'" ,In' gl"" ,gn form a 
coordinate system on U and such that following 
formulas are satisfied: 

{dg,;, dg j } = 0, 

{d/;, dg j } = 0, 

for all i,j; 

for i ¥= j; 

{d/;, dgJ vanishes nowhere, for all i. 

In this paper, we first show that the truth of A vez's 
conjecture follows from a theorem of Lie on "function 

groups." We then present a simple proof of that case 
of Lie's theorem (Theorem 1) which is necessary for 
the proof of the conjecture. In fact, we found Theorem 
1 in the effort to solve Avez's problem, and it was only 
later that we found out about the result of Lie. (One 
of the authors2 has obtained a generalization of 
Theorem 1 which extends part of Lie's result to 
infinite-dimensional manifolds and unifies many local 
equivalence theorems in symplectic geometry.) In the 
last section, we present an application of Theorem 1 
to systems of functions which satisfy the Poisson 
bracket relations of "half" of a canonical coordinate 
system. 

1. DEFINITIONS, NOTATION, AND BASIC 
FORMULAS 

We follow, with slight variations, the notation of 
Godbillon,3 which may be converted into that of other 
authors by the judicious insertion of minus signs and 
the factor t. 

Recall that a symplectic manifold is a pair (M, w), 
where M is a 2n-dimensional manifold and w is a 
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closed nondegenerate 2-form on M. Darboux's theorem 
(Ref. 3, Chap. VII, 1.10) asserts that, about each 
point of M, there is a coordinate system Pt, ... 'Pn' 
ql, ... ,qn such that w = L~l dpi A dqi' Such a 
coordinate system will be called canonical. 

Associated with any I-form oc on M, there is a 
vector field Xa defined by the equation oc = ixa.w = 
w(Xa , '). Iff is a real-valued function on M, we will 
write Xf instead of Xdf • Since df is closed, the Lie 
derivative Lx,w is zero, i.e., X f is a Hamiltonian 
vector field. This fact can also be seen in canonical 
coordinates because 

so that 

xf=i (_ 01 ~+ OI.i.-), 
i~l OPi Oqi 0 qi OPi 

which is clearly the vector field associated with the 
Hamiltonian function -f The Poisson bracket {oc, fJ} 
of the I-forms oc and fJ is defined as i[x a,X p]w ([ , ] is 
the Lie bracket), and the Poisson bracket {j, g} of the 
functions f and g is the function -w(XI , Xg). These 
operations satisfy, among others, the following 
relations: 

d{j, g} = {df, dg}, (1) 

X{/.g} = [XI' Xg], (2) 

{j,g}=XI'g=-Xg'f (3) 

2. LIE'S THEOREM AND A VEZ'S CONJECTURE 

A k-tuple (fl' ... ,fk) of functions on the symplectic 
manifold (M, w) is called complete if the differentials 
dfl , ... , dh are linearly independent and if there exist 
functions Uij: rR k -+ rR (1 S i, j S k) such that 

{j; ,j;} = Uij(!t, ... ,j;J, I S i,j S k. 

The matrix (Ui}) of functions is called the structural 
matrix of (fl' ... ,h), and it is evidently determined 
by (fl' ... ,fk)' 

Lie's Theorem: Let (fl" .. ,fk) and (f~, ... ,f~) 
be complete k-tuples on the symplectic manifolds 
(M, w) and (M', w'), respectively. Suppose that 
hex) = f/(x') for some points x E M and x' EM'. 
Then there exists a diffeomorphism q; from a neighbor
hood of x onto a neighborhood of x' such that 
q;*w' = wand q;*f; = j; if and only if (fl' ... ,fk) 
and (f~, ... ,f~) have the same structural matrix and 
dimM = dimM'. 

The "only if" part of Lie's theorem follows im
mediately from the uniqueness of the structural matrix 

and the fact that the action of diffeomorphisms such 
that q;*w' = w commutes with the Poisson bracket 
operation on functions. The "if" part is proven by 
Lie.4 For the proof of Avez's conjecture, we only need 
the following corollary of Lie's theorem, which is 
essentially the special case in which k = n and the 
entries in the structural matrix are constants. (The 
case in which the entries in the structural matrix are 
nonhomogeneous linear functions, with no restriction 
on the relation between k and n, is treated by one of 
the authors.2) 

Theorem 1: Let (fl' ... ,fn) be a n-tuple of functions 
on the 2n-dimensional symplectic manifold (M, w) 
such that the differentials dfi are linearly independent 
at a point x E M and such that {elfi' dj;} = 0, lSi, 
j S n. Then 

(i) there exists an antisymmetric matrix (b ij) of 
constants such that {Ii ,j;} = bij', and 

(ii) there exists a canonical coordinate system 
(Pt, ... 'Pn' ql,"', q ,,) about x such that, for' 
lSi S n, 

n 

Ii = qi - ~2>ijPj' (4) 
i~l 

In the following section, we present a direct proof 
of Theorem I which we feel may have some value for 
explicit computations. First, though, we give a proof 
of Avez's conjecture. 

Theorem 2: Avez's conjecture (see the Introduction) 
is true. 

Proof' Choose canonical coordinates as given by 
Theorem 1. Let gi = Pi + ip;. Direct computation 
shows that {gi,gj} = 0, {j;,gj} = 0ii(Pi + 1), and 
the differentials are independent in a neighborhood of 
the origin. With the aid of (I), this implies that 
{dg i , dgj} = 0 and {dj;, dgj} = Oij dpi' which is 
identically zero for i ¥- j and nowhere zero for i = j. 

QED 
3. PROOF OF THEOREM 1 

Assertion (i) follows immediately from (I) and the 
antisymmetry of the Poisson bracket operation. To 
prove (ii), we will make much use of the vector fields 
XI , ... , X" for which we use the abbreviated 

1 n 

notation Xl"'" X n . Our hypotheses and the 
definition of the Poisson bracket imply that i[x ,.X ;l(() = 
0, and the nondegeneracy of w implies that [Xi' Xj] = 
O. By application of the Frobenius theorem,5 we can 
find a coordinate system (WI"" , W n, Zl" .• , zn) 
about x such that %wi = Xi' By Proposition 1 in 
Sec. 4, with Xi(x) taken for ~i' there exists a Lagran
gian submanifold through x which can be defined by 
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equations Wi = 0i(ZI, ... ,zn)' fA Lagrangian sub
manifold is characterized by ro(X, Y) = 0 for every 
pair X and Y of vectors tangent to the submanifold.] 
If we let Yi = Wi - (Ji(ZI, ... , zn), then (YI, ... , Yn, 
ZI' ... , zn) is a coordinate system, a/aYi = Xi' and 
the manifold defined by the equations Yi = 0 is 
Lagrangian. 

Let us express the 2-form w in the coordinates 
(YI, ... 'Yn' ZI' ... ,zn)· We writeyfor (YI' ... ,Yn) 
and Z for (ZI' ... , zn). There exist functions Aij(y, z), 
Bi;(y, z), and Cij(Y, z) such that Aij = -Aji , Bij = 
-Bji' and 

ro = t 2 Aij(y, z) dZi 1\ dZ j 
i,j 

- t 2 Bi;(y, z) dYi 1\ dyj + 2 Cily, z) dYi 1\ dz j . 
i, j i ,1 

Now the function Bi; is equal to -W(a/aYi' a/aYj) = 
-ro(Xi , Xj) = {j;,j;} = bi;' The fact that La/a/l.w = 
Lx.w = 0 implies that AiJ and Cij are act'ually 
functions of Z alone. Finally, since the manifold 
defined by the equations Yi = 0 is Lagrangian, the 
functions Aij are actually zero. We have, therefore, 

W = "2 dYi 1\ (CJz) dZ j - tbo dy;). 
i ,j 

Since w is closed, so is the 2-form 2i.j dYi 1\ Cij(z) dzj , 
and so are the I-forms C1. i = 2; Cij(Z) dz;. By the 
Poincare lemma, there exist functions Ul, ••• , Un such 
that dUi = C1.i and ui(x) = j;(x). If PI, ... 'Pn are the 
functions such that dpi = dYi' Pi(X) = 0, and qi = 
Ui - t 2; bijp;, then 

w = 2 dpi 1\ dqi' 

A computation shows that, in the canonical co
ordinates (PI, ... , Pn, ql, ... , qn), 

so that 
n 

dIi = dqi - t 2bij dpj. 
j=1 

Since j;(x) = qi(X) and Pi(X) = 0, we must have 
n 

Ii = qi - i'IbiiPi' QED 
j=1 

Remark: The proof above does not give the simplest 
construction of the coordinates PI' ... , pn, ql' ... , 
qn for purposes of explicit computation, but it does 
produce the normal form (4) by means of a fairly 
natural sequence of operations. If one wishes to find 
the (p, q) coordinates explicitly, once he has the (y, z) 
coordinates, it suffices to define PI, ... , Pn by setting 
P. = Yi - Yi(X) and then to define ql' ... ,qn by (4). 

(One can verify by direct calculation that the co
ordinates so obtained are canonical-this gives an 
alternate ending to the proof of Theorem I.) It turns 
out, therefore, that the operations required for the 
determination of the (p, q) coordinates are: (a) One 
integrates the vector fields Xi to obtain the (w, z) 
coordinates; (b) one finds a Lagrangian subspace A of 
the tangent space to M at x complementary to the 
space spanned by XI (x) , ... , Xn(x), by the method of 
Lemma 2 in Sec. 4; (c) one finds a Lagrangian sub
manifold tangent to A (a trivial operation, once one 
has any system of canonical coordinates); (d) the 
foregoing gives you Yi and then Pi as functions of the 
original coordinates, and then 

n 

qi =h + tIbiiPi' 
j=1 

An alternative to doing (b) and (c) would be to find 
the functions (Ji(ZI, ... ,zn) by setting to zero the 
terms in dZ i 1\ dZ j in w. 

4. LAGRANGIAN SUBSPACES AND 
SUBMANIFOLDS 

If (M, w) is a 2n-dimensional symplectic manifold, 
a Lagrangian submanifold of M is an n-dimensional 
submanifold L £: M such that w(X, Y) = 0 when 
every X and Yare tangent to L. If V is a 2n-dimen
sional vector space carrying a nondegenerate anti
symmetric bilinear form Q (such a space will be called 
symplectic), an n-dimensional subspace W £: V is 
called Lagrangian if Q( ~, rJ) = 0 whenever ~ and 'YJ 

are in W. Since the tangent spaces to M are symplectic, 
a Lagrangian submanifold may be defined as a 
submanifold, all of whose tangent spaces are Lagran
gian subspaces of the appropriate tangent spaces 
of M. 

The following proposition is the goal of this section. 

Proposition 1: If ~1' ••• , ~ n are linearly independent 
tangent vectors to M at the point x, then there exists a 
piece of Lagrangian submanifold through x whose 
tangent space at P is complementary to the space 
spanned by ;1, ... , ~ n • 

The proposition follows immediately from two 
lemmas. 

Lemma 1: Any Lagrangian subspace of the tangent 
space to M at x is tangent to a piece of Lagrangian 
submanifold. 

Proof" In any system of canonical coordinates, the 
submanifold tangent to the given subspace and 
defined by linear equations in the coordinates is 
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necessarily Lagrangian. (The tangent spaces of such. a 
submanifold are spanned by constant vector fields In 

the canonical coordinates. The coefficients of ware 
also constant in these coordinates.) 

Lemma 2: If ~1' ••• , ~n are linearly independent 
vectors in a 2n-dimensional symplectic space (V, 0), 
then there exists a Lagrangian subspace W C V 
which is complementary to the space U spanned by 
~1' •.. , ~n' 

Proof" The space U is the O-orthogonal direct sum 
of a space rad U on which 0 reduces to zero and a 
space Won which 0 is nonsingular (Ref. 6, p. 116). 
First W is the orthogonal sum of hyperbolic planes 
(Ref. 6, Theorem 3.7); its basis ('flu"', 'flo '1,"', 
'r) is such that 0(1];, 1];) = Oai' 'j) = 0 and 
O( 'YJi' 'i) = 0;;. Let T be the orthogonal complement 
of W; this space is nonsingular (Ref. 6, Theorem 3.5). 
In T, rad U is isotropic and spanned by 'r+1 , ... , 'n-r, 
so that there exist, in T, (n - 2r) vectors 1],+1' ... , 

1]71-. such that O( 1];, 1];) = 0 and O( 'YJ;, 'i) = 00 
(Ref. 6, Theorem 3.8). Finally, the O-orthogonal 
complement of the space spanned by ('1, ... '. 'n-r, 
'Yl ... 'Yl ) is nonsingular and therefore IS the '/1, , "In-T 

orthogonal sum of hyperbolic planes. In summary, we 
find in this way a basis of U, ('flI,' .. , 'YJ" '1' ... , 
'n-r), which extends to a basis of V, ('YJ1"" , 'YJ", '1, ... ,'71)' with O('YJ;, 1];) = O(e 'i) = 0 and 
O( 'YJ;, Sj) = oij for all i, j such that 1 ~ i, j ~ n. 
Now let A be spanned by 'YJr+1"", 'YJn-r, 'YJ1 + 
'YJn-.+1' '1 - 'n-.+1, t}2 + 'fln-.+2' '2 - 'n-;-'":"2' .. : ' 
'Yl + 'Yl y - Y A has dimension n, and It IS easily '/r 'In' Sr Sn' 

seen to be complementary to U. Finally, 0 annihi-
lates any pair of basis elements. In fact, O('YJ; + 
'YJr+s+;' 'i -"+8+;) = O( 'YJi' 'i) - O( 'YJr+s+i' 'r+8+i) = 
I - I = 0, and the other pairs are obviously 0-
orthogonal. It follows that 0 annihilates any pair of 
elements of A, so that A is Lagrangian. QED 

5. SEMICANONICAL SYSTEMS OF FUNCTIONS 

If n functions are selected from a canonical co
ordinate system on a 2n-dimensional symplectic 
manifold, they may be labeled as (gI"", gk' 
hI, ... , hI) in such a way that 

{g;, gj} = {hi' hj} = 0, 

{gi' hj} = -Oij' 

(5) 

(6) 

We call any n-tuple (gl"", gk' hI' ... ,h!) of 
functions having linearly independent differentials 
and satisfying (5) and (6) a semicanonical system. 
The name is justified by the following consequence of 
Theorem 1. 

Corollary 1: Any semicanonical system (g I , ... ,gk' 
h .. , h) on M can be extended, locally, to a 1, ,! 

canonical coordinate system (g1 , ... ,g 71' hI' ... ,hn)· 

Remark: A similar result was obtained by Kruskal. 7 

Proof: Let U1,"', Un' VI"'" vn be canonic~l 
coordinates on rR2n , with the usual sympleC1JC 
structure. Write (j1' ... ,fr,) for 

(gl' ... , gk' hI, ... , hI) 

and (f~, ... ,f~) for (uI , ... , Uk' VI' ... , V!). Then 
(jI' . " ,fn) and (j~, ... ,f~) have the same matrix 
(b . .) of constant Poisson brackets. By Theorem 1, one 
ca~ find, locally, canonical coordinate systems 

, " ') (PI"" 'Pn,Q1"" ,qn)and(Pl"" ,pn,·ql'··· ,qn 
on M and rR n, respectively, such that j; = q; -
~ I bijPi and f: = q; - ~ I bijP~' Let. ffJ be ,that local 
diffeomorphism from M to rR n for which Pi 0 ffJ = Pi 
and q; 0 ffJ = q;. Since ffJ maps a canonical coordi
nate system into a canonical coordinate system, it 
is a symplectic diffeomorphism, and the func
tions (ulo ffJ, ••• , Un 0 ffJ, VI 0 ffJ, •.• , Vn 0 ffJ) form a 
canonical coordinate system as well. But j;' 0 ffJ = 
(q; - ~ 2, bop;) 0 ffJ = q; 0 ffJ - ~ 2, b;j(p~ 0 ffJ) = q; -
t I bijpj =j;, so that (gl"" ,gn' hI,"', hn), 
where gi = Ui 0 ffJ and hi = Vi 0 ffJ, is a canonical co
ordinate system extending (gl' ... , gk' hI, ... , hz). 

QED 
Remarks: 

(1) A well-known special case of Theorem I is that 
of n functions in involution. (See, for instance, the 
papers of the authorsB•

9 or the book of Caratheo
dory.IO) 

(2) Corollary 1 is a consequence of Lie's theorem, 
but, in fact, Lie proves the result independently, 
without the restriction k + I = n, and uses it as a 
lemma in the proof of his general theorem.4 

(3) The coordinates p~, ... ,p~, q~, ... ,q~ on 
1R2n depend only on the matrix {bij}, which in turn 
depends only on the integers k and I. For applications, 
therefore, it is worthwhile to compute these coordi
nates once and for all. Here is an example, which 
illustrates the use of Theorem 1. 

With n = 2, k = 1= 1 (we will omit the primes 
from our notation), we have w = dU I 1\ dV l + 
dU 2 A dV2, /1 = U1 , and /2 = VI' Then djl = dUI and 
d/2 = dVI, so that Xl = -a/aVl and X 2 = a/au1 • 

Integration of these constant vector fields is trivial; 
the system (-VI, U1 , V2, U2) of coordinates serves as 
the (w, z) system of the theorem. 

Next, to find the Lagrangian submanifold, we go 
through the procedure of Lemma 2. The space U 
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spanned by Xl and X 2 is nonsingular-we may take 
1'/1 = O/OUI and '1 = O/OVI as a symplectic basis. The 
w-orthogonal complement has 1'/2 = %u2 and '2 = 
%v2 as a symplectic basis. The Lagrangian subspace 
is spanned, therefore, by 1'/1 + rl2 = O/OUI + a/au 2 
and '1 - '2 = a/aVl - a/av2, which satisfy the 
equations dUl - dU2 = 0 and dVl + dV2 = O. The 
requisite Lagrangian submanifold may be defined, 
therefore, by the equations Ul - U2 = 0 and VI + V2 = 
0, and the functions ()1 and ()2 are given by WI = 
-VI = ()I(ZI, Z2) = V2 and W2 = Ul = ()2(ZI, Z2) = U2' 
Now Yl = WI - ()I = -VI - V2 and Y2 = W2 - ()2 = 
Ul - U2 • So PI = Yl = -VI - V2 and Pz = Y2 = UI -

U2' Since bIZ = {u l , VI} = - I, we have ql = 11 + 
~b12Pz = Ul - HU1 - u2) = HUI + uz) and (/2 = 12 + 
tb2lPl = VI + H -VI - V2) = t(Vl - v2)· In summary, 
therefore, (PI' P2' ql, q2) = (-VI - V2' Ul - U2, 
HUI + u2), HVI - V2», and the inverse transfor· 
mation, useful to calculate directly I~ by a product of 
two transformations, is CUI' VI' U2, V2) = (ql + ~P2' 
qz - iPI' ql - ip2, -q2 - iP2)' 

Finally we can extend the Liouville theorem: 

Theorem 3,' If a semi canonical system of integrals is 
known for a Hamiltonian system and if k Poisson 
brackets are I, then the system can be reduced to k 
degrees of freedom. 

Proof' If we have gl = OCl, ••• ,gk = OCk and 
hI = PI' ... ,hk = Pk' ... ,hi = PI (k + 1= n), we can 
do a canonical transformation such that we have the 
new variables Ul = 0(1' ••• , Uk = OCk and VI = {Jl, ••• , 

Vk = {Jk' ••• , VI = (JI' As they are integrals, the new 
Hamiltonian function is independent of 

and we have the Hamiltonian H(UI+I,"', Un' 
Vk+l' ... , v n). Finally, as vk+l' ••• , VI are constants 
of motion, we are reduced to a Hamiltonian system 
in the 2k variables u1+l' ..• , Un' VI+!,' .• 'Vn and 
(n - 2k) integrals. 
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We study the properties of a linear chain of spins governed by the Hamiltonian 

N N 

H = J 1 ~ S;· S;+l + J2 ~ S;· 8;+2 
i~1 i~1 

and derive equations for an upper bound of the free energy by means of a temperature dependent 
Hartree-Fock approximation. These equations can be solved at zero temperature, yielding an approxi
mate wavefunction for the ground state, of which the energy is an upper bound for the exact ground 
state energy. The upper bounds obtained are improvements of the results of Majumdar and Ghosh. 
There are several different cases to be considered, depending on the relative values of J 1 and J2 • In none 
of these is there a gap between the ground state and the first excited state in the thermodynamic limit. 
Finally, correlation functions are shortly discussed in connection with spiral structures in classical 
spin systems. 

1. INTRODUCTION 

We consider the following model of spin-spin 
interactions in one dimension, described by the 
Hamiltonian 

.V N 

H = J 1 2 Sj' Si+1 + J 2 2 Si' SH2' (1) 
i=1 i=1 

where S~ is the component in the i direction of the 
spin operator at the jth site and cyclic boundary 
conditions have been taken. The case of J2 = 0 is 
well known and has been the subject of many inves
tigations1 ; it is relevant not only in the study of 
magnetism (for J1 > 0 it is the isotropic linear 
antiferromagnetic chain) but also for the description 
of quantum lattice gases2 and critical phenomena in 
liquid-gas transitions. 3 The case J2 =;t. 0 has been 
studied by Majumdar and Ghosh4 ; they determined 
some properties of finite chains and derived upper and 
lower bounds for the ground state energy per spin of 
(1) as N tends to infinity. The Hamiltonian (I) is also 
relevant to the study of polymers,5 where one con
siders Hamiltonians of the type 

(2) 

Hamiltonians of the type of (1) are especially 
important in the theory of helimagnetism,6 where it 
is essential that the localized spins of the lattice do not 
only interact with their nearest neighbors but also 
with the n'ext-nearest neighbors. When trying to 
determine properties of such systems, one usually 
makes the simplifying assumption that these proper
ties do not change essentially when the spin operators 
in the Hamiltonian are replaced by classical vectors. 
In Refs. 6-10 for example, the ground state and its 

properties are determined in this approximation and 
ordering properties are discussed on the basis of this 
classical picture. In this approximation (1) simply 
becomes an expression for the energy 

N N 
E = J1 2 S2 cos OJ,Hl + J 2 2 S2 cos 0U+2' (3) 

i=1 i=l 

where S is the length of the classical spin vector, 0i,,+1 

is the angle between the spins at sites j and j + I, 
and OJ,i+2 the angle between the spins at sites j and 
j + 2. One easily finds for the ground state energy per 
spin 

{

-S2(Ji/SJ2 + J2) if J 2> 0 
Eo = and IJ1i =:;; 41J21 (4) 

S2(±J1 + J2) all other cases ' (5) 

where the + and - signs refer to ferromagnetism and 
antiferromagnetism, respectively. For J2 > 0 and 
IJ11 =:;; 41J21 the classical spin chain has a spiral 
structure at T = 0 as illustrated in Fig. 1. The ground 
state energy, when plotted as a function of J2 for fixed 
value of J1 , has a kink at J2 = VI' 

2. EQUATIONS FOR THE EXTREMUM OF THE 
FREE ENERGY 

We now turn to the quantum mechanical problem 
posed by (1) for the case of spinsL the S's being the 
Pauli matrices. This is an extremely difficult problem 
since, even for the case J2 = 0, only the ground state 
and a few excited states are known. So we have to 
resort to approximate methods and shall employ a 
temperature dependent Hartree-Fock approximation, 
making use of the fact that for spins t the Hamiltonian 
(1) can be expressed in Fermi operators. 

1487 
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where '5.(cP) = 1 if cP = n27T, n = 0, ± I, ... and zero 
otherwise. We now introduce a so-called trial Hamil
tonian Ho: 

N 

Ho = L,€(k)",:rlk' (13) 
k=l 

Bogoliubov's inequality10 states that the trial free 
energy, defined by 

Ft = (H)o - TSo, (14) 
FrG. I. Spiral structure in a classical chain. where 

Performing the transformations 

and 

S~ = (a~ + aj)/2, S~ = (aj - aj)/2i, 

S~ = i - a1a j 

a j = exp [-7T/f.C:CkJc j , 

k=l 

aj = cj exp [7T/f c:ckJ, 
k=l 

where the c's and c*'s are Fermi operators 

{ci , cn = (jo, {ci , Cj} = {ct, cn = 0, 

we obtain (1) in the form 
N 

H = L [t(J1CjC Hl + J 2CjC H 2 + H.c.) 
j=l 

- (J1 + J 2)c'jCj + J1CjciC~+lCHl 
+ J2C'jCiC~+2Ci+2 

(6) 

(7) 

(8) 

- JlCjCj+1Ci+1CJ+2 + H.c.) + ill + tJ2]. (9) 

After a Fourier transformation 
N 

C j = N-! L ei</>ki'YJk' 
k=1 

where 

N * - N-·~ ~ -i</>kj * 
c j - k e 'YJk' 

k=1 

k= 1,'" ,N, 

(10) 

(11) 

to a new set of Fermi operators 'I} and 'I} * , we have 
N 

H = L,[1icos cPk - 1) + J2(cos 2cPk - 1)]'I}:'I}k 
k=1 

+ t(Jl + J2) + 1.. L, [11 cos (cPkl - cPk.) 
N klk.k3k. 

+ J 2 cos 2( cPkl - cPk.) - 2J 2 cos (cPkl + cPk.)] 

x '5.( cPkl + cPko - cPks - cPk.)'I}k~"'k~"'ks"'k., (12) 

(H)o = (Tr e-PHOH)/Tr e-PHo, with (J = 1jkT, 

(15) 

and So is the entropy of the system described by (13), 
is an upper bound to the exact free energy F, i.e., 

(16) 

By varying the one-particle energies €(k), one can 
minimize this upper bound. 

Using the relation 

("'k*"'Ik~'I}k3"'k.)O = (Tr e-PH°'YJ:1'YJ:lik3'YJk.)/Tr e-PHo 

= nk1 nk.( (jk1k"(jk.ka - (jklka(jk2k.)' (17) 
where 

( *) (1 + Pdk»-l nk = 'YJk 'YJk 0 = e , (18) 

one easily finds that 

(H) 1 N [1 N J2 
_0 = _ L,€o(k)nk + (11 + J2) - L,nk 

N N k=l N k=l 

where 

€o(k) = J1(cos cPk - 1) +J2(cos 2cP7' - 1). (20) 

We now assume that 

€(7T - k) = €(7T + k), (21) 

and we shall show a little further on that this assump
tion is consistent. 

Equation (21) implies 

N N 
L nk sin cPk = L, nk sin 2cPk = 0, 
k=l k=1 
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so that 

(22) 

For noninteracting fermions described by the Hamil
tonian (13), one has for the entropy: 

1 N 
So = - - ! nk In nk + (1 - nk) In (1 - nk). (23) 

N k=l 

Using this and (22) in (14), we obtain for the extremum 
condition oFt/onk = 0 [rather than oFt/o€(k) = 0] the 
equation 

€(k) = 4J2(s - q) cos2 CPk + [(J1 - 2J2)p + 2J2] 

x cos CPk - 2s(Jl + 2J2), (24) 
where 

1 N 
S =.1 - - !n 

2 N k=l k' 
(25) 

i.e., the magnetic moment per spin in the z direction, 

2 N 
P = 1 - - !nk cos CPk' (26) 

N k=l 

1 N 
q = - !nk cos 2CPk' (27) 

N k=l 

In the limit N --+ 00 these sums become integrals. 
Boltzmann's constant has been set equal to unity. 
From (24) it can be seen that the assumption 
€(7T - k) = €(7T + k) is consistent with the results. 
Equation (24) is the basic nonlinear integral equation 
for €(k) in this approximation. 

3. SOLUTION FOR T = 0 

Exact results can be obtained for T = 0, since then 
we have the simplification 

n = {O if €(k) > ° (28) 
k 1 if €(k) < 0 . 

Now the upper bound for the free energy becomes an 
upper bound for the ground state energy, i.e., (16) 
becomes 

(29) 

Weare interested in the case where N --+ 00, so 
that the expressions (25), (26), and (27) become 
integrals. Equations (24)-(27) are now solved as 
follows: Determine an interval I in [0, 27T], symmetric 
with respect to the point 7T, such that when 

s = t -....!.. r dcp, (25') 
27T JI 

p = 1 - 1- r cos cP dcp, (26') 
7T JI 

(27') 

are substituted in (24), one has €(k) > 0 when CPk c I 
and €(k) < 0 when CPk ¢ [. 

We have to consider four different cases, viz.: (a) 
J1 < 0, J2 < 0, i.e., all interactions are ferromagnetic; 
(b) J1 < 0, J 2 > 0, and nearest neighbors interact ferro
magnetically, the tendency to align is opposed by the 
fact that next-nearest neighbors interact antiferro
magnetically; (c) J1 > 0, J2 < 0, nearest neighbors 
tend to be antiparallel, and this tendency is enhanced by 
the ferromagnetic next-nearest neighbor interaction; 
(d) J1 > 0, J2 > 0, i.e., all interactions are antiferro
magnetic. The tendency for nearest neighb0fs to be 
antiparallel is opposed by the fact that at 0 next
nearest neighbors tend to be antiparallel. 

In the following we shall take J1 = I when J1 > 0 
and J1 = -I when J1 < 0; this clearly is no lin itation. 
Since the strength of the interaction betwe€ n next
nearest neighbors is likely to be smaller than between 
nearest neighbors, we take J2 = ~ with -1 < ~ < 1. 

(a) J1 = -1, -1 < ~ < 0: One readily verifies that 
1= 0 is the solution, and so s = t, which means that 
this state is totally ordered. This state actually, of 
course, is the true ground state. With p = 1 and q = 0 
one finds from (24) 

€(k) = 2~ cos2 CPk - cos CPk - 2~ - 1. (30) 

The ground state energy is 

Et = Eo = -HI + ~). (31) 

(b) J1 = -1,0 < ~ < 1: In the region 0 < ~ < i 
the solution is still given by I = O. For ~ > i part of 
the elementary excitation spectrum becomes negative 
(see Fig. 2) and I now is the interval [CPko ' CPk,l (we 
restrict ourselves to the interval [0, 7T] since everything 
is symmetric with respect to 7T). Now CPko and CPk

1 
have 

to be determined from the equations 

(32) 
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ElK) 

1 

FIG. 2. Elementary excitation spectra for several cases that are 
examined. 

or from Eqs. (24)-(27) 

/&/>ko' 4>k1) cos2 4>"0 + h(4),,o' 4>,,) cos 4>ko 

+ /3( 4>ko' 4>k1) = 0 (33) 
and 

/1 (4)ko' 4>k) cos2 4>"1 + /2( 4>ko ' 4>"1) cos 4>k1 

+ /3(4)''0' 4>,,) = 0, 
with 

It (4)ko' 4>,,) = (ex/1T)[21T + 4(4)ko - 4>,,) 

+ 2(sin 24>ko - sin 24>k)], 

/2(4)''0,4>k) = (2/1T)(l + 2ex)(sin 4>"1 - sin 4>"0)' (34) 

/3(4)ko' 4>k1) = (1 - 2ex)[1 - (2/1T)(4>k1 - 4>k o)]. 

The coupled transcendental equations (33) have been 
solved numerically for several values of ex. With the 
resulting 4>ko and 4>k1 one can then calculate the upper 
bound for the ground state energy (22). A number of 
results is given in Table I. 

TABLE I. Numerical solutions of Eqs. 33 for several values of rx 
with corresponding E t • 

rx rpko 1>k1 Et 

0.30 0.46910 0.65490 -0.17550 
0.35 0.63280 1.0284 -0.16617 
0.40 0.69578 1.3074 -0.16108 
0.45 0.71914 1.4711 -0.15942 
0.50 0.73654 1.5708 -0.15982 
0.55 0.75250 1.6390 -0.16251 
0.60 0.76714 1.6897 -0.16493 
0.65 0.78041 1.7295 -0.16735 
0.70 0.79237 1.7619 -0.17113 
0.75 0.80311 1.7891 -0.17532 
0.80 0.81279 1.8123 -0.17986 
0.85 0.82153 1.8325 -0.18468 
0.90 0.82945 1.8501 -0.18973 
0.95 0.83616 1.8663 -0.19499 
1.00 0.84323 1.8798 -0.20043 

0.5 

0.25 l 
-I,D 

_CI' 

1.0 
'--MAJUMDAR&Ghosh 

'this paper 

FIG. 3. Upper bounds for the ground state energy per spin for 
infinite chains, J1 < 0, as a function of rx. 

In Fig. 3 the upper bound for the ground state 
energy is plotted as a function of ex. We have also 
plotted as comparison the upper bound given by 
Majumdar and Ghosh,4 namely E = -HI + ex) 
(their definition of J2 and ex differs slightly from ours). 
For ex < 0 both approximations give the exact ground 
state energy, for 0 < ex < :1 the same upper bound, but 
for ex > :1 our upper bound is much better. A remark
able feature is that there is a kink in the upper bound 
for the ground state energy for exactly the same value 
of ex, viz., ex = :1, as it is found in the classical chain. 
It is precisely the point at which the ferromagnetic 
state becomes unstable with respect to spin waves. It 
may well be an exact result. 

(c, d) J1 = 1, -1 < ex < 1: In this case the solution 
of the extremum equations is given by the interval 
1= [1T/2, 1T]. The elementary excitation spectrum now 
is 

€(k) = [1 + (2/1T)(1 - ex)] cos 4>k (35) 

and the upper bound for the ground state energy is 

0.5 

E 

t 
_CI' 

-I,D -0.5 1.0 

_exact 

t 
thispaper 

FIG. 4. Upper bounds for the ground state energy per spin for 
infinite chains, J , > 0, as a function of rx. 
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0.10 
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0.04 

a = 0.65 

0.02 

O+---'---T---~--.---.---.---r-~r-
4 8 12 16 -FIG. 5. The correlation functions between the z components if 

spins separated by [lattice sites a function of I for two values of 
0(,/1 < O. 

For oc = 0 this is Et '-' -0.4193 and coincides with 
the result of Bulaevskii,u The well-known exact result 
due to Hulthen1 is Eo (oc = 0) = In2 + i'-' -0.44315. 
E t has been plotted as a function of oc in Fig. 4 and 
again the upper bound of Ref. 4 is plotted for com
parison. It is seen that the upper bound for the 
ground state energy lies far below the upper bound 
derived by Majumdar and Ghosh. 

These calculations can be quite easily extended to 
the case when there is a magnetic field in the z direction 
present. 

4. CORRELATION FUNCTIONS 

The spiral structure of the classical spin chain is 
clearly reflected in the correlation functions (S~S~) of 
the quantum mechanical model. They can easily be 
evaluated. 

(a) J1 = -I, oc = i: In this case we readily find for 

the wavefunction that we have constructed 

(S~SD = S· - [(I/7Tl)(sin ZrPk l - sin lrPko)]2. (37) 

We have plotted this correlation function as a function 
of the distance Z between the spins for several values 
of IX. It can be seen to oscillate and for 1---+ 00 goes to 
the limit of the square of the magnetization. The 
oscillations are the reflections of the classical spiral 
structure. As in the classical case, the onset of these 
oscillations is exactly at IX = t. 

(b) J1 = I: Now one finds from (37), with rPko = 7T/2 
and rPkl = 7T, 

(S~S~> = S' - [(sin 7Tl/z)/7TW (38) 

This is in agreement with Bulaevskii's result. Equation 
(38) shows tne same qualitative behavior as the 
preceding case and has not been plotted. In contra
distinction to the preceding case there is not the 
analogy with the classical chain of spins that the onset 
of the osciIIating behavior of the correlation function 
occurs at the value oc = i; the oscillations are present 
in the whole range -I < oc < 1. This is probably due 
to the fact that the classical antiferromagnetic chain is 
ordered for J2 = 0 whereas its quantum mechanical 
analog most probably is not. 
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For quite general Ising spin systems of arbitrary dimensionality and with ferromagnetic interactions 
of arbitrary range, an entropy lower bound is obtained from Griffiths' inequalities and convexity relations. 
The bound is valid for nonnegative magnetic fields which may vary from site to site. The specific heat 
comp.uted from the bound is shown to be an upper bound for the exact specific heat. If the magnetic 
field IS taken to be zero, the entropy bound is shown to be tighter than that obtained previously by 
truncating a cumulantlike entropy expansion at second order. The present lower bound achieves 
equality with the exact entropy of the nearest-neighbor, N-spin, Ising ring as N ~ 00 for zero field and 
positive temperatures. An interpretation of the entropy bound is that if in the truncated expansion 
only binary terms arising from primary correlation are retained, the result is, nevertheless, an over
estimate of the order. 

1. INTRODUCTION 

For some quite general Ising systems of any 
dimensionality it was shown! that the first two terms 
in a cumulantlike entropy expansion provide a lower 
bound for the exact entropy. The primary motivation 
for the cited work was to obtain some insight into the 
connection between entropy and various types of 
statistical association among spins, and it was the 
sense of the bound rather than the sharpness which 
was of interest. 

A purpose of this paper is to present a similar 
entropy lower bound which is sharper than the 
previous one. The present bound, valid for n-dimen
sional Ising spin systems with arbitrary-range ferro
magnetic interactions and for nonnegative magnetic 
fields, achieves equality with the exact entropy for the 
nearest-neighbor, N-spin, Ising ring as N ---+ 00 for 
zero field and positive temperatures. 

It is also shown that the specific heat computed 
from the entropy bound is an upper bound for the 
exact specific heat. 

An interpretation of the entropy bound is that if 
in the truncated expansion one retains only primary 
correlation contributions in the binary term, one, 
nevertheless, overestimates the order. 

2. DEFINITIONS AND THEOREM 

The Hamiltonian for the N-spin Ising system is 

where 

and 

H = - LJijSiS j , 
i<j 

Si = ± 1 , i = 1, 2, ... , N, 

Si = +1, i = 0, 

Jij ~ 0, 1:::;; i <j:::;; N, 

Jij = h j ~ 0, i = O,j = 1,2, ... ,N. 

(2.1) 

In the Hamiltonian, the symbol Li<j denotes the sum 
over all spin pairs i, j for which ° :::;; i < j :::;; N. The 
ghost spin2 So was introduced by Griffiths and con
strained to have the value + 1 so that the Hamiltonian 
could be associated with an Ising ferromagnet of N 
spins, each of magnitude i and subjected to a non
negative magnetic field which is not necessarily the 
same for each spin. 

With € = 0 or I, let {€, N} denote the set of spin 
pairs i, j for which € :::;; i <j:::;; Nand Jij > 0. In 
the following, the Boltzmann constant will be sup
pressed and fJ wiII denote the inverse temperature, 
1jJN the entropy per spin, and ( ... ) the average in the 
canonical ensemble for H; then one has the following 
theorem. 

Theorem: 

1jJN ~ In 2 - (1/2N) 

X L [(1 + (SiSj») In (1 + (SiSj») 
{O,N} 

+ (1 - (SiS)) In (1 - (SiSj»)]' (2.2) 

From the above lower bound, denoted by 1jJN, one 
obtains an upper bound for the specific heat: 

o T 
T - 1jJN = - L [In (1 + (SiSj») - In (1 - (SiSj»)] 

aT 2N {O,N} 

X (- o~ (SiSj») , 

but2 from Griffiths' work (SiSj) ~ tanh {JJjj and 
(%T)(sisj) :::;; 0, and we know that In (1 + x) -
In (1 - x) is monotone increasing for increasing x, 
where 0:::;; x < I; therefore, the right side of the 
above equation is 

~.z. L [In (1 + tanh fJJij) - In (1 - tanh fJJij)] 
2N {O,N} 

x (- o~ (SiSj» ' 

1492 
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which is 

T{1 a 
= - - ! ii; - (SiSj)' 

N (O.N) aT 

The latter quantity is the exact specific heat CN for 
the system with Hamiltonian H in Eq. (2.1); thus, 

(2.3) 

The proof of the theorem is also based on Griffiths' 
inequalities2 and some convexity relations, and will be 
discussed in the next section. It should be noticed that 
integration of Eq. (2.3) yields Eq. (2.2) but not the 
condition for equality provided by Eq. (3.8). At this 
point it seems worthwhile to clarify the connection 
between the theorem and previous results. 1 

The one-spin and the two-spin marginal prob
abilities3 are, respectively, 

p(Sj) = HI + (s;)s;), j = 1,2, ... , N, (2.4) 

P(Si'S;) = HI + (Si)Si + (s;)s; + (SiS;)SiS;), 

1 ..:;, i < j ..:;, N. (2.5) 

denoted by "PW + "PW, we have 

1/J > 111- > 1/1(1) + 1/1(2). 
l'N_l'N_l'N l'N (2.11) 

The weaker lower bound is the one obtained in Ref. 
1; thus, retaining only primary correlation contri
butions in the binary term tightens the bound but still 
leads to an overestimate of the order. 

If one considers the nearest-neighbor, N-spin Ising 
ring in zero external field and positive temperatures, 
one easily verifies that the sharper bound "PN ->- "Ps in 
the limit N ->- 00, whereas the weaker bound "PW + 
"P<J) was shown1 numerically to provide a close 
approximation to the exact entropy for that model 
only at sufficiently high temperatures. A deficiency of 
both bounds is that they are not, in general, non
negative nor do they satisfy the third law.5 Neverthe
less, they provide nontrivial formal statements about 
the perturbation expansion for 1/,S ,'which is bounded6 

above by the sum over (8;)cIN. 

3. PROOF OF THE THEOREM 

The Hamiltonian 

H = - 'L,JijSiSj 
i<i 

(3.1 ) 

Introduce the cumulant-like quantities1 

(8;>C = - (In pes;)~, j = 1,2, ... , N, 

(8i;)c = -(Inp(si' s;) - In [P(Si)P(S;)]), 

defined in the previous section has an average value 
(2.6) (H) in terms of which we may write the free energy F 

and the entropy per spin: 

1 ..:;, i < j ..:;, N, (2.7) 

and recall that (8j)c ~ 0 whereas4 (8;j)0 ..:;, O. Specific
ally, 

(8;)c = -! pes;) In pes;) 
Sj 

= In 2 - H(l + (Sj») In (1 + (Sj») 

+ (1 - (s;») In (1 - (s;»)], (2.8) 

so that the theorem may alternatively be written 

N 

"PN ~ (1IN)!(8;)c - (l/2N) 
j=1 

x ! [(1 + (SiSj») In (l + (SiS;») 
(I.N) 

+ (1 - (SiSj» In (1 - (SiS;»)]. (2.9) 

Now for the case in which all h j = 0, the right side of 

-(1F = N In 2 - r d{1'(H) (3.2) 

"PN = In 2 + (1(HIN) - r d{1'(HIN). (3.3) 

Notice that 

(Jiij = Hln (l + tanh (1i;;) - In (l - tanh (1iij)]. 

(3.4) 
Therefore, 

(1(H) = -l! [In (1 + tanh (1Jij ) 
i<j 

and 

- (P d{1'(H) =! Jii (P d{1'«SiS;) - tanh (1'J;;) Jo i < j Jo 

(2.9) is equal to however, 
+!JijiP d{1' tanh {1'Ji ;; (3.6) 

l<} 0 

N 

(lIN)! (8 j)c + (lIN) ! (8;j)c 
j=1 {1.N} 

N 

~ (lIN)! (8;)c + (liN) ! (8;;)c, (2.10) 
;=1 ISi<jSN 

since (8ij)c:::;; O. With the right side of Eq. (2.10) 

J i; {P d{1' tanh {1'J i; Jo 
= In cosh {1Ji; 

= -Hln (1 + tanh (1J;j) + In (1 - tanh (1J;;)]. 

(3.7) 
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Combining these relations gives the exact expres~ion 

"PN = In 2 - (l/2N) 

X I [(1 + (SiSj» In (1 + tanh fJJij) 
i<j 

+ (1 - (SiSj» In (1 - tanh {JJij)] 

+ (l/N);~/ij J: d{J'«SiSj) - tanh {J'J;j)' (3.8) 

Since2 (SiSj) ~ tanh {Jiij' the integrand is non
negative7 for all pairs i, j such that ° ~ i < j ~ N; 
consequently, 

"PN ~ In 2 - (l/2N) 

x I [(1 + <SiSj» In (1 + tanh {JJij) 
{O.N} 

+ (1 - (SiSj» In (I - tanh {JJij)]. (3.9) 

The double sum over i < j has been replaced by the 
sum over the set {O, N} since for i,j rt {O, N}, iij = ° = In (l ± tanh {JJij). The proof is now completed 
by using the fact that, for ° ~ u ~ v < I, 

feu, v) == - [(I + u) In (l + v) + (1 - u) In (I - v) 

~f(u,u). (3.10) 

The latter inequality is obtained by adding the 

JOURNAL OF MATHEMATICAL PHYSICS 

convexity relations6 

Pi In Pi - Pi In qi - Pi + qi ~ 0, 

for i = I, 2, with P1 = 1 + u, P2 = 1 - U, ql = 1 + 
v, and q2 = I-v. 
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The motion of a particle in a random force field is investigated using the diffusion approximation. 

1. INTRODUCTION 

In this note we extend the analysis of Frischl and 
others,2-7 concerning the motion of a particle in a 
random field. We use the diffusion approximation, 
which is based on the assumption that the fluctua
tions of the field are weak and that they are weakly 
correlated at widely separated points. The equations 
of the diffusion approximation have been derived 
using a two-time method inS which, in addition, some 
other applications are given. The results in this note 
can be viewed as a generalization of the Ornstein
Uhlenbeck theory of Brownian motion.9 Here the 
starting point is a stochastic equation much more 

complicated than Langevin's equation which is the 
basis of that theory. Consequently, the analysis must 
be confined to suitable approximations. 

2. FORMULATION AND ANALYSIS OF 
THE PROBLEM 

Let ret) be the position vector at time t of a particle 
of unit mass in space. We shall assume that its motion 
for t > ° is governed by the equations 

dr - = vet), reO) = ro, 
dt 

dv = fF(r) _ f2f3v, yeO) = Vo. (2.1) 
dt 
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Combining these relations gives the exact expres~ion 

"PN = In 2 - (l/2N) 

X I [(1 + (SiSj» In (1 + tanh fJJij) 
i<j 

+ (1 - (SiSj» In (1 - tanh {JJij)] 

+ (l/N);~/ij J: d{J'«SiSj) - tanh {J'J;j)' (3.8) 

Since2 (SiSj) ~ tanh {Jiij' the integrand is non
negative7 for all pairs i, j such that ° ~ i < j ~ N; 
consequently, 

"PN ~ In 2 - (l/2N) 

x I [(1 + <SiSj» In (1 + tanh {JJij) 
{O.N} 

+ (1 - (SiSj» In (I - tanh {JJij)]. (3.9) 

The double sum over i < j has been replaced by the 
sum over the set {O, N} since for i,j rt {O, N}, iij = ° = In (l ± tanh {JJij). The proof is now completed 
by using the fact that, for ° ~ u ~ v < I, 

feu, v) == - [(I + u) In (l + v) + (1 - u) In (I - v) 

~f(u,u). (3.10) 

The latter inequality is obtained by adding the 

JOURNAL OF MATHEMATICAL PHYSICS 

convexity relations6 

Pi In Pi - Pi In qi - Pi + qi ~ 0, 

for i = I, 2, with P1 = 1 + u, P2 = 1 - U, ql = 1 + 
v, and q2 = I-v. 
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The motion of a particle in a random force field is investigated using the diffusion approximation. 

1. INTRODUCTION 

In this note we extend the analysis of Frischl and 
others,2-7 concerning the motion of a particle in a 
random field. We use the diffusion approximation, 
which is based on the assumption that the fluctua
tions of the field are weak and that they are weakly 
correlated at widely separated points. The equations 
of the diffusion approximation have been derived 
using a two-time method inS which, in addition, some 
other applications are given. The results in this note 
can be viewed as a generalization of the Ornstein
Uhlenbeck theory of Brownian motion.9 Here the 
starting point is a stochastic equation much more 

complicated than Langevin's equation which is the 
basis of that theory. Consequently, the analysis must 
be confined to suitable approximations. 

2. FORMULATION AND ANALYSIS OF 
THE PROBLEM 

Let ret) be the position vector at time t of a particle 
of unit mass in space. We shall assume that its motion 
for t > ° is governed by the equations 

dr - = vet), reO) = ro, 
dt 

dv = fF(r) _ f2f3v, yeO) = Vo. (2.1) 
dt 
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Here vet) is the velocity vector, F(r) is a random force 
field, lO is a small parameter characterizing the size of 
the fluctuations, and f3 is a parameter characterizing 
the frictional forces. The random force field is 
assumed to have mean zero and a homogeneous and 
isotropic covariance tensor: 

IS 

Let us introduce new variables as follows: 
Jl. 

E{F(r)} = 0, (2.2) '0 = e-3"!vg, C1 = (1 - e-3>T)/3a. (2.10) 

E{Fi(r)Fj(r')} = oijN([r - r'l), i,j = 1,2,3. (2.3) Then our equation transforms to 

The symbol E{ } denotes ensemble averaging. 
Let us introduce the function p defined by 

p(t, r, v, ro, yo) = o(r - r(t»)o(v - v(t»). (2.4) 

Then p satisfies the stochastic Liouville equation 

op 2 - + V • Vrp + (lOF(r) - lO f3v) • V"p = 0, ot 
p(O, r, v, ro, yo) = o(r - ro)c'l(v - Yo). (2.5) 

Here Vr and Vv denote the gradient operator on the 
space and velocity variables, respectively. 

We shall consider E{p(t, r, v, ro, vo)}, which is the 
transition probability density in phase space at time t. 
To find it, we shall follow1,4.8 and use the diffusion 
approximation. This approximation is valid provided 
that lO is small, t is large, and N(r) decays rapidly with 
increasing r. Let us denote the approximate transition 
probability density by f Then, as is shown in the above 
mentioned works and with some minor modifications 
due to the friction term in (2.1),fsatisfies the equation 

of = ! o:(!f) - ~[(~ - av)!] , 
aT 2 av" v ov 2v2 

V ~ 0, T > 0, (2.6) 

f(O, v, vo) = o(v - vo), v = [vi, Vo = [vol, (2.7) 

D = 2ioo 
N(r) dr, 

f3 a=-, 
D 

(2.8) 

The fact that/is only a function of the modulus of the 
velocity is a consequence of the homogeneity and 
isotropy condition (2.3). In the remainder of this 
paper we shall solve (2.6) and discuss briefly the result. 

Let us observe that (2.6) is a forward or Fokker
Plank equation in v ~ ° with diffusion constant l/v 
and drift constant (If2v2) - av. According to Feller's 
theory of boundary conditions,lo both ° and 00 are 
not regular, and therefore there exists exactly one 
fundamental solution common to both the forward 
and backward equation. Moreover, no boundary 
conditions are necessary. We shall therefore analyze 
the backward equation corresponding to (2.6), which 

of 1 (a2f 1 af ) 
aC1 = 2 (n~ + '0 eno . (2.11) 

The solution of (2.11) can be obtained readily by 
using the Hankel transform or observing that it corre
sponds to radial Browning motion in two dimensions. 
After reverting to the original variables, we obtain 
the following result: 

(2.12) 

Here 10 is the modified Bessel function of the first 
kind. The expression (2.12) is the diffusion approxi
mation to the transition probability density of the 
velocity modulus, given the initial velocity modulus 
at time zero. As we have pointed out, this approxi
mation is vaild for t large and lO small, with T arbitrary 
but finite. It is the main result of this paper. 

If (J.T is also large, then (2.12) can be approximated 
further by the following density function: 

/oo(v) = 2av2 exp (-iav3), v ~ 0. (2.13) 

The transition density (2.12) can be thought of as an 
equilibrium density for the original problem and so 
can (2.13) if, in addition, TIY.» 1. The difference 
between the two is important because the second is 
independent of the initial velocity modulus Vo, while 
the first does depend on Vo and also on the parameter T. 

Let us compute the mean square of the velocity 
modulus E{v2}. For this purpose let u and 1p be 
defined by 

u = (vge-3aT)!, 1p = (1 - e-3aT)/3a. (2.14) 

Then we have 

E{v2} = ioov2f(T,v,Vo)dV 

= (!)*(21p)ir(t)e-u
'
/2

'1' IFlt 1, u2/21p). (2.15) 

Here IF1(a; b; z) denotes the confluent hypergeo
metric function, and we have used a result of Ref. 11, 
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FIGS. 1-8. The function/defined by (2.12) is plotted as a function of v for various values of c£ and Vo in different figures. The horizontal 
axis denotes the values of v and the vertical axis the values of f(v). In each figure the curves are labeled by the value of T for which 
they are computed. The value T = OCJ yields, of course, the same curve as (2.13). Thus the passage from (2.12) to (2.13) for large TC£ 

is clearly illustrated. 

p. 72. Finally, in the approximation TrJ.» 1, (2.15) 
reduces to 

(2.16) 

This last result can also be obtained from (2.13) 
directly. 

In Figs. 1-8 we have plottedf(v) from (2.12) and 
fro Cv) from (2.13) for various values of rJ., vo, and T. 
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The present communication studies relations between the two classes of Poincare-irreducible tensor 
operators which were constructed in a previous paper. The tensor operators of the first class transform 
according to those representations of the Poincare group that are induced by the one-valued irreducible 
unitary representations of SU(1, 1) which belong to the continuous and the discrete principal series. 
The tensor operators of the second class transform according to the Poincare group representations 
that are induced by the irreducible unitary principal series representations of SL(2, C). The Poincare
irreducible tensor operators of the second class are decomposed into Lorentz-irreducible tensor oper
ators which transform by the irreducible unitary SL(2, C) representations of the principal series. The 
expansions of a spin density matrix describing a statistical ensemble of wavepackets into Poincare- and 
Lorentz-irreducible components are derived. The infinite-dimensional associative algebra for the Poin
care-irreducible tensor operators of the second class is constructed. No such algebra exists for the 
Poincare-irreducible tensor operators of the first class. The operator product of these tensors can only 
be represented as a linear superposition of the first class tensors in the limit of vanishing 4-momentum. 
In this limit, however, the first class tensors are no longer irreducible. 

MOTIVATION AND OUTLINE 

In a previous communication! two classes of 
Poincare-irreducible tensor operators for positive 
mass one-particle states have been constructed. The 
two classes correspond to spacelike and to zero 4-
momentum transfer. The tensor operators associated 
with a space1ike 4-momentum transfer are constructed 
by means of those (one-valued) unitary irreducible 
representations of the group SU(I, 1) for which the 
Planche rei measure does not vanish. The construction 
of the tensor operators for zero 4-momentum transfer 
is based on the unitary irreducible representations 
of .the group SL(2C) which belong to the principal 
senes. 

The present work implements the program outlined 
at the end of Ref. 1. A small number of basic relations 
which frequently recur in the subsequent sections are 
introduced in Sec. 1. In Sec. 2 we establish the con
nection between the tensor operators of the first class 
in the limit of vanishing 4-momentum transfer and 
the irreducible tensor operators of the second class. 
It is emphasized that the first class tensor operators 
cease to be Poincare-irreducible as the 4-momentum 
transfer vanishes. In this section we also present the 
decomposition into its Poincare-irreducible com
ponents of a one-particle spin density matrix which 
corresponds to a finite-momentum spread rather than 
to a state with sharp particle momentum. In Sec. 3 
we define Lorentz-irreducible tensor operators that 
transform according to those unitary irreducible 
representations of the group SL(2C) which belong to 
the principal series. We then expand the Poincare
irreducible tensor operators of the second class in 
terms of these Lorentz-irreducible tensor operators. 

This expansion reflects the fact that the tensor 
operators which are irreducible under the Poincare 
group are reducible with respect to the (homogeneous) 
Lorentz group. Furthermore, we decompose a spin 
density matrix into its Lorentz-irreducible com
ponents and indicate how the connection between the 
two classes of Poincare-irreducible tensor operators 
may be established through the intermediary of the 
Lorentz-irreducible tensor operators. In Sec. 4 we 
derive a relativistic generalization of a relation 
obtained by Biedenharn for SO(3)-irreducible spin 
tensor operators. This generalization corresponds 
to the relation defining the (infinite-dimensional) 
associative algebra for the Poincare-irreducible tensor 
operators of the second class. No associative algebra 
exists for the Poincare-irreducible tensor operators of 
the first class. 

1. DEFINITIONS 

The two classes of Poincare-irreducible tensors to 
be defined in the following section operate on the 
carrier space of the irreducible unitary Poincare group 
representations for a time1ike orbit. Constructing the 
two classes of tensor operators causes two types of 
vector bases to emerge. These can be realized as the 
two sets of momentum-helicity eigenvectors [Eqs. 
(2.25) and (2.26) of Ref. 1] 

and 

Ipi; 0) = I(</>, e, y)['1S1 ) J~r T(Oo(cp, e, y» Iml) 
(1.1) 

Ipi; 3) = I(cp, rJ., n[,~sl) D~F T(03(</>' rJ., m Im1). 
(1.2) 

1497 



                                                                                                                                    

1498 ARNO D. STEIGER 

The orbiting transformations no(cp, e, y) and o.a(cp, 0(, 
o are defined as the three-parameter Lorentz trans
formations 

o.o(cp, e, y) = exp (-iCPj12) exp (-iejal) exp (-iyjoa) 

(1.3) 
and 

o.a(cp, 0(, ~) = exp (-ic/>j12) exp (-iO(jOl) exp (-i~joa). 

(1.4) 

We denote by j"V' fl, 'V = 0, 1,2,3, the Minkowski 
space realizations of the Lorentz group generators and 
by J/lV the corresponding Hermitian operator real
izations. 

T(D.o(c/>, e, y» = exp (-ic/>J12) exp (-ifJJ31) 

x exp (-iyJoa) (1.5) 
and 

T(o.a(c/>, 0(, m = exp (-icpJ12) exp (-iO(J01) 

x exp (-i~J03) (1.6) 

are then the unitary operator realizations of the 
orbiting transformations (1.3) and (1.4). 

In the expressions (1.1) and (1.2) the parameters are 
restricted to the domains 

° ~ c/> < 2rr, ° ~ e ~ rr, ° ~ y, IX < 00, - 00 < ~ < 00. (1. 7) 

We normalize the set of state vectors for a particle of 
mass m and spin s in its rest frame, 

{
/mD: -s ~ A ~ s, J2/m~) = s(s ~ 1) /mD}, 
PI' /mD = ±t5/lom /m1), J 12 /m;) = A /m;.) 

(1.8) 
according to 

;"1 S ~;" (ms m;.) = 2mu ,,' (1.9) 

The pI', fl = 0, 1,2,3, are the Hermitian operator 
realizations for the contravariant components pI' of 
the 4-momentum p = (pO, p). For the basis vectors 
(l.1) and (1.2), the 4-momentum p is restricted to the 
timelike orbit which is characterized by 

(p)2 = p/lg/lVpv = (pO)2 _ (p)2 = m2 > O. (1.10) 

The constructs (1.1) and (1.2) form two improper 
bases in the carrier space Je[ms] of the irreducible 
unitary Poincare group representations for the orbit 
(1.10), since they are not normalizable but fulfill the 
orthogonality relation 

(p';'; w I pL w) = 2111 t53(p' - p)t5'1.';., W = 0 or 3. 

(1.11) 

Under the restricted Poincare group, which is iso
morphic to the inhomogeneous pseudo-orthogonal 
group ISO(3, 1), the basis vectors (1.1) and (1.2) 
transform according to the irreducible unitary 
ISO(3, 1) representation characterized by m and s, 
namely according to 

T(a, A) /pl; w) 
s 

= exp (-ia . Ap) ! IApi-; w) DS[Rw(A, p)Y'". 
,,'=-8 

(1.12) 
where 

(a, A) E ISO(3, 1): x --+ Ax + a, x, a E E3 .1 
(Ax)/l = xVA/, A E SO(3, 1). (1.13) 

E3•1 denotes the (3 + I)-dimensional pseudo-Euclidean 
space with the metric defined by (1.10) (Minskowski 
space). 

T(a,A) = exp (-iaIlP/l) exp (-iiw"vJ/l.) (1.14) 

is the unitary operator realization of the restricted 
Poincare transformation (a, A). The Wigner rotations 
Rw(A,p) are defined by 

Rw(A, p) = o.;;;l(Ap)AD.Jp). (1.15) 

Ds denotes the (2s + I)-dimensional irreducible 
unitary matrix realization of the three-dimensional 
rotation group. The bases (Ll) and (1.2) are con
nected through the helicity rearrangement transfor
mations (Ref. 2 and Appendix of Ref. 1) 

I S 

/pl; w) = ! Ip!; w) DS(Rw'w(p)y". (1.16a) 
V=~S 

(1.16b) 

For those momentum-helicity states (1.1) and (1.2) 
which are defined by means of the particular orbiting 
transformations 

no (cp, rrj2, y = O() and o.3(c/>, 0(,0), 

the transformation (1.16) simplifies to the equation 

s 

Ipi; 3) =! Ip;; 0) dS(-7Tj2r" (1.17) 
v=-s 

or to its inverse, since 

Rao(p) = o.o1(cp, rr/2, O()o.a(cp. 0(, 0) = exp Wrrj31)' 

(1.18) 

The relation (1.17) will be utilized in Sec. 2. In 
general, the rotation functions appearing in (1.16) are 
of the form 

DS(Rw,Jp»\ = dS[l1w'w(p)]\ 

= GI exp (- jew,Jal) Ii). (1.19) 
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By means of the definitions (1.3), (104), and (1.16b) (Q~=o) = (J -t)( -sinh y, cos 4> sin () cosh y, 
one finds that 

cos [()ao(P)] = cos () cosh (x, (1.20) 
where 

pJ. = ± mOo(4), 0, y)/ = ± mOa(4), IX, ~)oJ.. (1.21) 

2. POINCARE-IRREDUCIBLE TENSOR 
OPERATORS. DEFINITIONS AND 

SELECTED APPLICATIONS 

The carrier space Je[ms] for the unitary irreducible 
positive mass representations of the Poincare group 
admits two classes of tensor operators which trans
form irreducibly with respect to this group. The two 
classes correspond to spacelike (Q) and zero (0) 4-
momentum transfer. In Sec. 4 of Ref. 1 the Q class 
was constructed as the set of unitary irreducible tensor 
operators 

(Q, 7[ms]w)~=v-v'" = U(Ow(Q»P[7]~,. lq~)<q'~'I, 
(2.la) 

where 

K = 0, ± I, ±2, ... , for 7 = -1 + ia, 

-00 <a<oo, (2.1 b) 
or 

K, K = k, k + 1,' . . for k+) 

K, K = -k, -(k + 1), . .. for k-

7 = k±, k = 1,2,3,··· (2.1 c) 

The dyadic in (2.la) is defined by means of the 
equations 

Iq!) = e-iVoalm!), - 00 < ~ < 00, 

<m;' 1m!) = 2mbv
'. (2.2a) 

plllm~) = bllom Im~), J 12 lm!) = 'V 1m!), 
-s ~ 'V ~ s, (2.2b) 

q2 = q'2 = (qO)2 _ (q3)2 = m2, q = (qO, 0, 0, q3), 

q' = (qO, 0, 0, _q3), 

qO = qo = m cosh~, q3 = -qa = -m sinh ~. 

(2.2c) 

The spacelike 4-momentum transfer Q is obtained 
from the standard 4-vector 

0Q = q _ q' = (0,0,0, J -t), t = 0Q2 = _4(q3)~ 

(2.3) 

by means of the orbiting transformation O",(Q): 

Q::, = O",(Q)Il.OQV, w = 0, 3, 

Ow(Q)lla = (_t)-iQllro , Q2 = t < 0, (2.4) 

sin 4> sin () cosh y, cos () cosh y) 

- 00 < y < 00, ° ~ 4> < 27T, ° ~ () ~ 7T 
(2.5a) 

(Q~=3) = (J -t)( -cosh (X sinh ~, cos 4> sinh (X sinh ~, 

sin 4> sinh IX sinh {, cosh n 
° ~ (X < 00, - 00 < { < 00, 0 ~ cP < 27T. 

(2.5b) 

U(O",CQ)) denotes the unitary operator realizing the 
orbiting transformation Oro on the vector spaces 
Je[t,7] spanned by the tensorial sets (2.1). The 
projection operators in (2.1 a) are defined by the 
relations 

P['T];,. = p['T]J dA(cp, IX, tp)D(['T]cp, (x, tp)t~,,T(4), (x, tp), 

C2.6a) 
p[a]=atanh7Ta, p[k]=2k-l, (2.6b) 

dA(cp, IX, tp) = (lJ87T2) d4> sinh (X d(X dtp, 

° ~ 4>, tp < 27T, ° ~ (X < 00. (2.6c) 
The functions 

(2.7a) 
with 

(2.7b) 

are the components of the matrix realizations for the 
one-valued unitary irreducible representations of 
SU(l, 1) that belong to the continuous principal series 
(7 = - i + ia) or the discrete principal series 
(7 = k±).2-5 There is a two-to-one homomorphism 
from SU(I,I) to SO(2, 1); SU(I, 1) is not the 
universal covering group of SO(2, 1) since it is not 
simply connected.6 We refer to the tensorial set (2.1) 
as the set of ISO(3, 1) i SO(2, I)-irreducible tensor 
operators, since the (2 + I)-dimensional Lorentz 
group, which leaves the standard spaceIike 4-vectors 
(2.3) invariant, is isomorphic to the group SO(2, 1). 
The orthogonality and completeness relations for the 
functions (2.7a) [Eqs. (4.3a), (4.3b), and (4.4) of Ref. 1] 
are, for integral or half-integral A, p" A', p,', 

J dA(cp, (X, tp)D([7']cP, (x, tp)*;"Il' D(['T]cp, oc, tplll 

= (1/p['T])b(7', 7)b"''<0Il'Il' 

1" = -t + ia', 

l' = -t + ia, 
15(7"',1')= 

{

o( a' - a), if 

bk'k , if 7"' = k' ± , l' = k±, 

0, otherwise, 

(2.8) 
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and (4.38) of Ref. I] 

fOO 00 (Q, T[ms]wY-v'" 
. ~p[a, €] da,.,~_~D([a]c,b, IX, 1p»).',- D([a]</>" IX', 1p')*'-',-
-~ "" --~ = (v, tT[msW-V

'" 

noo , 
+ I I p[k] I D([kn]</>, 0':, 1pY'1' 

q=+.- k=l+< 1'.1"=nk 

X D([kn]c,b', IX', 1p')*I"1' 

= brAe </>, IX, 1p) - .1.(</>', IX', 1p')], 

brAe </>, IX, 1p)] = 8172b( </»b( cosh IX)b( 1p), (2.9) 

where, for the continuous principal series 

T = -t + ia, -00 < 0'<00, 

we have 

J. = 0, ±I, ±2," " peT] = pea, 0] = pea] 

= 0' tanh 170', for € = 0, 

J. = ±t, ±!, .. " peT] = pea, t] = 0' coth 17d, 

for € = t, 
and, for the discrete principal series 

T = K
q

, peT] = p[kn] = p[k] = 2k - I, 

we have 

A, = k, k + 1, . . . for 'YJ = ( + )} 
J. = -k, -k - 1, . .. for'YJ = (-) 

{

€ = 0, k = 1, 2, ... 

€ = t,k = !,t,···· 
(2.10) 

The particular representation of the discrete series 
which is characterized by k = t has been excluded, 
since p [k = t] = 0. Those functions (2.7a) which 
appear in the expression (2.6a) for the projection 
operators used in the definition of the tensorial set 
(2.1) belong to the representations with € = 0, 
because K = v - v' is always an integer. 

If t ---+ 0, that is, in the limit of vanishing 4-momen
tum transfer, the orbiting transformation realized in 
the expression (2.lO) by the operator U(Q.,(Q» is 
obviously no longer determined by (2.4). In this limit 
the tensorial set (2.1) ceases to be irreducible and can 
be decomposed into the [/SO(3, 1) i SO(3, I)]-irre
ducible tensor operators which are introduced in the 
latter part of this section. We now parametrize the 
orbiting transformation Q.,(Q) by means of the pa
rameter set 

V D~ (4)', 0, y) if w = 0, 

V D,:;' (4)', IX', n if w = 3, 

(2.lIa) 

(2.1lb) 

and write for the tensorial set (2.1) [see Eqs. (4.37) and 

= peT] f dJ.(</>, IX)D([T]c,b, IX, 0) tv-v'''u~_sIPL 3) 

x DS[R(v; </>, IX; t)]\ DS[R'(v; </>, IX; t)]tv',-, (p';'; 31, 

where 
(2.12) 

d)'(4), IX) = (1/417) d</> sinh 0': dIX, (2.13) 

P = O(v)Oa(</>, IX, O)q, p' = Q(v)Oa(</>, IX, O)q', 

(2.14) 

R(v; </>' IX; t) = Q3
1(P)Q(v)Oa(</>, IX, '(t», (2.15a) 

R'(v; 4>, IX; t) = 031(P)O(V)03(</>' IX, -'(t», (2.1Sb) 

with 

(2.16) 

and 
t = 4m2 - (p + p')2 = 4[m2 - (qO)2]. (2.17) 

For any pair of 4-vectors p, p', p2 = p'2 = m2 > ° , 
there exists, in accordance with (2.17), t ;:;; ° where 
t = ° if and only if p = p'. Any such pair p, p' can 
be parametrized by means of the relations (2.14). With 
the definitions (2.2c) for q and q', the relations (2.14) 
can be written as 

p'- = mA(4), IX, W); v)o'-, P''- = mA(4), IX, -'(t); v)/, 

A(</>, IX, ~(t); v)/ = Oa(</>, IX, W»ol' O(v)/". (2.18) 

The Lorentz-invariant measure on the mass shell 

d",.(p, p'; m) D~ b±(p2 _ m2)d4pb±(p'2 _ m2)d4p' 

_ d3p d3p' 

- 2IlI2Ip,OI' 

b±(p2 _ m
2

) = t(1 ± 1;:I)b(p2 - m
2

) (2.19) 

can be expressed as 

d",.(p,p'; m) = t17[(4m2 - t)/-t]ld4Q d)'(4), IX) 

(2.20) 
or, according to the parametrization (2.18), as 

d",.(p, p'; m) = 2172 dA,(v, t) d),( </>, IX), (2.2Ia) 

d),(v, t) = d)'(v) d),(t) = d),(v)(t2 - 4m2)l dt, 

(2.2Ib) 

d)'(v) = d),(4)', 0, y) = (1/817) d4>' sin ° 
x d8(cosh y)2 dy, (2.2Ic) 
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d)'(v) = d),(cp', OC', n = (l/S1T) dcp' sinh oc' 

X doc' (sinh ~')2 d'(,', (2.2Id) 

0::;; cp, cp' < 21T, 0::;; e ::;; 1T, 0::;; oc, oc' < 00, 

-00 < y, r < 00, -00 < t ::;; 0. (2.2Ie) 

By virtue of the Lorentz invariance of the measure 
(2.19), the derivation of the relation (2.20) can be 
conveniently carried out in the brick wall frame, for 
which Q reduces to 0Q. Once the relation (2.20) has 
been established, the relations (2.21) are easily 
arrived at by evaluating the lacobians a(Q~)/a(v, t) 
from Eqs. (2.5a) and (2.5b) together with the defini
tions (2.1la) and (2.11b). 

A spin-momentum density operator accounts in 
general for a certain space localization and conse
quently for a certain finite momentum spread. Thus, 
it describes a statistical ensemble of wavepackets. Its 
matrix realization in the w = 3 momentum-helicity 
basis is 

p([ms]a) = f d/-t(p, p'; m)ut_.'Pl; 3> 

X a(p, p')\. (p':'; 31. (2.22) 

The decomposition of the spin-momentum density 
matrix (2.22) into its Poincare-irreducible com
ponents can now be derived by utilizing the relations 
(2.9), (2.12), and (2.21). We obtain 

p([ms]6.) = 21T2f d),(cp, oc) f d),(v) foo (t2 - 4m2t)! dt 

X ± D8[R(v; cp, oc; t)]tv}. 
v, v' ,).,).'=-s 

X 6.(v; cp, oc, t)\. D8 [R'(v; cp, oc; t)]}.·v' 

X {L:da,,~0.~.±2"'~v, t, a[ms])V-v'" 

X D([a]cp, oc, O)"._v' 
Iv-v'I'I oo 

+ I ~ I (v, t, k"[ms])V-V'" 
,,~sgn(v-v') k~l "~,,k 

(2.23) 

In accordance with the parametrization (2.IS) we write 

a(p, p')\. = 6.(v; cp, oc; t)\.. (2.24) 

Since the measure d),(v, t) vanishes at t = 0, the tensor 
operators (2.1) that contribute to the expansion (2.23) 
are all irreducible. 

We now define the set of the unitary irreducible 
tensor operators on Je[ms] which correspond to zero 
4-momentum transfer. According to Eq. (5.31) of 
Ref. I, this class can be realized by the tensorial set 

min(o.i) 

(joj[ms])Ojjt = L PUoj]O"i/l(ms)o", (2.25a) 
K=-miIl(~.j) 

j imaginary continuous, 0 ::;;j/i < 00, 

-min (j, 4-) ::;;jo ::;; min (j, 4-), 0::;; 4- ::;; 2s, 

j = 0, 1,2, ... ; -j::;; /-t ::;;j, (2.25b) 
where 

8 

(ms)o" = L Im~.> <:'t I ~> (m~l, 
)..).·~-8 

with 
(~'t I ~> = (_1)8-)'<:', -Z I ~>, (2.26) 

are the matrix realizations of the SO(3)-irreducible 
tensor operators associated with the particle [m, s] 
(spin tensor operators) and where 

P(joi)"" i/l = p,,(joj] f d/-t(A)D«(joj]A)to" i/l T(A), 

(2.27a) 
with 

p,,(joj] = 4(jg -l)/[1T(24- + 1)], (2.27b) 
A = R(cp, e, ?p)B(y), R(cp, e,?p) = exp (-iCPj12) 

X exp (-ieh1) exp (-i?Pj12)' 

B(y) = exp (-iyj03), 0::;; cp,?p < 21T, 0::;; e::;; 1T, 

° ::;; y < 00, (2.27c) 

d/-t(A) = (dcp/21T) !sin e de(d?p/21T)!(sinh y)2 dy, 

(2.27d) 

T(A) = exp (-icpJ12) exp (-ieJ31) exp (-i?pJ12) 

X exp (-yJ03)' (2.27e) 

D«(joj]A)1'/l'j/l = <;;j'1 r(A) 1:°£>. (2.27f) 

More generally, the components of the unitary 
irreducible matrix realizations of SO(3, I) which 
belong to the principal series are7- 11 

D«(jojJA)1'/l'i/l = (~;}'I T(A) I~ot>, (2.2Sa) 

where,j = imaginary continuous, 0 ::;;j/i < 00, 

. _{O,±I,±2, ... , 
}o - ±l. ±i!. .. , 

2, 2' , 

"< '<" j,j' = Ijol,ljol + I,ljol + 2,"', -}.<./-t <!, 
-} - /-t -}, 

(2.2Sb) 

A = AR(O, e, 1j!), 0::;; 1j! < 21T, 0::;; e ::;; 1T, (2.2Sc) 

T(A) = T(A) exp (-i8J31) exp (-i1j!J12) 

= T(R) T(B) T(R). (2.2Sd) 

The tensorial set (2.25) is defined for integral values of 
jo only, since 4- is always an integer. In Sec. 5 of Ref. I, 
the realization (2.25a) was arrived at by applying the 
general SO(3, I)-projection operator 

P(joj]"" i/l = p(joj] J d/-t(A)D«(joj]A)toK il-l T(A), 

(2.29a) 
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with 
p[jojJ = (4/1T)(j~ - P), 

dfl(A) = dfl(A) isin 0 dO d1f!/21T, 

(2.29b) 

(2.29c) 

to the spin tensor operators (2.26). We refer to (2.25) 
as the set of the ISO(3, 1) i SO(3, I)-irreducible 
tensor operators, since the (3 + I)-dimensional 
Lorentz group, which leaves the zero 4-vector in
variant, is isomorphic to SO(3, 1). The parametriza
tion according to (2.27c) and (2.28c) of the unitary 
operator T(A) appearing in (2.28a) entails the matrix 
decompositions 

min(j' .j) 

D(UojJAlll'jll = L D(UojJAlll'jV D([jJRYIl , 
v~-min( j'. j) 

(2.30a) 

D([joj]A)i' ll'jV = D([j']R)Il'v D(Uoj]BlVjv , (2.30b) 

where 

D([j]R)Il'1l = Dj(R)Il'1l = (j'I T(R) I~) (2.30c) 

are the ordinary rotation functions and 

D(UojJBlVjv = dv(Uoj]B)j'j = <f~jl T(B) Ij~j) (2.30d) 

are the boost functions. 
The orthogonality and completeness relations for 

the unitary irreducible matrix realizations 

D([jJR), D([joj]B), D([joj]A), D([joj]A) 

are expressed by the relations 

A~S J dfl(r/>, 0, y)D(Uoj]rpOy/llsA D(U~j'JrpOy)*j'Il'SA 
= (PsUoj])-lbiojo,b(ij - ij')bjj'(jllil', (2.35a) 

dfl(rp, 0, y) = (drp/21T)(sin 0 dO/2)(sinh y)2 dy/2], 

(2.35b) 

Ps[joj] = 4(j~ - /)/(1T(2s + 1)J, 

and 

jJ,-s foo f djPsUoj]jJjOI /J'~j'D(Uoj]r/>OYll"jll 
X D(UojJrp'O'y,)*j'I"jA 

(2.35c) 

= b/Ji)(fl( r/>, 0, y) - fl( r/>', 0', y')J, (2.36a) 

b(fl(rp, 0, y)J = {81T/(sin O(sinh y)2J}b(rp)b(0)b(y). 

(2.36b) 

Based on this relation is the derivation of the Poincare
multi pole expansion for the spin density matrix 

S 

p([msJp; w) = L IpL w) a(p)\, (p:'; wi. (2.37) 
A.A'~-S 

If we introduce the [lSO(3, 1) i SO(3, 1)]-Clebsch
Gordan coefficients 

are expressed by Eqs. (5.6) and (5.7), (5.9) and (5.10), 
(5.15) and (5.14), (5.17) and (5.18) of Ref. 1. From <1oL I p~; -p:'; w) 
Eqs. (2.25a) and (2.27a) and from min(o,j) 

T(A)(ms)OK = e-iV'PT(no(r/>, 0, y»(ms)"K 

= e-iV'P([ms]r/>, 0, y)jK' (2.31) 
where 

([msJrp, 0, Y)"K = ([msJp; O)"K 

= .± Ip~,; 0)<:'1 I ~)(p:; 01, 
A.}:~-S 

Ip1; 0) = T(no( r/>, 0, y» 1m», (2.32) 

we obtain after integration with respect to the angular 
parameter 1p the following expression for the irreducible 
tensorial set (2.25); 

min(o,j) J 
(joj[ms])"j/J = P"Uoj]K~_nt,(j,j) d{l(rp, 0, y) 

X D(Uoj]rpOy)tjKjll ([msJrp, 0, y)JK' 

(2.33) 

The orthogonality and the completeness of the 
functions 

D(Uoj]4>Oylll'j/J n,;g,F D([j']R(r/>, 0, OW'1l 

X D(Uoj]B(y»j'llj/J (2.34) 

L e~A' I ~~'>DO(RworA_i.' D(Uoj]rpOyyllov 
v~-min(o.j) 

(2.38) 

Eq. (5.58) of Ref. 1, this Poincare-multi pole expansion 
can be expressed as 

S 

X . ~ a(p)A'A (~oi.j I pi-; - P:; w). (2.39) 
A,A ~-s 

In order to establish the connection between the 
tensorial operator set (2.1) at zero 4-momentum 
transfer and the set of the ISO(3, 1) i SO(3, 1)
irreducible tensor operators (2.25), we utilize the 
matrix realizations (2.12) and (2.33). If t = 0 and 
v = (0,0,0) [that is, n(v) is the 4 X 4 unit matrix], 
Eq. (2.12) simplifies to 

(t = 0, T[msW-V'" = p[T] J d).(r/>, IX)D([T]4>, IX, O)tv-v'" 

X I( rp, 1X)[~Sl) <C rp, 1X)[~d, (2.40a) 
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where 

with 

p\cp, IX) = mn3(cp, IX, 0)/. (2.40b) 

Since 

the he1icity rearrangement transformation (1.17) 
implies that 

s 

l(cp,IX)[~Sl) = L l(cp,nI2,lXlrr;.Sl)dS(-nf2)\, (2.42a) 
A~-S 

where 

with 

pA(cp, n12, IX) = mno(cp, n12, IX)/. (2.42b) 

By virtue of Eq. (2.42a), the dyadic product in the 
expression (2.40a) can be subject to the reduction 

(v, t = O,T[ms]y-v'K 

(2.39). We thus establish the connection 

(t = O,T[ms]y-v'K 
2s J 00 i too 1 

= p[T] J~O jO~J i~tol /l~i Jo i djUoj[msJY i/l 

X t e-/' I ~~,>ds (_ ~)A dS 
(_ ~)A' 

A.A ~-s 2 v 2 v' 

x J d}'(cp, IX)D([T]cp, IX, O)tv-v'K 

Since 

x D (Uoj]cp, ~ , lX)i/l 
2 J,A-A' 

(2.43) 

(u, tT[ms]r-V'K = r(n(U»(tT[ms]y-v'K' (2.44) 

the transformation property 

r(n( v»(joj[ms])J i/1 

co j' 

= L L Uoj[ms]Yj'/1' D(Uoj]n(vW'/1'i/l (2.45) 
j'~liollt'~-j' 

[Eq. (5.36) of Ref. 1] and the relation (2.43) provide 
the reduction of the tensor operators (2.1) at zero 
4-momentum transfer into their Poincare-irreducible 
components. After integrating with respect to the 
angular variable cp, we obtain 

= p[T]iO~K j~~OI i~~OI j'~iOI /1'~i' foo ~ djUoj[msJ)"j'/1,D(Uoj]n(v)l/1'iKA.At_sdS( - ~r. dsGfA' 

X di (~)K e-:/' I ~~'>fdA( IX)D([T ]0, IX, O)tv-v'K D([joj]B( 1X»i,(A-A')J,(A_A') , 
2 (.l-A') 

where 
dA(IX) = t sinh IX dlX, ° ~ IX < 00. 

The inverse of this expansion is [see Eq. (4.31) of 
(2.46) Ref. 4] 

The integration on the boost variable IX can be carried 
out after performing the K transformation of Sciarrino 
and Toller,4.12.13 which provides an expansion of the 
SO(3, 1) matrices D([joj]B(IX» in terms of the 
SO(2, 1) matrices D([T]O, IX, 0). In our notation this 
expansion is [see Eq. (4.27) of Ref. 4 or Eq. (19) of 
Ref. 12] 

D(Uoj]B( IXWA j'.l 

= L L d j ~ d j
' - ~ i j' ()A ( )/1' 

/1~-i /1'~-j' 2 /1 2 A 

X r~± (L:p[a, E] daK~oj(a, r, j)* 

X D([a]O, IX, 0)/1/1,K~9j(a, r,n 
mill<lIlI,I/1'1J 

+ t5sgn /1,sgn/1' L L p[k]K~oJ(k~, r,j)* 
~~sgn/1 k~l+. 

X D([k~]O, IX, 0)/1/1.K~9J(k~, r,n), 

sgn I-' = 1-'//1-'/. (2.47) 

J.j'~ iol .l~iK~Oj( 1', r, j)d
i (~r... D(Uoj]B( IXW.l j'.l 

x di'(_ ~)A K~9j(T', r',/)* 
2 /l' 

= _1_ beT, T')br,r,D([T]O, IX, 0)11/1" (2.48) 
p[T] 

(

b(a - a'), if l' = -t + ia, 

1" = -t + ia', 
r = +, -; beT, 1") = 

bk •k ·, . if l' = k~, 7"' = k'~ 

0, otherwise. 

Symmetry properties and explicit expressions in terms 
of hypergeometric functions for the K functions are 
derived in Refs. 4, 12, 13. We reproduce here the 
definition [Eq. (4.25) of Ref. 4 or Eq. (1) of Ref. 12]. 

K~oj( 1', ±, j) = (2j + 1)l( _I)11'1'io f (cosh IX),-l 

x d i [(j±(IX)Ji°/1 D([T]O, IX, O)l1±io dA(IX), 
(2.49a) 
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° ~ (]+ < 7T/2, (]+(~) = 2 tan-l tanh ~/2, 

7T/2 < (]- ~ 7T, (]-(~) = 2 coe l tanh ~/2. (2.49b) 

By substituting the expansion (2.47) for the SO(3, 1)
matrix elements appearing in the decomposition (2.46) 
and by utilizing the orthogonality relation (2.8), we 
can evaluate the integral in (2.46): 

J dJ.(~)D([T]O,~, O)t.-v'" D(Uoj]B(~»;';'-l'",l_l' 

= di( 7T/2),--l'" doe -7T/2y-v'l_l' 

X '" KioJ( ')*KioJ ( ) .4., Jl T, r,} v-v' T, r, 4 . 
r=+,-

Hence, 

(v, t = 0, T[msJ)'-v'" 
K 28 00 

= p[T] I I I F(v, v', K, S)j" 
io=-" "=Iiol i=liol 

X ['" KioJ(T r }')*KioJ (T r 4)J £- K " V-V'" 

r=± 

00 i' roo 1 
x i'~iol Jl'~i' J ° i djUoj[ms]Y i'Jl' 

X D(Uoj]Q(VW'Jl';K' (2.50a) 
where 

F(v, v', K, S)io 

s 

= I d"(7T/2YA dS(7T/2y'l,(_l)K-lH'W(7T/2)l-l'K]2 
l,l'=-s 

o l;: A A' I sl' X d (7T/2) - v-v'(;- AS;' (2.50b) 

If t = 0, the relations (2.16) and (2.18) imply that the 
orbiting transformation Q(v) can be restricted from 
the general parametrizations (2.11 a) or (2.11 b) to the 
one-parameter transformations 

(2.5Ia) 
or 

Q(v) = Qa(O, 0, 'v), - w < 'v < 00. (2.51 b) 

The elements of the transformation matrix D( [joj]Q( v» 
which appear in Eqs. (2.46) and (2.50a) may there
fore be reduced to either rotation or boost functions. 
By virtue of the relations (2.30), the SO(3, I)-matrix 
realizations of the transformations (2.51a) and (2.5Ib) 
are 

and 

D(Uoj]Qa(O, 0, ,v))i'Jl'i" 

{
D(Uoj]B('v»i'" il( bJl '" , if 'v > 0. 

= (-l)i'+/CbJl'_/C D(Uoj]Bmvl)(";/C, if 'v < ° 
(2.52b) 

For the derivation of the second equation (2.52b) we 

used the obvious relation 

Qa(O, 0, - "vI) = Qo(O, 7T, O)Qa(O, 0, "vI) 

in conjunction with the property 

di'( 7T)II'" = ( -1 )1'+"1511 '_". 

3. THE CONNECTION BETWEEN POINCARE
AND LORENTZ-IRREDUCIBLE TENSOR 

OPERATORS 

The momentum-helicity state vectors introduced in 
Sec. I transform irreducibly under the Poincare group 
but not under the (homogeneous) Lorentz group. The 
ISO(3, I)-irreducible basis 

{Ipl; W;:p2 = m2
, -s ~ J. ~ s}, 

(p';'; w I pl; w) = 21pol ba(p' - P)OA'l' (3.1) 

and the SO(3, I)-irreducible basis 

lioi) . . = {O, ±1, ±2, ... , 
)11 ·}o ±J .. ±.l .. . 

2, 2, , 

j = Uol, Uol + 1, ... ,f1 = -j, -j + 1, ... ,j, 

(3.2) 

which transforms according to the unitary irreducible 
representations of the principal series (2.28), i.e., 

(3.3) 

are connected by means of the relation 

I S. ) - '" J 1 d' lioJ) yill ( . ) Pl' W -.4., -:- 'j iJl ioJ p, w SA' 
io.i.1I I 

(3.4) 

where the transformation coefficients 

(3.5) 

are referred to as SO(3, 1) harmonics. The expansion 
(3.4) is obviously consistent with 

(i'Jl'. I ioJ) - .I:. 5.('" _ ")5.i' 5.1l' io'1' ill - Uio'ioU I] I] U i U Jl' (3.6) 

The completeness relation 

'" J! d'j'Yioi(p" W)Sl'yill.(p' w) .4., . )11' 10}' SA 
;o.i.1I I 

= 21pOI ba(p' - p)bA'A (3.7) 

follows from the expansion (3.4) together with the 
orthogonality relations (3.1) and (3.6). The relation 
inverse to (3.4) is then 

• S fda 
lio}) = '" _P_ IpS. w) yioi(p' W)Sl 

)11 £., 2 I 01 )., )Il' , 
).=-s P 

(3.8) 
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and the orthogonality relation 

L
s f d3

p '" ' . , __ PIf ,(p' w) Y ',Ol(p' w)S" 
2 1 01 10 J ' SA 11' ' 

).=-S P 
JI. JI.(' " • ')Jl.i' Jl.1" = Uio'ioU I] - I] U i U I' (3.9) 

is an immediate consequence of (3.6) and (3.8). Since 
the basis vectors (3.1) are angular momentum eigen
vectors, the equation 

Y::J(p; w)s). = <::JI T(Oll,(P» ImD (3.10) 

entails that an orthogonality relation of the form 

Y1:J(m)s). = (1:j 1 mD = K([ms]joj)bi sbl'). (3.11) 

must hold. The normalization constant K([msljoj) will 
be determined below. With the orbiting transfor
mation (1.3) one derives from Eqs. (3.3), (3.10), and 
(3.11) the connection between the SO(3,1)-harmonics 
and the matrix elements (2.34), 

Yi~(cP0y)s). = <~:JI T(Oo(cP, (), y» ImDil' 
= K([ms]joj) D([joj] cP()y)iI'SA . (3.12) 

If the last expression in (3.12) is substituted for the 
SO(3, 1) harmonics appearing in the orthogonality 
relation (3.9), the equations 

d 3p/(2 Ip°l) = !p2 sinh2 y sin () dcP d() dy 
and 

A~. f dp.( cP, (), y)D([joj]cP()y)'I'SA D([j~j']cP()y)*1'I"SA 
= (Ps[jojD-lbioio,b(ij - ij')bjj'bl'l', 

imply that 
K([ms]joj) = [ps[joj]/(41Tm2)]! 

___ 1 (j~ _ P»)!. 

1Tm (2s + 1) 
(3.13) 

Therefore 

Y:~J(cP' (), 1')8). 

= _1 (j~ - P»)! D(Uoj]cP()y)il's).' (3.14) 
1Tm (2s + 1) 

For the type of parametrization characterized by 
w = 0, the expansions (3.4) and (3.8) are therefore 

IAI jiOJ 1 ( [. '])! OJ i 1['1S]cP()Y) =.2 -: dj Ps Jo~ .2 .2 If~J) 
10=-1).1 0 I 41Tm i=IAII'=-i 

X D(Uoj]cP()y)iI'SA (3.15) 
and 

I~~J) = (41Tm2psUojD!A~S f dp.( cP()y) 1['1S]cP()Y) 

x D(Uoj]cP()y)tS\I" (3.16) 

where 
(3.17) 

In the space spanned by the basis vectors (3.1), we 
now introduce as the linear superpositions 

the tensor operators transforming by the unitary 
irreducible SO(3, 1) representations of the principal 
series. In the expression (3.18), the SO(3, 1)-Clebsch
Gordan coefficients are defined by means of the 
reduction14 

D([ ., "]A)i'I" D([' ']A)ts). io] s').' io] il' 

= .~., ~ fdjp[joj](~':j, ::' 1 !1> 
)O)I'SA I 

X D([ - :]A)if1 (91_1 io' J' S A) Jo] 91 ioJ s';: ioJ, 

which ensures the transformation property 

(3.19) 

(3.20) 

To the decomposition (2.30) of a general SO(3, 1)
matrix realization into rotation and boost matrices 
corresponds the factorization of a general SO(3, 1)
Clebsch-Gordan coefficient into a reduced SO(3, 1)
and a SO(3)-Clebsch-Gordan coefficient 

( ~'I" ioi I io{> = (J' i~i I io~> (I"i I ~> 10'J' il' ) I' 10'i" ) 1'1' 1" (3.21) 

The reduced SO(3, 1)-Clebsch-Gordan coefficients are 
defined by means of the reduction for the boost 
matrices 

dv'(U~j']B)i's dv([joj]B)ts
i 

= L f ~ djp[joj](i!:j,iOf I~o]) 
ioi8 I 

X d ([J- ]:-]B)i < L 1 10'i' 8) (3.22) v+v' 0 8 j oj s i oj • 

The reduction formula (6.17) implies the completeness 

~ fd: [ - :-](1'1" ioj I ioI) (iiLl ioJ' S). ) .4. ] P Jo] i. j' i I' if< ioi s').' ioJ 
)031' 

_ Jl.i' Jl.1" Jl.S JI.)' 
- u s' U l' U i U /J' (3.23) 

and consequently the orthogonality 

(3.24) 

With this property, we derive from the reduction 
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formula (3.19) the result 

1 ,:,:, _:- jp. 
-:;- bjojo,b(IJ - IJ )D([loJ]A) j'p.' 
P[loJ] 

- ~ (jp.-/ io'i' i Il)D([J" J"]A)i'Il' 
- £., joi i'll' iol 0 s'A' 

i'Il'ill 
s'A'sA 

D([ ' ']A)t SA (10' i' S A I jo' f) x JoJ ill s' A' iol j'p.' . (3.25) 

By virtue of the completeness relation (3.23), the 
expansion (3.15), and its Hermitian adjoint, we 
arrive at the following decomposition into the 
SO (3 ,I)-irreducible tensor operators (3.18) of a 
momentum-helicity dyadic with the orbit parametri
zation w = 0: 

l
i<Xl ! d"( [" .'])! x . ] Ps JoJ 

o 1 

1'+1 j _ 

~ ~ (- • 10'i') (jfi-/ iol i'll') 
x£.,£., lo} ioi jp. joi ill fo'i' . 

j~Ij'-il p.=-) 
(3.26) 

If (cp', 8', 1") = (tfo, 8, 1'), this decomposition can be 
simplified by means of the reduction formula (3.19) 
and the orthogonality relation (3.24): 

xli<Xl .!d·'( [" ,/])t . J Ps JoJ 
o 1 

1 A-A' 1 Ii 00 1 _ _ 00 j -. 

x. 1 -:- djp[joj]. ~ I .Uoj iJJ)jp. 
Jo=-I'<-'<'I 0 I J=IJol p.=-J 

2s 

X I D(UJ]tfo8 y)jfi8A (1:J 1 iX' i~~j>· (3.27) 
8=1.<-;"1 

From this decomposition together with the orthog
onality relation (2.35) for the D functions and the 
factorization formula (3.21) then follows the expan
sion of the [/SO(3, 1) i SO(3. I)l-irreducible tensor 
operators (2,25) in terms of the SO(3, I)-irreducible 

tensor operators (3.18): 

( .:[ ])" PsUoj] ~ lioo 1 d'( [ .• ])! JoJ ms fP. = -4--2 £., -:- J P JoJ 
7Tm io,io'=-8 0 I 

(3.28) 

The substitution of this expression into the reduction 
formula (2.50) establishes the connection between the 
tensorial set (2.1) at zero momentum transfer and the 
SO(3, I)-irreducible tensor operators (3.18). The de
composition (3.27) also leads to the multipole expan
sion of the spin density matrix 

8 

p([ms]p; w) = I Ipi-; w) a(p)"";. (p:; wi (3.29) 
.<,A'=-8 

in terms of the SO(3, I)-irreducible tensor operators 
(3.18) : 

p([ms]p; w) 

1 28 iioo 1 :- _:-
= -4 2 I -:- dJP8[loJ] 

7Tm io=-28 0 1 
28 <Xl j 8 

X I .I I I (~~j,"lpi,;-p:;w)a(p)A'). 
"=Ijol )=1)01 i1=-j .<';:=-8 

8 jiOO 1 
x io,;;=-. J 0 i dj(p(joj])t 

l
ioo!., '1" t "-I io'j' S .:- ioi 

X , dJ (p[JoJ]) (foi 8 ioi)(loJ io'i') fP.' (3.30) 
o I 

where the [ISO (3 , 1) i SO(3, I)]-Clebsch-Gordan co
efficients defined by means of the Eq. (2.38) appear. 
In the derivation of (3.30) the reduction 

2s 
D8 (R",0)";. D8(R wi A'Il' = I (~:, 1 fi)DO(R",ot" (~I iA~) 

0=0 
and the factorization (3.21) have been used. The 
Lorentz multipole expansion (3.30) may also be 
derived by substituting the relation (3.28) into the 
Poincare-multipole expansion (2.39). The relation 
(3.26) provides the Lorentz-multipole expansion of the 
spin-momentum density operator (2.22),15 if it is 
rewritten as [by means of the helicity rearrangement 
transformation (1.16), (1.19)] 

p([ms]a) = m
4

2 
fdft(tfo, 8, y)fdft(cpl, e', 1") 

167T 
s 

x I I ['1S ]tfoey) 
.< • .<'=-s 

x dS[8ao(cp, e, y)]\a(cp, e, y; cp'e', yTv' 
x dS[8 ao(cp', fJ', yl)]tv'''·([!'S]cplely'l. (3.31) 

The connection between the ISO(3, 1) i SO(2, 1)
irreducible tensorial set (2.1) for arbitrary but non
vanishing (spacelike) 4-momentum transfer and the 
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[/SO(3, 1) i SO(3, l)]-irreducible tensorial set (2.25) 
can be established through the intermediary of the 
SO(3, I)-irreducible tensor operators (3.18). The 
SO(3, I)-irreducible tensor operators (3.18) can be 
expanded in terms of the Poincare-irreducible set (2.1) 
in accordance with the relation (3.16) and the helicity
rearrangement transformation (1.16). An expansion of 
the tensor operators (3.18) in terms of the [[SO(3, 1) i 
SO(3,1)]-irreducible tensor operators is evidently 
impossible, which means that the decomposition (3.28) 
is not invertible. This can also be inferred from the 
relation (3.25). By substituting the expansion of the 
Lorentz-irreducible tensor operators (3.18) in terms 
of the Poincare-irreducible tensor operators (2.1) into 
the decomposition (3.28), a relationship between the 
two classes of Poincare-irreducible tensor operators 
(2.1) and (2.25) is obtained. 

4. THE ASSOCIATIVE ALGEBRA OF THE 
POINCARE-IRREDUCIBLE TENSOR 

OPERATORS 

We now derive a relativistic generalization of a 
relation given by Biedenharn16 for the ordinary spin 
tensor operators. For the spin tensor operators defined 
by (2.26), this relation is [Eq. (2.32) of Ref. 17) 

(m, s)OK(m, st,/(, = [(2~ + 1)(2~I + l)]! 
X 4(m,s);i«fl ~~,>(-1)2S-;;G~'~}, (4.1) 

o 

where the 6j-coefficients appear in the angular momen
tum recoupling relation 

( 1'11'21 i12) (1'12 )131 i) 
11)2 ,u12 )1213 Jl 

= " (1'21'31 i23) (Ill )1231 i) £. )2 J3 f.i23 11 :J23 1.1. 

i23 

X [(2j12 + 1)(2j23 + l)l ( -1 )it+i2+i 3+i C~;2 ;~;}. 
(4.2) 

For the operators (2.32) the relation corresponding to 
(4.1) is 

([rns Jrf()y )OK([ ms JrP'()1 y')j'/(' 

= [2j(m2(sinh y)2 sin O)]o(y - y')o(O - O')O( cp - cp') 
X [(2~ + 1)(2~I + 1)]! 

X 4 ([ms]rfoY);;j«f 1 ~::)(_1)2s-jG~' ;}. (4.3) 
j 

This result, the relation (2.33), the reduction14 

D([joj]A) tSK;1' D([j~j/1A) tS'K';,p, 

= " I! dJ:(O ": ."'.K: I ~o]) _ ~__ • J oj J 0 i 01( 

JoJl'oK I 

X D([J- J~)A)t;i( __ (jp-, 1 ioi i. i') 
o JI' JoJ J I' )'1" , 

and the factorization 

( ' I( O'K'\ Joi) (" '\ )01) (KK'\ ') ioi jo'j' - K = ioi i'o'j' J 0' K 

(4.4) 

(4.5) 

are the essential relations for the construction of the 
associative algebra determined by the matrix multipli
cation of [ISO (3 , 1) i SO(3, 1)]-irreducibletensoroper
ators. This algebra is characterized by the equation 

(joj[ms])"il' (j~j'[msW'i'l" 
0+0' Hi' ) min(:;,j) 

_2: 2: 2: 2:_ 
0=10-0'1 )=li-f'l p=-] io=-min(c,j) 

X lioo 1 i=([ms] [ms] joj )JiJi 

. J .• '1 'I [] UOj[ms])jJi, 
o I )oJ )oJ rns ojl':J'j'I" 

(4.6a) 
with the structure constants 

(
[ms] [ms) joj)Ojjl 

joj j~j' ems] jjjl;j'j'JL' 
1 

[(2~ + 1)(2~' + 1)]" 
= 4 2 p"[joj]PJ,[j~j'](p:Uoj])-l 

7Tm 

X ( 1)2S-J{J 0' "}( 0 0' I 0_) < iI'-l ioi io'i') 
- s S S joi foi' joi 50 i j I' ;'1" • 

(4.6b) 

With respect to ordinary operator multiplication 
(matrix multiplication), the set of the [ISO(3, 1) i 
SO(3, l))-irreducible tensor operators (2.25) is there
fore closed. In contrast, the ordinary operator product 
of two [ISO (3 , 1) i SO(2, 1)]-irreducible tensors 
(2.1) can be expressed as an (infinite) linear super
position of the tensor operators (2.1) at zero 4-
momentum transfer (Q = 0). In accordance with 
the decomposition (2.50), these tensor operators are 
not Poincare-irreducible. Consequently, the Poincare
irreducible tensorial set (2.1), Q < 0, is not closed 
under ordinary operator multiplication. Equations 
(4.6) therefore constitute the relativistic generalization 
of the Biedenharn relation (4,1). 

* This work was performed under the auspices of the U.S. Atomic 
Energy Commission. 
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We prove a theorem on the convergence rate of generalized Fourier expansions. Our result is not 
restricted to any particular basis. 

1. INTRODUCTION 

We wish to consider the expansion of a state If) 
in an orthonormal basis In). In many particular 
problems, where the bases are classical orthogonal 
polynomials, the rate of convergence is well known.L2 

However, few results are known for expansions in 
more complicated bases. Recently, new efforts in 
obtaining more general results have been very fruit
ful. 3 The theorem we present gives a bound on the 
rate of convergence which holds in general. 

Section 2 contains the statement and proof of the 
theorem. This theorem shows how the rate of conver
gence depends on the properties of If). The final 
section presents some brief examples. 

2. CONVERGENCE RATE 

Let AI, .1.2, ... ,Ar be a set of operators with a 
corresponding complete orthonormal basis In). The 
label n represents the complete set of labels needed to 
specify the state. These vectors are the eigenvectors of 
the Ai with eigenvalues lii(n), 

(1) 

For any state If) in the space spanned by the basis we 
have 

If) = 1 a(n) In), 

where the expansion coefficients are 

a(n) = (n If). 

Theorem 1: Ifthe quantities (Ai)a, If) are bounded, 
then the expansion coefficients are bounded: 

la(n)l5: II(Ai)a; 1f)1I/llilnYi l 

Proof: From the orthogonality of the basis states 
and (1) we have 

At In) = lii(n) In). (2) 

Operate on If) with the operator Ai as many times 
as the result is bounded in norm, that is, (]i times. 
Then take the scaler product with (ml and from (1) 
and (2) we have 

(ml (AY' If) = <II (At)a, Im)* = lilmyia(m) 

or dividing by lii(mYi 

a(m) = (ml (Aiyi If)/Ii;(mYi. 

Finally using the Schwartz inequality, we have 

la(m)l5: II(Ai)a
i 1f)1I/IIi;(m)"'I. 

It is important to realize that the (]i can all be very 
different and that the utility of this result depends on 
finding a Ai such that lii(n) is an increasing function 
of n. In addition, we are not restricted to local differ
ential operators or any particular representation. In 
many familiar cases Ai is a differential operator, and 
then the theorem connects the rate of decrease of a(n) 
with the degree of differentiability of (Xl' X2 , ••• , 

Xrl f)· 
3. EXAMPLES 

Our first example is the classic Fourier series where 
we use the complex form 

m=CXl eimlb 

f(<1» = ~ a(m) -! . 
m=-CXl (277') 

The appropriate operator is L z , which corresponds 
to -id/d<1>. In this case we have 

la(m)l::;; Im'TI II(Lz),'If)1I 
or 

la(m)l5: Imar
l 
(( -i d~rf(<1», (-i d~rf(<1»r 

If f(<1» is differentiable k times, we have (] = k. If 
we know that the k + 1 derivative is of bounded 
variation, we have (] = k + 1. This case is especially 
simple and often treated in the literature.1.2.4 

The second example is that of the spherical har
monics 

f(O, 1» = ~ ~ a(l, m)Yim(O, 1». 
1m 

The operators here are very familiar ones, namely, 
£2 and L z : 

£2 II, m) = l(l + 1) II, m), L z II, m) = mil, m). 

Thus we have 

1508 
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and 
la(l, m)1 ~ (Iml"2)-1 II(L.)"21f>11, 

or, combining these, we get 

la(l, m)1 ~ [11(1 + 1)I"lr1(lml"2)-1 II(L2)"1(L.)"21f>1\, 

where this last result only holds if the resulting norm 
is bounded. We are presently applying this result to 
the convergence properties of generalized spherical 
harmonic expansions applied to the three-body 
problem. 
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Group-Theoretic Derivation of Crossing Sum Rules 
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Crossing relations between amplitudes with definite isospin for 1T1T scattering are expressed in terms of 
the symmetric group S3' The sum rules, involving s-channel partial wave amplitudes, are then derived 
without reference to the Balachandran and Nuyts expansion and are shown to be a direct consequence of 
the group-theoretic orthogonality relations. This results in closed expressions for all possible sum rules. 

1. INTRODUCTION 

In this paper we give an alternative derivation of 
the sum rules for the 1T1T partial wave amplitudes 
derived by Roskies1 as a consequence of isospin 
invariance and crossing. By emphasizing the role 
played by the symmetric group Sa, we have avoided 
the use of the Balachandran and Nuyts expansion. 2 

The approach is analogous to that used by Basdevant, 
Cohen-Tannoudji, and MoreP in deducing 1TK 
crossing sum rules, where the relevant group is S2' 
(We are grateful to Professor A. Martin for drawing 
our attention to this work.) 

The purpose of Sec. 2 is to summarize a few notions 
concerning the group Sa and its representations. We 
calculate the projection operators for the irreducible 
representations and prove a simple orthogonality 
relation, which is the basis of the sum rules. We also 
introduce the isospin amplitudes and show how the 
crossing conditions imply very simple transformation 
properties for certain linear combinations of the 
amplitudes. The group theory for this section may be 
found in the book by Hamermesh.4 

Section 3 is devoted to the explicit derivation of the 
1T1T crossing sum rules from the group-theoretic 
properties already given. Since the sum rules 
so obtained correspond to integrals over definite 
orthogonal polynomials in two variables, we have 

been able to suppress the apparent arbitrariness in 
the results of Ref. 3 without having to go through the 
complicated derivations of Ref. 1. This indeed allows 
us to write closed expressions for all possible sum 
rules of arbitrary order, which are both necessary 
and sufficient to ensure the known crossing properties 
of the full scattering amplitude. 

2. GROUP-THEORETIC PRELIMINARIES 

The permutation group (Sa) on three objects (s, I, 

and u in the present case), which is isomorphic with 
the group of operations leaving an equilateral triangle 
invariant, has the following elements: 

(s I u) = E, 
slu 

(s I u) = C2 = (SUI), 
usl 

(s I u) = aC = (Sl), 
Is u 

(s I u) = C = (stu), 
Ius 

(s t u) = a = (tu), 
sut 

(s I u) 
uts 

= aC2 = (su), 

where the final column represents the elements written 
in cyclic notation. 

In terms of the dihedral group Da, the elements 
have the following interpretation: C is a rotation of 
21T/3 in the plane of the triangle and a is a reflection 
in the line containing the center and the vertex s. 
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and 
la(l, m)1 ~ (Iml"2)-1 II(L.)"21f>11, 
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The most useful results from the multiplication table 
are the following: 

0'2 = E, C3 = E, o'C = C20', o'C2 = Co'. 

There are only three inequivalent irreducible 
unitary representations of S3: 

(1) the symmetric representation 

Dl(g) = 1 V g E S3' 

(2) the alternating representation 

D2(g) = 1 V g E A3 

= -1 for the remainder, 

[A3 is the alternating subgroup of S3 .J 
(3) the two-dimensional representation D3 which 

is chosen as follows (w3 = 1, w2 + W + 1 = 0): 

D3(E) = (~ ~), 

D3(0') = (~ _~), 

( 
-1 

D3(C) = ~ 
2 1 + 2w 

D3(o'C) = ! ( 
-1 

-1 - 2w 

1 + 2W) 
-1 ' 

1 + 2W) 
1 ' 

-1 - 2W) 
-1 ' 

( 
-1 -1 - 2W) 

D3(o'C2) = t . 
1 + 2w 1 

As in Ref. 4, we define projection operators corre
sponding to these irreducible representations as 
follows: 

Pi = (nll/lGI) L D~(g-l)g, 
g",O 

where nil is the dimension of DP, IGI is the order of the 
group (6 in the case where G = S3), and g is the 
operator corresponding to g E G. For g E S3' g acts 
on any function of s, t, and u: E.g., CJ(s, t, u) = 
J(t, u, s). 

In Appendix A we show that 

(2.1) 
as is expected. 

The projection operators for the various repre
sentations are given below. 

1. Symmetric representation: Write 

S = PL n1 = 1, DMg-I
) = 1 V g E S3' 

S = i(E + a)(E + C + C2
) 

= i(E + C + C2)(E + a). 

2. Alternating representation: Write 

A = Pi, n2 = 1, Dil(g-l) = 1 V g E A 3 , 

= -1 for the remainder. 

A = -HE - a)(E + C + C2
) 

= iCE + C + C2)(E - a). 

3. Two-dimensional representation: 

MI = P: , M2 = P~ , n3 = 2. 
MI = iCE + a)(2E - C - C2

) 

= i(2E - C - C2)(E + a), 
M2 = i(E - a)(2E - C - c~ 

= i(2E - C - C2)(E - a). 

It is simple to show explicitly that (2.1) is satisfied. 
The following obvious relations are also useful: 

HE + a) = S + MI , HE - a) = A + M2 , 

HE + C + C2) = S + A, 
H2E - C - C2) = MI + M2. 

SO we deduce S + A + MI + M2 = E, and we may 
write any function J(s, t, u) in the form 1= SI + 
AJ + Md + Md Now we define a bilinear form 
(f,J'): 

(f,.f') = fff ds dt du b(s + t + u - 4,u2) 

4 

x !(s, t, u).f'(s, t, u), 

where ~ is the triangular region of the Mandelstam 
diagram;f and j' are arbitrary functions of s, t, and 
u; and the latter have their usual interpretation. ,u 
is the mass of the pion. This bilinear form has the 
obvious but important property that 

(gl, gj') = (j,j'), (2.2) 

where g is any member of S3' We next prove a simple 
orthogonality property: 

(Pi!, Pj.f') 

= (n ll/lS3i) L D~(g-l)(gj, Pi.f') (bilinearity) 
geSs 

= (n ll/lS3\) L D~(g-I)(f, g-IP,!,) (from 2.2) 
g",SS 

= (n ll/lS3\) L {DIl(g11)}iil(f, gIP;!'), 
gl",Sa 

However, (DIl)il = (DIl)~ from unitarity and, for our 
representations, (DIl)~ = D:'i; so, using the bilinearity 
property again, we have 

(P:!, Pj!') = (f, PfPj.f') 

= biibpv(f, Pi!') from (2.1). 
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This gives us twelve orthogonality relations, such as Then (2.11) and (2.13) imply 

II ds dt (Sf)(Aj') = 0, 

II ds dt (Aj)(Md') = 0, (2.3) 

II ds dt (Md)(Md') = 0, 

etc. 

We now turn to the 1T1T s-channel amplitude, as 
writtC(n by Chew and Mandelstam5 : 

Ta.p.y~(s, t, u) = t5a./loy~A(s, t, u) + t5a.yo/l~B(s, t, u) 

+ t5a.~t5pyC(s, t, u), 
where crossing implies 

A(s, t, u) = A(s, u, t), (2.4) 

B(s, t, u) = A(t, s, u), (2.5) 

C(s, t, u) = A(u, t, s). (2.6) 

SA = t(F(O) + 2F(2», 

MIA = t(2F(O) - 5F(2». 

(2.14) 

(2.15) 

Incidentally, we notice at once from these results that 
since SF(l) = 0 and S(F(O) - 5F(2» = 0 at the sym
metry point s = t = u = 4ft2/3, F(l) = 0 and F(2) = 
2F(0) 15 at this point-a result noted by Basdevant 
et al.a 

If we re-express (2.13), (2.14), and (2.15) in terms 
of A, B, and C, we have 

(S - m(A + B + C) = 0, (2.16) 

(MI - E)(2A - B - C) = 0, (2.17) 

(M2 -.. E)(B - C) = O. (2.18) 

Clearly these conditions are necessary, but it is not 
difficult, though somewhat tedious, to show that 
they are not sufficient to ensure the crossing relations 
(2.4)-(2.6). In fact, there is another relation 

(C2 - C)(2A - B - C) = 3(B - C); (2.19) 
The isospin invariant amplitudes are 

F(O) = 3A + B + C, 
(2.7) in Appendix B it is shown that the relations (2.16)

(2.19) are indeed sufficient. 
F(l) = 

F(2) = 
B-C, 

B+ C. 

Via the elements of Sa, (2.4)-(2.6) become 

(2.8) 

(2.9) 

A = aA, B = aCA, C = aC2A, (2.10) 

and (2.7)-(2.9) become 

F(O) = 3A + (C + (2)A = 3A + F(2), 

F(l) = (C2 - C)A, F(2) = (C + (2)A, 

where use has been made of (2.10). 
We now have the following results immediately: 

SA = HE + C + (2)A, AA = 0, 

MIA = H2E - C - (2)A, M2A = 0, 

and, in consequence, 

3. 'TT7T SUM RULES DERIVED 

Using the conditions imposed on the amplitudes 
A, B, and C by crossing symmetry, we have seen that 
we can form certain linear combinations of the isospin 
amplitudes that transform irreducibly under Sa. Our 
aim is to impose these crossing relations on the partial 
wave amplitudes, by using the orthogonality relations 
proved above [Eq. (2.3)]. 

Then, via Eqs. (2.16)-(2.18), the orthogonality 
relations immediately give 

If ds dt (F(O) + 2F(2»[~,] G(s, t, u) = 0, 

d M2 

ij d, dt (2F'O) - SF'''{l J G(" t, u) ~ 0, 

II ds dt F(lJ[ ~ ]G(S' t, u) = 0, 
d MI 

(3.1a) 

(3.1b) 

(3.1c) 

(3.2a) 

(3.2b) 

(3.2c) 

(3.3a) 

(3.3b) 

(3.3c) 

where G(s, t, u) is an arbitrary analytic function. 
We next consider the remaining condition implied 

by crossing symmetry [Eq. (2.19)], 

(C2 - C)(2A - B - C) = 3(B - C) 
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and 
MiC 2 - C)(2A - B - C) = 3MiB - C) 

= 3(B - C). 

Then, for an arbitrary function G(s, f, u), 

III ds dt du 15(s + t + u - 4fL2) 

A 

X [i(c - C2)(2F(O) - 5F(2» + F(l)]G(s, t, u) = 0; 

but we recall that the functions (C - C2)(2F(O) -5F(2» 
and FCI) both transform irreducibly under £12, and 
we have already used the orthogonality properties 
of these functions with SG, AG, and MIG in Eqs. 
(3.3) and (3.4). Therefore, the only new equation is 

III ds dt du 15(s + t + u - 4fL2) 

A 

X [iCC - C2)(2FCO) - 5F(2» + FW]M2G(s, t, u) = 0. 

As it stands this integral is still not useful, since the 
integrand vanishes identically. However, we can use 
the crossing symmetric form of the measure to obtain 

III ds dt du 15(s + t + u - 4fL2) 

A 

X {t(2FCO) - 5F(2»M2[G(u, t, s) - G(t, s, u)] 

+ F(l)M2G(s, t, u)} = 0. (3.4) 

The sum rules now follow by using the above 
relations to project out partial waves. We therefore 
define the s-channel I-spin partial waves 

fF)(s) = t fl dZs F([)(s, t, u)Pz(zs), 

where 
z. = 1 + 2f/(S - 4fL2), with fL = pion mass. 

We first look at Eqs. (3.1a), (3.1c), (3.2b), (3.2c), 
(3.3a), and (3.3c), and see that they are satisfied by 
the well-known requirements that 

f~~~I(S) = f~~~I(S) = fg)(s) = 0, for all 1, s. 

[This is because AG(s, z.) and M2G(s, z.) are anti
symmetric under the interchange of f and u, and so 
can be functions of only odd powers of Zs' while 
SG and MIG are functions of only even powers of z •. ] 

This leaves us with the following four integrals: 

II ds dt (2F(O) - 5F(2»SG(S, t, u) = 0, (3.5) 

A 

ffdS dt F(1)AG(s, t, u) = 0, (3.6) 

A II ds dt (F CO) + 2F(2»M1G(s, t, u) = 0, (3.7) 

A 

II ds dt a(2F(O) - 5F(2»M2[G(u, t, s) - G(t, s, u)] 

A 

+ F W M2G(s, t, u)} = 0. (3.8) 

In the above integrals (3.5)-(3.8), we are free to 
choose any G(s, f, u) which is an analytic function of 
its arguments. This analyticity requirement allows us 
to express G in powers of s, f, and u. We now first 
construct the most general crossing symmetric func
tion SG. To do this, it is useful to change to crossing 
symmetric variablesl

: w = s + f + u = 4fL2, X = 
sf + fu + us,y = stu. 

Then SG will be polynomial in w, x, y, so that we 
can write 

m.n 

where Amn are arbitrary constants. 
We see that the integral (3.5) vanishes for all 

crossing symmetric functions, and so vanishes for 
each value of (m, n) separately, regardless of Amn. 

We consider next the integrals (3.6)-(3.8). As 
shown by Roskies, I we can write arbitrary AG, 
MIG, and M2G as follows: 

AG(s, f, u) = (s - t)(f - u)(u - S)gl(S, t, u), 

M1G(s, f, u) = (2s - t - U)g2(S, t, u) 

+ (2s2 - f2 - U2)g3(S, f, u), 

M 2G(s, t, u) = (t - U)g4(S, f, u) + (t 2 - u2)gs(s, f, u), 

where the gi' i = 1, ... , 5, are arbitrary functions 
symmetric in their arguments, which we know we 
can write as 

( ) 
~ ~(i) m n gi S, t, u =.£.., II.mnX Y . 

m.n 

Again we see that the integrals (3.6)-(3.8) will now 
vanish for each (m, n), regardless of the A~~. By 
writing the integrals in the form of the orthogonality 
relations, we see we have removed the necessity for 
introducing the infinite set of arbitrary constants 
A~~n' These correspond to the arbitrary constants 
that Roskies finds he has to eliminate before he can 
write each sum rule. 

We now go on to write closed expressions for all 
the 7T1T sum rules. We take 

AG(s, t, u) = [(4fL2 - s)(3s - 4fL2)2zs 

- (4fL2 - s)3z:]xmyn, (3.9) 

M1G(s, t, u) = (3s - 4fL2)xmyn, (3.10) 

= [4s2 - (4fL2 - S)2 - (4fL2 _ s)2z~]xmyn, 

M 2G(s, t, u) = (4fL2 - s)zsxmyn, 

= (4fL2 - s)2z.xmyn; 

(3.11) 

(3.12) 
(3.13) 
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then 

M2[G(U, t, s) - G(t, s, u)] 
= (3s - 4,u2)xmyn (3.14) 

= U4S2 - (4,u2 - S)2 - (4,u2 - s)2z~]xmyn, (3.15) 

respectively. 
We next express xmyn in terms of sand z as 

m' n' m n xmyn = -' -'2 2 
4m+n 

i-O k=O 

(_1)i+ksn(4,u2 _.s)Hm+2n(3s + 4,u2)m-i 2<i+k) 
X . Z , 

j! k! (m - j)! (n - k)! 

and we substitute this form into Eqs. (3.9)-(3.15) in 
turn, and putting these into their respective orthogon
ality relations [Eqs. (3.5)-(3.8)] gives us, on performing 
the Za integration, the required closed expression,s, 
which we simplify by first defining the two terms a1kl 
and ~~kl: 

o 41(41 + 1)(j + k + 1)!(2j + 2k)! 

a
jk1

= (j + k -l)!(2j + 2k + 21 + I)!' 

1 41(41 + 3)(j + k + 1 + 1)!(2j + 2k + 2)! 

ajkl = (j + k + 1)(j + k - I)! (2j + 2k + 21 + 3)! ' 

2 41(41 + 1)(j + k + 1 + 1)!(2j + 2k + 2)! 
a;kl= (j+k-l+l)!(2j+2k+21+3)! ' 

3 4/(41 + 3)(j + k + 1 + 2)!(2j + 2k + 4)! 

a
jk

! = (j + k + 2)(j + k -I + 1)!(2j+ 2k + 21 + 5)!' 
and 

( 1) i+ka i 
i - ikl 

eik! = j! k!(m - j)!(n - k)!' 

We now write the closed forms for all the crossing 
sum rules with the following notational simplification: 

m n (41'2 II == j~k~ Jo ds; 

we then have, from Eqs. (3.5)-(3.8) 

2Isn(4,u2 - s)Hm+2n+1(3s + 4,u2)m-i 

i+k 
X 2~~k![2f~~l(S) - 5f~~)(s)] = 0, (3.16) 

!=o 

2Isn(4,u2 - s)i+m+2n+2(3s + 4,u2)m-i 

( 

i+k 
X (3s - 4,u2)2 6 ~}kd~~~is) 

i+k+l ) 
- (4,u2 - S)2 i~ ~~kd~}~l(S) = 0, (3.17) 

2 f sn( 4,u2 - S )i+m+2n+l(3s + 4,u2)m-i(3s - 4,u2) 

Hk 

X 2 ~1k![f~~)(s) + 2f~~l(s)] = 0, (3.18) 
1=0 

LIsn(4l - s)i+m+2n+l(3s + 4,u2r-i 

X (3S - 4l):¥o~~k![2f~~)(S) - 5f~~)(s)] 
i+k ) 

+ 9(4l - s\~~}kd~}~l(S) = 0, (3.20) 

2Isn(4l - s)i+m+2n+1(3s + 4,u2)m-i 

X ([4s2 - (4,u2 - s)2(~e~kl[2f~~)(s) - 5fW(s)] 

i+k+l 
- (4,u2 - S)2 2 ~:k/[2f~~)(s) - 5f~~)(s)] 

!=o 

i+k ) + 18(4,u2 - S)2~~}kd~!!-is) = 0, (3.21) 

with m, n = 0, I, 2, ... , 00. 

We shall now use these closed expressions to obtain 
the crossing conditions on the lowest 7T7T partial waves. 

(i) We consider Eq. (3.16) with m = n = 0; then 
we have immediately that 

fl'2dS [(4,u2 - s)(2f~0)(s) - 5f~2)(S)] = 0. (3.22) 

(ii) We now turn to Eq. (3.17) with m = n = 0, 
which gives 

fl'2dS (4,u2 - s)(21s2 - 48,u2S + 16l)Jll)(s) 

= fl'2dS (4,u2 - s)y~l)(s). (3.23) 

(iii) We take Eq. (3.18) in its simplest form, i.e., 
with m = n = 0; then 

fl'2dS (4,u2 - s)(3s - 4l)[f~0)(s) + 2f~2l(s)] = 0. 

(3.24) 

(iv) We next consider Eq. (3.20) with m = n = 0; 
then 

fl'2dS (4,u2 - s)(3s - 4,u2)[2f~0)(s) - 5f~2)(s)] 

= -9 fJl
2

ds (4,u2 - s)2jl1)(s). (3.25) 

There are two more sum r,ules which just involve 
sand p waves, which can be obtained as follows: 

(v) We consider Eq. (3.21) in its simplest form 



                                                                                                                                    

1514 C. S. COOPER AND M. R. PENNINGTON 

(m = n = 0), which gives us APPENDIX A 

f P2dS 
(4",,2 - s) 

X {(4s2 + 16ls - 32l)[2f~0)(s) - 5f~2)(S)] 

- (4",,2 - s)2[2f~0)(s) - 5f~2)(S)] 

+ 27(4",,2 - s)2f~I)(s)} = O. (3.26) 

To eliminate the d-wave term, we consider Eq. 
(3.16) with m = 1, n = 0: 

We subtract this from Eq. (3.26) to give us 

(3.28) 

(vi) To obtain the last sum rule involving just sand 
p waves, we first consider Eq. (3.20) with m = 1, 
n = 0. This relates the sand d waves of (2F(O) - 5F(2» 
to the p and fwaves of F(1). To eliminate the f~I) term, 
we use Eq. (3.23) and, to eliminate the (2f~O) - 5f~2» 
term, we need to use Eq. (3.16) with m = 0, n = 1 
and m = 1, n = 0. We then finally obtain 

(3.29) 

We conclude by noting that we can reverse the 
general procedure given above, so that we can write a 
set of orthogonality relations involving (2F(0) - 5F(2», 
F(1), and (F(O) + 2F(2», with arbitrary functions 
having particular transformation properties under 
Sa. The arbitrariness of these latter functions is 
sufficient to ensure that the above combinations of 
isospin amplitudes have the correct transformation 
properties. Equation (3.8) may also be used to derive 
the condition (2.19) on the amplitudes. It is shown in 
Appendix B that from these properties the crossing 
relations on A, B, and C can be regained. This 
guarantees that the integral constraints (3.16)-(3.21) 
that we have found on the partial wave amplitudes 
are sufficient to ensure the known crossing properties 
of the full scattering amplitude. 

Proof of the relation PfP; = b;/JpvPf [Eq. (2.1)]: 

PfP; = (npnv/lG\2) L Df;(gll)D;;(g21)glg2 
gl.U2EG 

= (n/Lnvl/G/ 2) L Df;(gll)D;lg3"lgl)ga, 
gl.gjEG 

nv 
= (n/Lnvl/G/ 2) L L Dt;(gll)D;k(g3"l)D;lgl)ga 

gl.gjEG k~l 

= (npnvl/G/ 2
) L I Dj'k(g;l)biAAlvC/Gl/nV)ga , 

USEG k=l 

where use has been made of the orthogonality 
theorem for group representations; so finally we have 

PrP; = bijb/Lv(nvl/G/) L Df;(g-l)g 
YEO 

APPENDIX B 

Here we demonstrate that the relations (2.16)
(2.19) are sufficient to ensure the crossing relations 
(2.4)-(2.6). We recall 

(8 - E)(A + B + C) = 0, (2.16) 

(1111 - E)(2A - B - C) = 0, (2.17) 

(M2 - E)(B - C) = 0, (2.18) 

(C2 - C)(2A - B - C) = 3(B - C). (2.19) 

From (2.16)-(2.18) alone it is possible to deduce 
the symmetry property of A; but there are a number 
of possibilities for Band C, and (2.19) is necessary 
to eliminate all but the correct solution, (2.5) and 
(2.6). 

From (2.16) we have 

(E - a)(A + B + C) = 0, (B1) 

(2E - C - C2)(A + B + C) = 0. (B2) 

From (2.17), 
(E - a)(2A - B - C) = 0, (B3) 

(E + C + C2)(2A - B - C) = O. (B4) 

From (2.18), 
(E + a)(B - C) = 0, (BS) 

(E + C + C2)(B - C) = O. (B6) 

(BI) & (B3) => (E - a)A = 0, 

(E - a)(B + C) = 0, (B7) 

i.e., aA = A [Eq. (2.4)]. 

(BS) & (B7) => BB = C (and BC = B). (B8) 

(B4) & (B6) => (E + C + C2)(A - B) = 0, 

(£ + C + C2)(A - C) = 0, 
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We prove the following: The kernel K, of the partial wave Lippmann-Schwinger (LS) equation for 
the lth partial wave with complex energy having positive- or negative-definite imaginary part belongs 
to the Hilbert-Schmidt (£2) class if the potential V is spherically symmetric and such that 

(A) lim rW(r) = 0, - 00 < 15 < t, V(r)r_oo = O(r-~), 'rJ > !, 
r-o 

(B) for V(r) = g/r"', 1 < Q( < t, the kernel K of the full Lippmann-Schwinger equation satisfies 

Tr {(Kt)mKffl} < 00, if Q( > (2m + 1)/2m, m = 2, 3, .... 

For! < Q( ~ 1, Tr {(Kt)fflKffl} is not absolutely convergent for any finite m, even though, for each partial 
wave, K, belongs to £2 class. An appendix deals with obtaining expressions for the T matrix in terms of 
eigensolutions of the mth iterated kernel when it belongs to £2 class. 

I. INTRODUCTION 

A sufficient condition for the existence of unique 
solutions for the Lippmann-Schwinger (LS) integral 
equation 

€ > 0 and E is real. € < 0 corresponds to ljJH and 
it can be studied using an exactly similar procedure 
described in this paper. The sufficient conditions on V 
obtained in the literature2 to establish Eq. (2) is 

(1) 

can be obtained by proving that the kernel K = Gtv 
belongs to the Hilbert-Schmidt class (£2)1.2: 

Tr {KtK} < 00. (2) 

In Eq. (1) ",¥(+l is the scattering state evolved from 
the "in state" "'¥ 0 due to the interaction V. If'o is an 
eigenstate of the free Hamiltonian Ho and 

Gri(E) = (E - Ho + ifT\ (3) 

f d3r JV(r)1 2 < 00 (4) 

for € > 0. For € = 0, a modified kernel Ks = V!GriV! 
belongs to £2 class if 

f d3r VIC r)1 < 00, (Sa) 

I d3r JV(r - r')\ r,-2 < M < 00, (Sb) 
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by 
B= aCA (2.10) 
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We prove the following: The kernel K, of the partial wave Lippmann-Schwinger (LS) equation for 
the lth partial wave with complex energy having positive- or negative-definite imaginary part belongs 
to the Hilbert-Schmidt (£2) class if the potential V is spherically symmetric and such that 

(A) lim rW(r) = 0, - 00 < 15 < t, V(r)r_oo = O(r-~), 'rJ > !, 
r-o 

(B) for V(r) = g/r"', 1 < Q( < t, the kernel K of the full Lippmann-Schwinger equation satisfies 

Tr {(Kt)mKffl} < 00, if Q( > (2m + 1)/2m, m = 2, 3, .... 

For! < Q( ~ 1, Tr {(Kt)fflKffl} is not absolutely convergent for any finite m, even though, for each partial 
wave, K, belongs to £2 class. An appendix deals with obtaining expressions for the T matrix in terms of 
eigensolutions of the mth iterated kernel when it belongs to £2 class. 

I. INTRODUCTION 

A sufficient condition for the existence of unique 
solutions for the Lippmann-Schwinger (LS) integral 
equation 

€ > 0 and E is real. € < 0 corresponds to ljJH and 
it can be studied using an exactly similar procedure 
described in this paper. The sufficient conditions on V 
obtained in the literature2 to establish Eq. (2) is 

(1) 

can be obtained by proving that the kernel K = Gtv 
belongs to the Hilbert-Schmidt class (£2)1.2: 

Tr {KtK} < 00. (2) 

In Eq. (1) ",¥(+l is the scattering state evolved from 
the "in state" "'¥ 0 due to the interaction V. If'o is an 
eigenstate of the free Hamiltonian Ho and 

Gri(E) = (E - Ho + ifT\ (3) 

f d3r JV(r)1 2 < 00 (4) 

for € > 0. For € = 0, a modified kernel Ks = V!GriV! 
belongs to £2 class if 

f d3r VIC r)1 < 00, (Sa) 

I d3r JV(r - r')\ r,-2 < M < 00, (Sb) 
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where M is a constant independent of r. Weinberg3.4 
has shown that, for spherically symmetric potentials, 
the partial wave LS equation belongs to L2 if 

1
0 <00 

o r2 dr lV(rW < 00, (6a) 

foo dr lV(rW < 00, 
Jo'>o 

(6b) 

and this includes the Coulomb potential. However, 
according to Titchmarsh,5 the solutions of die radial 
Schrodinger equation corresponding to continuous 
spectrum exist if the potential V(r) -4 0 as r -4 00. 

Clearly, Eqs. (4) and (5a)-(6b) do not cover all 
potentials having this behavior. 

The existence of the unique solutions for the full 
three-dimensional LS equation can be proved if one 
can show that any finite power of the kernel K belongs 
to V. This incorporates a larger class of V than 
suggested by (5a)-(6b). This is proved in the next 
section. This extension is possible if, instead of the 
representation for Gt used by Weinberg,3,4 one uses 
the spherical wave expansion and the conditions on 
the existence of solutions of the iterated equations. 
Weinberg3 used a different criterion, namely, 

Tr {(KtK)2} 

for examInIng the Coulomb problem. See Note 
Added in Proof in Ref. 3. In fact, we found that 
indeed Tr (KtK)2 < 00 for the Coulomb problem 
whereas Tr {Kt2K2} is not. This is the same as 

Tr {(Kt)2K2} 

only if K is a normal operator. 

II. STATEMENT OF THE THEOREM AND ITS 
PROOF 

Theorem: The kernel KI of the partial wave Lipp
mann-Schwinger equation for the lth partial wave 
with a complex energy, with arbitrarily small nonzero 
imaginary part, belongs to the Hilbert-Schmidt class 
(L2) for a spherically symmetric potential V(r) such 
that 

(A) lim r"V(r) = 0, 
r .... O 

V(r)lr .... oo = OCr-II), 'fJ > !, 
(B) for VCr) = g/r", 1 < IX < t, 

Tr {(Kt)mKm} < 00 

if 
IX > (2m + 1)/2m, m = 2, 3, .... 

Here K is the kernel of the full LS equation. 

Proof' First we evaluate the Tr (Kt K), assuming 

e> 0: 

Tr (KtK) = f d3r(r/ KtK Ir) 

= f d3r d3rl (rl Kt Irl)(rll K Ir). (7) 

Now 

(rll K Ir) = (rll Gt Ir)V(r) (8) 
if V is a local potential. Similarly, 

(rl Kt Irl) = (rll K Ir)* = V(r)(rl G; Irl)' (9) 
We now use 

and 
f 

d3k i<"(fl-f) 

(rll Gt Ir) = (211")3 Ilt (10) 

e
ik

·
r 

='411" I i1z(kr)YzmCk)Yz*m(f) (11) 
1m 

with III = (E - k2j2", ±: ie), '" being the reduced 
mass, to obtain 

(rll K Ir) 

= Z ~ foo k::k Ukrl) ¥Zm(fI)Ukr) Yt;,,(p)V(r). 
1m 11" Jo Uk 

(12) 
The various symbols here have their usual significance 
(cf. Ref. 2). This form is different from the one used by 
Weinberg.3 We then obtain 

Tr {KtK} 

= I (21 + 1) Tr (KtK)1 
!=o 

= I (21 + 1)(~)2 foo r2 dr foo k
2 
d~ j~(kr)V2(r). 

z=o 11" Jo Jo liltl 
(13) 

In Eq. (13), the k integration is convergent for 
o < r < 00 if lei > 0, and, similarly, the r integration 
is convergent for every 0 < k < 00. Now let us con
sider the double integral in (13): 

I =100 

r2V2(r) dr fOO k
2 

d~ j~(kr). 
o Jo liltl 

The k integration can be carried out explicitly. Thus 

(00 k2 dk .2 

Ik = Jo l~tl2 h(kr) 

= -1m 
1 Loo k2 dkj~(kr) 
2e -00 (E - k2/2m - ie) 

m (LOO k2 dkJz(kr)hllJ(kr) = -1m 
2e -00 (k - k+)(k_ - k) 

+ (00 k2 dk Jz(kr)hl2l(kr») , 
1-00 (k - k_)(k+ - k) 

k+ = -k_ = -12m(E - ie)lt(cos (jo - i sin (jo), 

00 = tan-1 (~). 
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h~t) and h~Z) are the usual spherical Hankel functions. 
The integrals can be evaluated by contour integration: 

lk = -(m1T/2E) 1m [ik+Uk+r)h~l)(k+r) 
- iLULr)h~Z)(Lr)]. 

Therefore, 

I = - m1T(lm [00 ik+jl(k+r)VZ(r)h~l)(k+r)rZ dr 
2E Jo 

- 1m 100 
iLUk_r)VZ(r)h~2)(kJ)r2 dr). 

Both integrals in the above expression for I will exist 
provided that 

lim r~V(r) = 0, 
r-+O 

and 

VCr) r-+oo = O(r-"), 'YJ > t· 
It may be pointed out that under these conditions the 
interchange of orders of integrations is justified. 
Using Ref. 6, the Tonelli-Hobson theorem, em
ploying the other order of integrations in (13) gives 
us the same conditions as above, as they indeed must. 
This proves part A of the theorem. If the sum in (13) 
diverges, then we know that K does not belong to £2. 
Let us consider the potential 

VCr) = g/r". (14) 
Then 

(kIll V2(r) Ik21) 

= 100 
r2 dr Uklr) V2(r)Uk2r) 

_ 1Tg2 (k1k2Y'-ir(,u + t(1- It'» 
2).'+1 (k1 + kz)2J'-).'+1r(,u+ 1)r(t(1 + It'» 

(15) 

X zF1 (,u+-H 1 -A'),,u+t;2,u+l; 4k1k22), 
(k1 +k2) 

(16) 
where 

2,u + 1 > Re It' > -1, kl > 0, kz > 0, (17) 

and 
,u = t + t, It' = 20c - 1, (18) 

for kl = k2 > 0,2,u + 1 > Re It' > 0. These formula 
are obtained from Ref. 7. This gives, after some 
algebra, the asymptotic behavior in I, 

I (lkl VZ(r) Ilk)1 = 0(e'-2,u-).'), (19) 

and e'-z determines the k dependence entirely. 
Equation (19) together with the ratio test shows that, 
for 1 < oc < t, the series (13) for Tr (KtK) is not 
absolutely convergent. Thus we find that Tr (Kt K) is 
divergent for VCr) = g/r" in agreement with Eq. (4). 

One also notices that the k dependence of (16) does 
not make the k integration divergent. 

Now let us consider the Tr {(Kt)2K2} , Tr {(Kt)3K3}, 
etc., to determine whether they are finite. This will 
determine if the iterated kernels belong to the £2 class. 
It is straightforward to obtain the following repre
sentations for spherically symmetric potentials: 

(rl K 2Ir') = ~ (~)2100 ki :k1 [00 k; d:2 

1m 1T 0 ~kl Jo ~k2 
X Uklr) Yzm(f) (kIll V Ik21)it(kzr') YI~(f')V(r'), 

(20) 

(rl K3lrt) 

= ~ (~)3 [00 kid:1 [00 k~d+kz [00 kid:3Uklr)Yzm(f) 
1m 1T Jo ~kl Jo ~k2 Jo ~k3 
X (kIll V Ikzl)(kzlJ V ik31)it(k3r')Y/~(f')V(r'), 

(21) 

(rl (Kt)Zlr') = ~ (~)2 [00 ki d_kl [00 k~ d~2 
1m 1T Jo ~kl Jo ~k2 

X V(r)jll(klr)Y~m(f)(klll V Ik21)Uk2r')Yzm(f'), 

(22) 

(rl (Kt)3 Ir') = ~ (~)3 [ 00 ki ~kl [ 00 k~ ~2J 00 ki ~k3 
1m 1T Jo ~k Jo ~k 0 ~k 

1 2 3 

X V(r)Nklr) Y/~(f)(kltl V Ik21) 

X (kzll V Ik3t) Nk3r') Ylm(f'). (23) 

Generalizations to (rl Km Ir'), (rl (Kt)m Ir') are straight 
forward. Now we obtain 

Tr {(Kt)2K2} 

= f (~)4(21 + 1) [00 k{ ~k{ [00 k~ :~2 ['Xl ki :k1 

1=0 1T Jo ~kl' Jo l~k21 Jo ~kl 
X (k~ll V Ik21)(k2tl V Iklt) (kIll V2 Ik~l). (24) 

In general, it can be shown that 

Tr {(Kt)mKm} 

= ~ - (21 + 1) ~... :-1 dk;"_l 00 (2)Zm 100 
k'Z dk' 100 k'Z 

1=0 1T 0 ~kl' 0 ~k'm-l 

X [00 k;' dkm [00 k;'_l dkm_1 .•• 100 ki dk1 

Jo 1~+lzJo ~+ 0 ~+ 
k m km-l kl 

X (k{ll V Ik~l)(k~11 V Ik~l) ... 

X (k:"_lll V Ikml)(kmll V Ikm_1l) ... 

X (kzll V Ik1l)(k1ll V2 Ik{1). (25) 

In all these we have freely used the Tonelli-Hobson 
theorem6 to interchange the orders of integration and 
to investigate the absolute convergence of the traces. 
Now we shall show explicitly that each term in the 
I series in Eq. (24) exists and is finite for 1 < oc < t, 
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and establish its I dependence to study the convergence 
ofthe sum. First we establish a bound for (kIll VCr) Ik2/) 
given by (16) with g2 replaced by g and A' by A. For 
this purpose we shall use the representationS 

2C
-

br(c) 
F(a b' c· z) = ----'-'---

, " r(b)r(c - b) 

1
00 (sinh t)2a-2c+1( cosh t - 1 )b+c-a-l 

X dt, 
o [(1 + z) + (1 - z) cosh tr 

Re c > Re b > 0. 
In our case 

a = " + HI - A), b = " + t, c = 2" + 1, 
z = 4klk 2/(kl + k2)2. 

To study (kIll V21 k21), A is to be replaced by A'. In 
the above integral, the numerator behaves like e-At/2 
for t ~ 00, and, since A > 0, this goes to zero ex
ponentially in t. Similarly, one sees that (sinh t)2a-2c+1 
(cosh t - l)b+c-a-l is regular at t = ° for 1 < rx < i 
and / = 0, 1, .... We also note that a > ° and 
(1 + z) + (1 - z) cosh t ~ 2. Therefore, we write 

2c- b- a 

IF(a, b; c; z)1 ~ r(b)r(c _ b) 

X ioo(Sinh t)2a-2c+1(cosh t - 1)b+c-a-l dt. 

But 

i
oo 

(sinh t)2a-2c+l( cosh t - 1)b+c-a-l dt 

= roo(sinh t)-'«cosh t _ 1)M2(COS~ t - 1)2Jl dt 
Jo smh t 

~ ioo(Sinh t)-J.(cosh t - 1).</2 dt = Cl(A). 

In the above we have used the fact that 

{cosh t - l)/sinh t ~ 1, for ° ~ t ~ 00, and" > 0. 

Cl(A) is independent of" (and hence I). Therefore, 

IF(a, b; c; z)1 ~ cl(A)2c-b-ar(c)/r(b)r(c - b). 

This gives immediately the bound 

r(,u + HI - A) r(2" + 1) 
I (kIll V Ik21)1 ~ 7Tg f(" + 1) fO(1 + A» 

CI(A)(kl + k2).<-2( klk2 )Jl-l 
X [r(" + t)]22lHI (ki + k2)2 . 

These bounds are generally valid for / = 0, 1, ... ,1 < 
IX < i and kl' k2 real and positive. 

Evidently from the above, 

I (kIll V jk21)1 

7Tgr(" + t(l - A»r(2" + l)CI(A)(kl + k2l-2 

~ r(" + 1)r(t(1 + A))[r(" + t)]22lHI 

These bounds are generally valid for I = 0, 1, 2, ... , 
1 < IX < i and kl' k2 real and positive. Now let us 
consider the absolute convergence of the multiple 
integral in (24), for the case where m = 2: 

I = roo k~2 dk{ roo k~ dk2 roo ki dkl 
2 Jo ~k.' Jo I~k't Jo ~~ 

X (k{ll V Ik21)(k211 V Ik1l)(klll V 2Ik{l) 

< (c~(g, A,,,)c2(g2, A',,,) 

x roo k~2 dk~ roo k~ dk2 

Jo I~k'll k~~-2« Jo 1~k';12 

i
oo ~d~ 3 x £ 2 < 00, for 1 < IX < 2. 

o I~~I k1-« 

In obtaining the above we have used the inequality 
(k1 + k~)2 > klk~. In the k2 integral we note the 
additional k2 dependence due to 1~t.1-2. So, we use 
the inequalities kl + k2 ~ kl and k~ + k2 ~ k~. 
c2(g, A, ,,) is given by 

A 7Tgf(" + t(1 - A»f(2" + l)ctCA) 
c2(g, ,,,) = f(" + 1)r(t(1 + A»[f(" + t)]22lHI . 

This result shows that, for 1 < IX < i, Tr {(Kt)2K2h < 
00. The result Tr {(Kt)mKm}z < 00 can be proved in a 
similar way. The integrals in the k variables are 
absolutely convergent. 

By using asymptotic expansion of the gamma func
tions, the following asymptotic behavior in I valid 
for real and positive ki and k2 can be obtained from 
the above analysis: 

I (kIll V Ik21)11-+00 

[ 
-l.« 4kIk2 )Jl-l 1 ] 

= 0" (kl + k2)2 (k
i 
+ k2)2-.<· (26) 

One notices that the (kIll V Ik2/) matrix element falls 
off exponentially in I as I ~ 00 if kl :;6 k 2 • When 
kl = k2' we use the asymptotic behavior in I estab
lished earlier in Eq. (19). The uniform convergence in 
I and absolute convergence in k variables enable us 
to estimate the convergence of the I sum by just 
considering the most divergent part of the multiple 
k integrals as a function of I. The most divergent part 
for the I series occurs when kl = ... = k m = k~ = 
... = k'm_l' Corresponding to this, the I series is 
convergent if 

IX> (2m + 1)/2m. 

This follows from a simple ratio test. By the same 
arguments, for t < IX ~ I, Tr {Km(Kt)m} is not 
absolutely convergent for any m. In the Appendix, we 
construct a method of solution in terms of the eigen
solution of the mth iterated kernel, when the mth 
iterated kernel belongs to £2 class. 
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III. DISCUSSION 

The above analysis has some important conse
quences. For the full three-dimensional LS equation, 
the kernel is compact only if VCr) satisfies (4); this 
means VCr) falls faster than r-i at infinity. One can 
improve over this by iterating the full three-dimen
sional LS equation; however, for the Coulomb prob
lem one has to iterate the LS equation an infinite 
number of times to obtain a modified LS equation with 
compact kernel. This means that one will not be able 
to incorporate the potential VCr) = g/r~, t < IX. S 1, 
in the full LS formalism, using the arguments given 
here. This point is more transparent when one recalls 
the asymptotic wavefunction for the Coulomb 
problem. One finds that this asymptotic wave function 
contains contributions from all powers of g. 

We must point out that our method differs from the 
method used by Weinberg in two respects. One, we 
employ the representation (1) without integrating over 
k and the formula (11) to express it only in terms of 
spherical Bessel functions. Weinberg used an inte
grated form of (1), which in (10) led him to a combin
ation of spherical Bessel and Hankel functions. 
Second, Weinberg3 employs Tr {(KtK)2} to discuss the 
Coulomb problem. (See the Note Added in Proof to 
Ref. 3.) It may be noted that we employ the conven
tional condition on the £2 structure of the iterated 
kernels unlike Weinberg. Also, since K is not a normal 
operator [cf. Eqs. (8) and (9)], Tr {(Kt)mKm} is not 
equal to Tr {(KtK)m}. Another feature of our approach 
is the appearance of the matrix elements of both VCr) 
and V2(r) between spherical waves. We may note that 
the usual condition (4) obtains if we employ the 
relation 

00 

1 = 41T I (21 + l)j~(kr) 
z=o 

and a bound on the k integration for E =;t. 0. The 
above arguments are all valid for E < ° since the 
traces are all even in E. 

For the Coulomb potential [V(r) = ze2Ir], we can 
explicitly compute Tr (KtK)z: 

Tr (KtK)z = 1 + - tan-1 
-z

2

e
4

p. [ 2 (E)] 
(21 + 1) lEI 1T lEI 

Clearly, then, the partial wave LS equation has 
solutions for E y6: 0, while the full problem requires 
infinite number of iterations. Note also that, for 
E < 0, the limit E --+ ° exists while the full trace still 
diverges. The analysis of majorizing the Born series 
and Fredholm determinant requires Tr {Km} < 00 for 
some m > 1. See, for instance, Newton's book.2 Our 
representation for K enables us to study Tr {Km} quite 

easily using the procedure developed in this paper, and 
the result of such an analysis may be summarized in 
the form of another theorem. 

Theorem: The trace of the kernel K z of the partial 
wave LS equation is finite for the lth partial wave 
with complex energy having nonzero but, however, 
small imaginary part if the potential V is spherically 
symmetric and such that 

(N) lim r~V(r) = 0, - 00 < (j < 2, 
r-+O 

VCr) = O(r-p
), p > 1, 

r-+ 00 

(B/) For VCr) = gjra
, 1 < IX. < 2, the kernel of the full 

LS equation satisfies 

ITr Kml < 00 if IX. > 1 + 21m, m = 2, 3, .... 

For IX. S 1, ITr Kml may not be bounded for any m 
as before, even though for each partial wave ITr Kli 
exists. This is because the resulting I series is not 
absolutely convergent. 

It should be remarked that IX. now goes up to 2 
instead of t obtained from the earlier discussion. 
Another point to be noted is that, for IX. ~ 2, the k 
integration carried out after r integration diverges 
while evaluating ITr {Km}l. It is important to stress 
that all the conditions stated and proved here are only 
sufficient. 

For a discussion of the significance of this theorem 
and an application of this to the three-body problem, 
one may refer to a forthcoming monograph.9 
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APPENDIX 

In this appendix we develop a generalized theory of 
Sturmian functions when some power of the kernel 
of the LS equation belongs to the Hilbert-Schmidt 
class. The conventional theory for example presented 
by Kharchenko et al.1o (see also Ref. 8) is for the 
Hilbert-Schmidt kernels and is a special case of the 
formalism presented here. Also, from our theorem in 
the text, the original Sturmian theory, supposedly 
valid for short-range potentials behaving like r' near 
r = ° with s > -2, can now be generalized to cases 
where s > -j-, decreasing at infinity as r-a with 
I < IX. < j-. The following procedure gives a method 
for constructing formal separable type expressions for 
the T matrix and the Green's function,u 

The equation satisfied by T when it is iterated p 
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times may be written symbolically as 

(AI) 

Let us introduce the notation 

VIp) = 'tJ(1) + 'tJ(2) + ... + 'tJ(p) , (A2) 

K(p) = (K)P = 'tJ(p)Go, (A3) 

with 
'tJ(p) = (K)p-1 V, P = 1, 2, . . . . (A4) 

The generalized Sturmians are defined as the eigen
functions of the iterated kernel: 

f'tJ(P)(kqz) (z - 2q~rl~~)(qZ) d3q = 1]~)(z)~~)(kz). 
(A5) 

Here n is a quantum number, discrete or continuous 
as the case may be, and 1]!;'\z) is the eigenvalue, 
z is a complex number, and m is the reduced mass. 
The orthonormality and completeness of {~~)(kz)} 
are 

[If n is continuous, the sum is replaced by an integral 
in (A7) and by a delta function in the right side of 
(A6).] It is easy to verify then that 

'tJ(p)(kk'z) = -! 1]~)~~)(kz)~~)(k'z), (AS) 
10 

V(p)(kk'z) = ! c!;,':{z)~~)(kz)~~)(k'z), (A9) 
n,n' 

with 

c~~~,(z) = J d3k J d3k'~~)(kz) (z - 2~r1 V(p)(kk' z) 

( k'2)-1 x ~~)(k'z) z - 2m 

== -bnn'1]~)(z) + c~~~{z). (AIO) 

Then it can be shown quite easily that 

(v)( ) 
T(k k" z) = _ "" 1] 10 z ~(v)(kz)~(p)(k' z) 

" ~ 1 (p)() 10 10 10 - 1]10 Z 

-(v) ( ) + "" C 1010' z ~(v)(kz)~<~)(k' z) (All) 
~ I <v)() 10 10 , 

n.n' - 1]10 Z 

, ( k2 )-1 ( ~~)(kz)~~)(k'z) 
G( k, k ; z) = z - - - ! ---"'-'---'----"-''---'-

2m 10 I - 1]~)(z) 

+ 1 c!;';{z) ~!:')(kZ)~~)(k'z») (z _ k'2)-1 
nn' I - 1]~)(z) 2m 

(AI2) 

For p = I, these reduce to the corresponding well
known Sturmian representations for T and G. An 
application of these to Faddeev equations proceeds in 
the usual way. It may be remarked that, for the 
Coulomb problem, explicit solutions {~n(kz)} exist in 
the literature.9 
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A compact method is presented for the evaluation of certain statistical averages involving a quadratic 
Hamiltonian generator. 

I. INTRODUCTION 

Given a Hamiltonian operator 

H= HO+ V, (1) 

where HO is the unperturbed component and V is the 
perturbation, one is frequently called upon to evaluate 
a stastical average of the form 

<VM') = Tre-PHoV(tl)'" V(tM.)/Tre-PH" (2) 

in the interaction representation, where 

Vet) = eiH"tVe-iHOt. 

It is the purpose of this paper to formulate a-theory to 
evaluate averages of the form (2) for an electron
boson system, comprised of a single electron inter
acting with a boson-producing environment, having 
the Hamiltonian operator H defined by 

V:Cs),;(s)(n) and V;CS),iCs)(m, n); the elements ECn) , WiCS) , 
ViCS)(n), V;CS),iCs)(n), ViCS)(m, n), and V:Csl.iCs)(m, n) are 
the appropriate energy quantities taken in this case 
to be real numbers. .Qy taking a single electron we 
have deliberately made the electronic contribution 
to our theory as simple as possible while retaining 
the property that V, and only V, will shift the elec
tronic state. By dividing the total set of boson modes 
of number N into uncoupled subsets s of number N s ' 

we have provided for the possibility of factorization 
over s in an expression such as (2). Thus, H includes 
linear and quadratic terms in the boson cooriinates, 
while anharmonicity -.and other cubic effects are 
neglected. Inserting (4) into (3) into (1) into (2), 
one is forced to calculate-once the electron operators 
are removed-a variety of multiple-tim.~ boson 
functions of the form 

K({oc}, {m}, 0, M) = II.K.({oc}, {m}, 0, AI), 

Ks({oc}, {m}, 0, M) HO = ~ [E(n) + ~ H~(n)} t(n)a(n), 

V = ! VB' [H~(n), H~,(n')] = 0, (3) = Trs[j.(ocl, ml)xi1(S)(0) .•. !s(r1:M, m M)XiM(S) (0)] , 
s 

where 

H~(n) = !wics)(b~cs)biCs) + t) + ! ViCs)(n)(biCs) + b~cs» 
iCs) iC.) 

+ ! Vi(s).iC.)(n)(b i(.) + b!c.»(biCS ) + b~cs», 
i(s).iCs) 

Vs = ! Vi(s)(m, n)(bi(s) + bI(.»a
t 
(m)a(n) 

i(s).m,n;m"n 

+ ! V/(s).;(s)(m, n)(bi(s) + bJ(s» 
i(8) .i(s) .m,n;m" n 

t t 
X (bi(s) + bi(s»a (m)a(n). (4) 

In expressions (3) and (4), the operators at(n), a(n) 
represent electron creation and annihilation operators 
for the electronic state n; the operators blcs ), biCS) 
represent boson creation and annihilation operators 
satisfying 

t 
[bi(s) , biCs)] = <'liCs).i(s), 

[bi(s) , biCs,] = [bt), bit,] = 0 (5) 

for the boson mode i(s), which is a member of a set s 
of boson modes coupled by the interaction coefficients 

where 

I'(oc, m) = exp (ocH~(m)]; X2N+l(0) = 1, 

Xi(s)(O) = bi(s) if [1 ~ i(s) ~ N.J, 

XiCs)(O) = bJcs) if [N. + 1 ~ i(s) ~ 2N.], 

(6) 

and OC1) may be of the form 0, -fJ + i(t1 - tM,), 
i(tH1 - tf)' etc. Because of the factorization over s, 
we can in essence concentrate on the formulation of 
Ks({oc}, {m}, 0, M) and in so doing drop the subscript 
over s for practical purposes. The key to our solution 
of (6) will be to adopt the procedure of [1] choosing 
a particular xiCs)(O), [2] moving it to the right (within 
the trace over boson states in 8) through commutation, 
[3] using the cyclic property of the trace to return it 
from the last to the first position, and finally [4] 
moving it to the right again through commutation to 
its original position. In so doing we generate a 
solution to (6) in terms of functions of lower order 
in b or b t. The solution of the lowest-order function 
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generated by this procedure then completes the 
problem. For purposes of bookkeeping, a representa
tion 

H~(n) = L wi(s)(n)[bJ(s)(n)b;(s)(n) + i] (7) 
its) 

would be greatly preferred over that given by (4) and, 
to facilitate the process of commutation, the operators 
bl (n) , b;(n)-dropping the subscript s-should have 
the same c-numbers as bl, bj • Thus, we have defined 
the first hurdle that we must cross in the development 
of the theory, that hurdle being the construction of a 
transformation T that will operate on x(O)-with 
elements xi(O)-converting H~(n), as defined in (4), 
to (7) while preserving the commutation properties on 
the b's. Following the solution of K({(X}, {m}, 0, M), 
we shall work a simple example in order to illustrate 
the theory. 

II. A CANONICAL TRANSFORMATION 

Let x(m), denoted by the index (m), be a member of 
a set S of vectors in a (2N + I)-dimensional operator 
space1 such that the components of x(m), in vector 
notation 

x1(m) ... x2NH(m), 

are operators having the commutation property 

[x;(m), xim)] = cii(m, m) = Cij ' (8) 

where c;im, m) isa c-number and a constant over 
the set S. Since we shall use the components of x(m) 
in place of [b(m), bt(m)], they must obey the special 
relations 

xi+N(m) = x~(m) for 1 ~ i ~ N, X2N+1(m) = 1, 

[xi(m), xi+N(m)] = 1 for 1 ~ i ~ N, 

[x;(m), xj(m)] = 0 otherwise, (9) 

thereby placing certain conditions on Cij as defined 
in (8). Expression (8) may be rewritten in the form 

x(m)x;(m) = x;Cm)x(m) + ci
, (ci)j:;:; cJ = Cji' (10) 

ci having the components c ji for all j. Let w(m) be a 
vector in S whose coefficients w;(m) are real undeter
mined parameters, and define the quadratic Hamil
tonian operator 

N 

2HO(m) = L [w;(m)xHN(m)x;(m) 
i=l 

+ wHN(m)x;(m)xHN(m)] + w2N+1(m), (11) 

analogous to (7). Expressing (11) in tensor notation2 

as 

HO(m) = xt(m)HD(m)x(m), H~(m) = iWi(m)bij, 

(12) 

we introduce the transformation 

x(O) = T(n)x(n), x(n) = T-1(n)x(0), 

T(n) = T(O, n) (13) 

from a reference vector x(O) [see (6)] in S to the 
vector x(n). In terms of x(O) the Hamiltonian HO(m) 
can be written as 

HO(m) = xt(O)H(m)x(O), (14) 

where H(m)-whose components may be correlated 
to physical input-serves as the reference tensor 
defining HO(m). Inserting (13) into (14) and employing 
(12), we give the tensor H(m) in the diagonal form 
HD(m) by the relation 

HD(m) = Tt(m)H(m)T(m). (15) 

We further require that the transformation T(n) not 
be reducible in the sense that for any given partition 
of the modes N, 

N= N1 + N 2 , 

the Hamiltonian HO(m) , as defined through a given 
H~(n) in (4), cannot be decomposed relative to N, or 

xt(O)H(m)x(O) ~ HO(m)]N
1 
+ HO(m)]N

2
' (16) 

Introduce now a general transformation within S 
given by 

or 
x(m) = T(m, n)x(n), T(m, n) = T-1(m)T(n) 

x;(m) = L Tjj(m, n)xj(n). T;;Cm, m) = bij , (17) 
j 

with an inverse defined through the relations 

L T;;(m, n)Tjk(n, m) = bik , T-1(m, n) = T(n, m), 

and subject to the restrictions 

T2N+1.j(n, m) = 0 if j ~ 2N + 1, 

T2N+1.2N+1(n, m) = 1, (18) 

consistent with conditions (9). The transformation 
T(rn, n) is said to be canonical within S in the sense 
that expression (8) requires that 

'2T;im,n)ckk,Tk'j(m, n) = Cij' T;j(m,n) = Tj;(m,n). 
kk' 

(19) 

That an identical expression holds also for T(n) 
follows from its definition in (13). Applying (17) to 
(10), we obtain 

x(m)x;(n) = x;(n)x(m) + ci(n, m), 

ci(n, m) = '2 T;;(n, m)ck, (20) 
j 
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the latter simplifying, upon using (9), to 

c~(n, m) = T;.k+N(n, m), 1 ~ k ~ N, 

c~(n, m) = -Ti.k_N(n, m), N + 1 ~ k ~ 2N. (21) 

If we break down the (2N + 1)2 structure of our 
tensors into four N2 tensors, two N-dimensional 
column and two N-dimensional row vectors, plus a 
scalar term (AI), we find from the Appendix that 
it is possible to further simplify the theory. In partic
ular, using (A2)-(A4), we obtain 

wi(n) = wHN(n), Tij(n) = THN.i+N(n), 

Ti.i+N(n) = THN.i(n), 1 ~ (i,j) ~ N. (22) 

Also, since we confine ourselves to the consideration 
of a real H(n), it is possible to reduce relations (AS) 
to a more compact form by defining 

2T;j(n) = [Sii(n) + Sj,l(n)], 

2T;.i+N(n) = [Sii(n) - SJi1(n)], (23) 

such that, for 1 ~ i ~ N, 

N 

2 Z Skln)[Hkk,(n) + HU·+N(n)]Sk·in) = win)r5ii , 
k.k'=l 

j ~ i, (24) 

of T-that is, expression (A3)-except that now 

N 

2T;;(m, n) = Z [Sii/(m)Sk;(n) + Sklm)Sjf(n)], 
k=l 
N 

2T;.i+N(m, n) = L [S~(m)Ski(n) - Sklm)Sjf(n)], 
k=l 
N 

T;.2N+l(m, n) = LSil/(m)[Tk.2N+1(n) - Tk•2N+l(m)] , 
k=l 
1 ~ (i,j) ~ N. (27) 

Finally, using (A7) and (A8), we can write 

w2N+1(n) = 2· det [HO(n)]jdet [Hr(n)], (28) 

which completes our development of T and H D , this 
development being based on the proposition that one 
can define or represent H(n) in the form given by (A2). 

III. STATISTICS 

Construct now a function 

f(oc, m) = exp [ClHO(m)] (29) 

in terms of HO(m) and the parameter oc, such that 

xi(m)f(oc, m) = lci(OC, m)f(oc, m)xi(m) 

or in vector notation 

x(m)f(oc, m) = h(oc; m, m)f(oc, m)x(m), (30) 

N where 
LSik(n)win)Sik(n) = 2[Hii(n) - Hi.i+N(n)], j ~ i. 

k=l 

Expressions (24) represent N(N + 1) equations in 
N(N + 1) real unknowns, and combine to form the 
eigenvalue representation 

N 

"L {[Hiin) - Hi.k+N(n)][Hik(n) + Hi.k+N(n)] 
k=l 

which in turn defines a characteristic or secular 
equation for [w i (n»)2, 1 ~ i ~ N. The multiplicative 
constants for the eigenvectors and the signs on wi(n) 
are then determined by substituting back into the N 
expressions defining wi(n) in (24) and using the fact 
that Sen) must be real. Also, using (24) along with 
the first part of (A6), we obtain 

N 

T;.2N+l(n) = -2 L Sik(n)w;1(n)Sk'k(n)Hk'.2N+1(n), 
k.k'=l 

(26) 

for 1 ~ i ~ N. Taking the inverse of T(m) and 
substituting it along with T(n) into the definition of 
T(m, n) in (17), we find that T(m, n) has the structure 

Inserting (9) into (11), we easily see that 

Ici(oc, m) = exp [ocwi(m)], 1 ~ i ~ N, 

Ici(oc, m) = exp [-Clwi_N(m)], N + 1 ~ i ~ 2N, 

Icloc, m) = 1, i = 2N + 1, (31) 

where from (22) 

wlm) = !wi(m) + !wi+N(m), 1 ~ i ~ N. 

By inserting (11) into (29) and using (9), it is also 
evident that 

af (N 
- (oc, m) = L [wlm)xi+N(m)xi(m) 
aCl i=l 

+ !w;(m)] + !W2N+l(m»)f(lX, m). (32) 

Applying (17) to (30), we obtain 

or 

xln)f(lX, m) = ~ Ai;(lX; m, n)f(lX, n)x;Cn) 
i 

x(n)f(lX, m) = h(lX; m, n)f(lX, m)x(n), (33) 
where 

Aii(lX; m, n) = L T;in, m)Ak(lX, m)Tk;(m, n). (34) 
k 
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Using xi(n) andf(oc, m), we now construct the statisti
cal function [a generalization of (6)] 

K({oc}, {m}, {n}, M) 

= Tr [f(OC1' ml)xi
1
(n1)' . 'f(OCM, mM)xiM(nM)] 

over a complete set of states of the system, with a 
replacement of Xi" (nv) at the p position by an arbitrary 
quantity Q indicated by 

K({oc}, {m}, {n}, M:p, Q) 

= Tr [f(oc1, ml)xi Jn1)" '/(OCV- l ' mV-I)xip_l(nV-I) 

X f(ocv , mv)Qf(ocv+l' mV+I)xiJ>+JnV+l) 

X ••• X f(OCM' mM)xiM(nM)], 

a double replacement of xip(nv) and xi.(nq ) at the p 
and q positions by Q and Q' respectively by 

K({oc}, {m}, {n}, M:p, Q; q, Q'), 

etc. We then move x(nv) to the right in 

K({oc}, {m}, {n}, M:p, x(nv», 
using expressions (20) and (33) and the cyclic property 
of the trace until x(nv) is returned to its original 
position. The expression generated by this procedure 
is 

K({ oc}, {m}, {n}, M: p, x(nv» 

= A({oc}, {m}; nv , p,M)K({IX}, {m}, {n},M: p, x(nv» 
M-l 

+! A({oc},{m};nv,p,q)ciJ>+·(nVH,nV) 
q=1 

X K({oc}, {m}, {n},M; p, 1; p + q, 1), 

A({IX}, {m};nv,p,q) 

= A(IXV+1; mv+h nv)'" A(ocv+q ; mV+q, nv)' (35) 

and, from the cyclic nature of the trace, 

p + q == P + q - M, if M < p + q ~ 2M, 

P + q == P + q + M, if -M < p + q ~ O. 

It is easy to verify via (34) and (35) in conjunction 
with (I8) and (31) that 

A 2N+1.i({OC}, {m}; nv'p, q) = 0 if j ~ 2N + 1, 

A 2N+1.2N+1({OC}, {m}; n'I"p, q) = 1, (36) 

and via (9), (10), (18), and (20) that 

c~N+ln, m) = c~N+l(n, m) = 0 for all i. (37) 

Define a tensor Y({oc}, {m}; nv ,p, q), such that 

Yi •2N+1({OC}, {m}; nv'p, q) 

= A i.2N+1({OC}, {m}; nv' p, q), 

Yi;({oc}, {m}; nv'p, q) = 0 if j;;6 2N + 1. (38) 

Then, upon expressing 

A({oc}, {m}; nv'p, q) 

= 1 + Y({IX}, {m}; nv'p, q) - X({oc}, {m}; n-c'p, q) 

(39) 

to define an X, we obtain, using (35) and multiplying 
on the left by X-I, 

K({oc}, {m}, {n}, M: p, x(nv» 

= X-l({OC}, {m}; nv' p, M)Y({oc}, {m}; nv ' p, M) 

x K({IX}, {m}, {n}, M: p, x(np» 
M-I 

+ L X-I({OC}, {m}; nv ' p, M) 
Q=1 

x [1 - X({oc}, {m}; nv ' p, q)]cip+O(nv+q , np) 

x K({IX}, {m}, {n}, M: p, 1; P + q, 1), (40) 

where expressions (37) and (38) indicate that there is 
no contribution to (40) from 

Y({IX}, {m}; nv ' p, q)cip+O(npH , nv)' 

Finally, taking the ivth component of (40) and using 
(9), we arrive at 

K({IX}, {m}, {n},M) 

where 

= Zi".2N+l({IX}, {m}; nv' p; M) 

x K({IX}, {m}, {n}, M: p, 1) 
M-l 

+ L Zi,,({OC}, {m}, p, q, M: iVH ' nv+Q , nv) 
Q=1 

x K({IX}, {m}, {n}, M: p, 1; P + q, 1), (41) 

Z({IX}, {m}; nv ' p, M) 

= X-1({IX}, {m}; nv' p, M)Y({oc}, {m}; nv' p, M), 

z({oc}, {m},p, q,M: ipH , nvH ' np) 

= X-\{IX}, {m}; nv,p,M) 

x [1 - X( {oc}, {m}; nv' p, q)]ci"+O(np+Q , nv)' (42) 

From the definition of X in (39), we see, upon 
employing (36) and (38), that 

X i.2N+l({OC}, {m}; nv'p, q) 

= X 2N+l. i ({OC}, {m}; nv ,p, q) = 0 if i ~ 2N + 1, 

X 2N+1.2N+l({IX}, {m}; n'P'p, q) = 1, (43) 

with similar expressions for X-I. Thus, for iv = 
2N + 1, it is apparent upon inspecting (42) and (43) 
that relation (41) becomes an identity, while, for 
iv ~ 2N + 1, relation (41) expresses K({IX} , {m}, {n}, M) 
in terms of functions of lower order in the operator 
Xi' i ~ 2N + 1. When iv+q = 2N + 1, use of (37) and 
(42) tells us that these contributions to the right-hand 
side ofrelation (41) will vanish. Continued use of (41) 
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will finally express any K({oc}, {m}, {n}, M) in terms 
of the function 

K({oc}, {m}, M) = Tr [f(OC1' m1)' . \ f(OCM' mM)]' 
(44) 

In order to determine K({oc}, {m}, M), for a given 
M, we first utilize (32) along with (30) and (44) to 
obtain 

oK ;-({oc}, {m},M) 
uocp 

N 

= ~ wiv(mp)Ai,,(OCp, mp) 
iv=l 

x Tr [f(OC1' m1)" 'f(ocp_1,mp_l)xiv+N(mp) 

X f(oc p, mp)xi.(mp)f(ocpH' mpH)' . 'f(OCM' m M)] 

+ ~[i~ wi+N(mp) + W2N+lm p)]K({OC}, {m}, M). 

(45) 
Under the restrictions that 

np = np_1 = mp' i p _ 1 = ip + N, 

iPH = 2N + 1 if q ¥= (0, M - 1), 

we twice insert (41) into the right-hand side of expres
sion (45) and arrive at the differential equation 

aK 
-a ({oc}, {m},M) 

OCp 
N 

=.2 wi.(mp)Ai.(OCp, mp)[Ziv.2N+l({OC}, {m}; mp' p, M) 
1:f.l2::1 

X Zi,,+N.2NH({oc}, {m}; mp ,p -1, M) 

+ Zi"({OC}, {m},p,M - 1, M: ip + N, mp, mp)] 

X K({oc} , {m}, M) + RN(mp)K({oc}, {m},M), (46) 

where 

RN(m) = ~ L~w/m) + w2NH(m)l 

Equation (46) has the solution 

K({oc}, {m}, M) = KP({oc}, {m}, M) exp [ocpRN(m p) 

+ F({oc}, {m}, M) + F'({oc}, {m}, M)], 

F({oc}, {m}, M) 

= La" docPi~lwi.cmp)AiV(OCP' mp) 

{ } { 
(47) 

X·Zi p .2N+1( oc, m};mp,p,M) 

X Zip +N,2N+1({OC}, {m};mp,p - 1, M), 

F'({oc}, {m}, M) = f" docPi;1Wi,,(mp)Aiv(OCP' mp) 

X Zip({OC}, {m}, p, M - 1, M: ip + N, mp, mp), 

where KP({oc}, {m}, M) is K({oc}, {m}, M) at OC p = o. 

Forp = M, 

KP({oc}, {m}, M) = K({oc}, {m}, M - 1), (48) 

and expression (47) has the effect of reducing the 
sequence over which K({oc}, {m}, M) runs by one. 
Repeated use of (47) for p = M reduces a given 
K(oc}, {m}, M) to K({oc}, {m}, 0), that is Tr 1. How
ever, the zero limit of the integral in K({oc}, {m}, 1) 
will cancel K({oc}, {m}, 0) which eliminates this 
obstacle. In order to clarify the situation, we introduce 
the permutation operator P, such that 

Pocq = OCq_1, Pmq = mq_1, if q > 1, 

Pocq = Pmq = € -+ 0, if q = 1, 

where oc" and mq are members of {oc} and {m}, respec
tively. Also, if {oc}' and {my are contained in {oc} and 
{m}, respectively, then, for an arbitrary function 
A({oc}', {m}'), 

PA({oc}', {mY) = A (P{oc}' ,P{m}'). 

However, and of utmost importance, if P operates 
on an isolated member of a product and this member 
is consequently found to be directly (or inversely) 
proportional to € as € -+ 0, then the € factor is retained 
until the full product can be assembled and simplified 
or until further operation with P provides a means for 
cancellation. For example, 

p2(1) = P2[(OC1 + OC2)/(OCl + oc2)] 

= P2(OC1 + OC2)/P2(OC1 + OC2) 

Thus, 

= P(OC1)/P(OC1) = €(IjE) = 1, not 0(1/0), 

P2[OC1/(OC1 + OC2)] = P(€/ocl) = €/€ = 1. 

PK({oc}, {m},p) = K({oc}, {m},p - 1), if P ~ 1, 

PK({oc}, m, 0) = K({oc}, m, 0), 

and, upon combining these conditions with expres
sions (47) and (48), we obtain 

K({oc}, {m},M) 

= K( {oc}, m, 0) exp (~l{ ocpRN(mp) 

+ PP-l[F({oc}, {m}, M) + F'({ oc}, {m},M)]}) , (49) 

where 

pM[F({oc}, {m}, M) + F'({oc}, {m}, M)] = O. 

However, operating on (49) with pM-q produces 

K({oc},{m},q) 

= K({oc},m,O)exp (~1{ocpRN(mp) 
+ pM-P[F({oc},{m},M) + F'({OC},{m},M)]}) , (50) 
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which informs us upon consulting (29), (32), and (44) 
that 

log K({a}, m, 0) 

= -lim pM-I[F({ex}, {m}, M) + F'({cx}, {m}, M)J, 
al -+-00 

(SI) 

upon setting K({cx}, {m}, 1) = 1 and using (SO) for 
q = 1. 

We have thus formed the basis for a solution to 
K({cx}, {m}, M), although there is no guarantee that 
the integrals contained in (47) can be performed 
analytically. Also, we have completed our primary 
goal, that is, to develop a theory for the evaluation of 
K({cx} .. {m}, 0, M), by means of K({cx} , {m}, n, M). 

IV. THE DEBYE-WALLER FORM 

Recently, we3 presented a method of evaluating a 
general time-dependent thermal average (A(q,p; {1m 
of the form 

(A(q, p; {t}» = II (Ai(q, p; {t}», 
i 

(eB) == Tr e-PHeB/Tr e-PH , f3 = l/kBT, 

Ai(q, p; {t}) 
= exp [Oi(q, til)] exp [Oi(q + 1, tq+I)J' ., exp [Oi(P, tp)J, 

P ~ q integers, 

0i(q, t) = eiHtOi(q)e-iHt, 
t (S2) 

8i(q) = ci(q)ai + di(q)ai, 

H = L w;(a;ai + !), 
i 

subject to the commutation relations 

[8 i(q), 8i(q')] = 0, [ai' ad] = (jiJ' [ai' aj] = 0, etc. 

The solution was expressed as 

(Ai(l, P; {t}» = exp (tJlq~IClq)di(q') 

X [Nigi(tq, tq') + (Ni + l)g;(tq, tll,)J) (S3) 

in terms of 

Ni = (ellWi 
- lrI 

and an ordered function 

gt(tq, tq') = exp [±iw;(tq - tq,)J, q > q', 

= 1, q = q', 

= exp [±iWi(tq, - tq)J, q < q'. 

Relations for constructing expressions for averages 
involving products of A, a, and at were also given. 
Expressions (52) represent an extended Debye-Waller 
form as they emphasize the transformation operator 0 

rather than the Hamiltonian operator H. However, 
as.suming 8i (q) is anti-Hermitian such that 

0lq) = O;(nq) + 8it (mq), 0 = 8i(nq) + Oit(nq) 

and 

it follows that 

(A(q,p; {1m = Trexp [-,BH(nq)]exp(iH(nq)(tq-tp)] 

x exp [iH(nq+l)(tq+l - tq)] 

X " • x exp [iH(np)(lp - Ip_I)]/ 

Tr exp (-f3H), (S4) 
where4 

N N 
H(n) = L exp [-OXn)JHi exp [O;(n)J, H = L Hi' 

i=I 1=1 

'and one returns to a more direct Hamiltonian formu
lation for the thermal average. Expression (S4) is in 
fact just a special case of the more general statistical 
form defined by (6). We shall now consider a special 
example to illustrate the theory outlined in Secs. II 
and III. 

V. A NONTRIVIAL EXAMPLE 

It is not the purpose of this paper to rederive 
expression (53) using the new formalism, although 
this can easily be done upon taking N = I and letting 

(A i (1,p; {I}» ---+ K({cx}, {m},p)/K({a}, {m}, 1), 

where 

( - f3 + itl - itp) --+ al , 

i(t2 - t I ) ---+ a2' ••• , i(tp - tV_I) ---+ a p ' (S5) 

exp [-8;cn)Jw;(aJai + t)exp [O;(n)J--+HO(n), etc. 

We leave this verification-as an exercise for the 
reader- to be undertaken with the aid of a previous 
work.3 We wish rather to consider an example which 
will not only clarify and illustrate the theory but will 
also represent a situation not encompassed by (S2). 
Let us take the example of a phonon mode interacting 
with an electron in the state n. The Hamiltonian for 
the system (ignoring phonon subscripts) can be written 

H'(n) = €(n) + w(btb + t) + V(n)(b + bt) 

+ V'(n)(b + bf)(b + b t), (56) 

in terms of the electron energy €(n), the phonon 
energy w(w > 0), and the phonon creation and 
annihilation operators b t and b. As this Hamiltonian 
includes a general electron-phonon interaction 
V'(n)[IV'(n)! < w/4] quadratic in the phonon co
ordinate, it cannot be correlated to the Debye
Waller form through, for example, expression (54). 
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We shall develop the form for the spectral-absorption 
function5 between the electronic states E(2) > E(I), 

K 12(W, H') = _1_ foo ds exp (iws)K12(S, H'), 
27TP1 -00 

K
12

(s, H') = Tr e-PH'(1)iH'Cl)se-iH'C2)S/2, Tr e-PH'Cn), 
n 

(57) 

where PI is the density of the ground electronic state 
and w is the photon energy, by calculating K12(S, H') 
using the theory of Sec. III. 

We begin by considering the case 

N = 1, 1X1 = (- (l + is), 1X2 = - is, m1 = 1, 

m2 = 2, b = x1(0), bt = x2(0) (58) 

such that 

K (s H') _ exp [-(lE(l) - iW12S]K({IX}, {m}, 2) 
12, - 2, e-P<Cn) Tr K( - (l, n, 1) , 

n 

(59) 
with 

H'(n) = HO(n) + E(n), W12 = E(2) - E(1). 

Having established HO(n) in (56) and assuming all its 
coefficients to be real numbers, we can equate it to (14) 
and arrive at a matrix representation 

elements of A(IX; m, n) become 

Au(lX; m,n) = A 22( -IX; m, n) 

= cosh [lXw(m)] + cosh 2[<p(m) - <p(n)] 

x sinh[lXw(m)], 

A12(IX; m, n) = A 21( -IX; m, n) 

=sinh [lXw(m)] sinh2[<p(m) - <p(n )], (63) 

A13(IX; m, n) = A2a( -IX; m, n) 
= (e[4>Cm)-4>Cn)] sinh [lXw(m)] _ e-[4>Cm)-4>Cn)] 

X {I - cosh [lXw(m)]} )Ta(m, n), 

A3llX; m, n) = Aa2(1X; m, n) = 0, A3a(lX; m, n) = 1. 

Returning to expressions (47), (58), and (59), we find 
that we can calculate K({IX}, {m}, 2), where M = 2, 
by setting p = 2 and considering 

A({IX}, {m}; 2, 2, 2) = A(1X1; 1, 2)A(1X2; 2, 2), 

A({IX}, {m}; 2, 1,2) = A(1X2; 2, 2)A(1X1; 1,2), (64) 

A({IX}, {m}; 2, 2,1) = A(1X1; 1,2), 

upon employing (35). Inserting the elements (63) into 
(64) and utilizing (31), (17), (21), (38), (39), (42), 
(A4), (61), and (62), we obtain 

F({IX}, {m}, 2) 

= w(1)w(2)[A(I)/w2(1) - A(2)/w2(2)]2/ 

{w(l) coth [tIX1W(1)] + w(2) coth [t1X2W(2)]}, 

V'(n) tw + V'(n) iV(n) 
[

tw + V'(n) V'(n) tv(n)] 

(60) where 
(65) 

iV(n) tV(n) 0 A(m) = (2w)!V(m), 
and 

for H(n) consistent with (A2). Dropping the subscript F'({IX}, {m}, 2) = log [e-!a2co(2)({cosh [1X1w(1)] _ I} 
i over phonon modes, we obtain 

wen) = w1(n) = {w[w + 4V'(n)]}!, 

exp [-<p(n)] = ±Sll(n) = [w/w(n)]!, (61) 

upon inserting the elements of (60) into expressions 

x {cosh [1X2w(2)] cosh [1X1w(1)] - 1 

+ Uw(I)/w(2) + w(2)/w(I)] 

x sinh [1X2w(2)] sinh [1X1W(I)]}-1)!]. 

(66) 

(25) and (24). Employing relations (26) and (27), we Also, using (A7) and (60), along with the definition in 
conclude that T(m, n) can be represented as (46), we have 

[

cosh [<p(m) - <p(n)] sinh [<p(m) - <p(n)] Ta(m, n)] R1(m) = Hw(m) - A2(m)/w2(m)]. 

sinh [<p(m) - <p(n)] cosh [<p(m) - <p(n)] Ta(m

1

, n), Inserting (65) and (66) into (51) and applying P, 
o 0 we now arrive at 

K({IX}, {m}, 0) 

= -lim e!a1co(1) sinh [iIXIW(l)]/[iEW( E)] = E-1W-1(E). 
where 

T3(m, n) = T1.im, n) a 1""-00 

= ± [W . w(m)]![V(m)/w2(m) _ V(n)/w2(n)]. Proceeding in the same manner with (49), we obtain 

(62) K({IX},{m},2) 

Upon substituting the elements of T(m,n) into ex- = i exp {-UIX1A2(1)/w2(l) + 1X2A
2(2)/w2(2)]} 

pression (34) and using (31), (A4) , and (61), the x F"({IX}, {m}, 2)eFC{a},{mJ.2), (67) 
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where 

F"({Ot}, {m}, 2) 

= 2!{cosh [Ot2w(2)] cosh [Otlw(1)] - 1 

+ Hw(1)/w(2) + w(2)/w(1)] 

x sinh [Ot2w(2)] sinh [OtIW(1)]}-!, 

and with (50) (for q = 1) we obtain 

K({Ot}, {m}, 1) = 2-! exp {-HOtI A2(1)/W2(1)]} 

x {cosh [Otlw(l)] - 1}-!. (68) 

Replacing ml = 1 in (68) by m and setting Otl = -~, 
we find that the denominator in expression (59) 
cannot be factored between the electron and phonon 
coordinates and the electron density p must be written 
as 

where 

exp [-~i(n)] sinh-l [i~w(n)] 

Pn = .2 exp [-~i(m)] sinh-1 [tt1w(m)] ' 
m 

i(m) = e(m) - iA2(m)/w2(m). 

(69) 

One can now express, for Otl = (-~ + is) and 
Ot2 = -is, 

K 12(s, H')/PI = exp (iWI2S) sinh [i~w(l)] 

X F"({Ot}, {m}, 2)eF ({a),{ml.2), (70) 

W12 = i(2) - i(1) 

upon substituting (67) back into (59), and we are in 
agreement with O'Rourke6 regarding the expression 
for the spectral-absorption function. The single 
phonon mode used in this example can be replaced 
by a set of uncoupled phonon modes simply by 
taking a product of K I2 (S, H')[ Plover phonon modes 
[see (6)] before forming its transform. In the case of 
Pn the product is formed over phonon modes for 
each term in both the numerator and the denominator 
of relation (69). 

Let us briefly mention a few more applications to 
the theory. The spectral absorption function K12( w, H') 
defined in (57) and developed in this section could be 
utilized by approximate methods discussed previously 
by Howgate5 to calculate a nonradiative electron 
transition rate for a Hamiltonian of the form (1), upon 
ignoring coupling between different phonon modes: 

V!;(n) = V~;(m, n) = 0, if i oF j. 

A more rigorous approach would be to calculate the 
nonradiative electron transition rate from a thermal 
average of the form (V2) [see (2)] via (57) in conjunc
tion with the reduction formula (41). in order to 
include coupling between different phonon modes, the 
transform for the spectral absorption function 
KI2(W, H')-utilizing H°-could, for example, be 

calculated for the case of two coupled phonon modes 

V~2(n) = V~l(n) oF 0 

by going to N = 2, M = 2, and the appropriate 
Hamiltonian matrix H(n) defined through (A2) by 

Hl1(n) = [iW + V~l(n) V~2(n)] 
V~2(n) iw + V~2(n) , 

H12(n) = [V~l(n) V~2(n)] 
V~2(n) V~2(n)' 

H3(n) = [iVl(n)], HC(n) = o. 
tV2(n) 

Further illustrations for the theory are abundant. 
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APPENDIX 

In order to clarify the (2N + 1)2 structure of the 
tensors defined in this paper, we shall choose-for an 
arbitrary tensor Z(n)-the matrix representation 

[

zll(n) Z12(n) Z3(n)] 
Z21(n) Z22(n) Z4(n) , 

ZS(n) Z6(n) ZC(n) 

(AI) 

where Zll(n), Z12(n) , Z21 (n) , and Z22(n) are N X N 
matrices, Z3(n) , Z4(n) , ZS(n) , and Z6(n) are N
dimensional column vectors, and ZC(n) is the element 
Z2N+1.2N+1(n). In terms of the representation (AI) we 
shall require that our input Hamiltonian H(n) can be 
put into the Hermitian form 

(A2) 

where 
Hll(n) = [Hll(n)]t, 1112(n) = Ji12(n). 

This requirement eliminates any arbitrariness from 
the definition of H(n). From requirements (9) and its 
definition in (13), the transformation T(n) must 
satisfy the representation 

(A3) 
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Thus, according to relations (15), (12), (19), (8),.and 
(9), HD(n) must have the form 

(A4) 

such that via (12) 

wi(n) = wHN(n), 1 ~ i ~ N, 

and T(n) can be determined from the set of N(2N - 1) 
complex and 2N real coupled equations for the 2N2 
complex elements of Tll(n) and p2(n) and the N real 
elements of H D ·ll (n). We can express these equations, 
using (15) and (19), in the form 

N 

wi(n)«5ii = 2 I [T:i(n)Hkk;(n)Tk·;(n) 

N 

k.k'=l 

+ Tk.i+N(n)H:'.k+N(n)Tk'i(n) 

+ Tk~(n)Hk.k,+~n)T:'.H~n) 
+ ~ .. i+N(n)H:k,(n)T:'.HN(n)], j ~ i, 

0= I [TZ(n)Hkk,(n)Tk'.HN(n) 
k.k'=l 

+ Tk,i+~n)H:',k+~n)Tk'.i+N(n) 
+ Tk~(n)Hk.k'+N(n)T:'i(n) 
+ Tk.i+~n)H:k,(n)T:'i(n)], j ~ i, 

N 

(jij = I [Tiin)Ti~(n) - Ti,k+N(n)Tj~k+N(n)], j ~ i, 
k=! 

N 

o = I [Tik(n)Ti.k+N(n) - Ti.k+N(n)Tjk(n)], j > i. 
k=l . 

(AS) 

The N complex elements of ]'3(n), and HD,C(n) are 
then determined from the relations 

N 

0= I [T~(n)Hkk,(n)Tk'.2N+l(n) 
k.k'=l 

+ Tk.i+N(n)H:.k+N(n)T/c'.2N+l(n) 

+ T~(n)Hk.k'+N(n)T:'.2N+l(n) 
+ T/c.i+~n)H:k,(n)T: .2N+l(n)] 

N 

+ I[Tk~(n)H/C.2N+l(n) + Tk.i+~n)H:.2N+l(n)], 
k=l 

W2N+l(n) = 2H2N+l.2N+l(n) 
N 

+ 4 Re I [Tk~2N+l(n)Hk.2N+l(n) 
k=l 

+ H:.2N+l(n)Tk,2N+l(n)] 
N 

+ 4 Re I [Tk~2N+l(n)Hkk.(n)Tk,.2N+tCn) 
k.k'=l 

+ Tk.2N+l(n)R:.k,+~n)Tk,.2N+tCn)], (A6) 

where Re denotes the real part. In both (AS) and (A6) 
indices i and j are confined to the values I-N. This 
completes the primary development of T(n) and 
HD(n) although two supplementary relations in
volving the elements of HD(n) can be derived for the 
sake of convenience. These relations 

IT Wi(n) = 2N{det [W(n)]}i, 
i=l 

!W2N+1(n) = det [H(n)]fdet [Wen)], (A7) 

where det is the determinant of the matrix representa
tion of Hr(n) and H(n) and 

H~;(n) == Rii(n) if i;o!i 2N + 1, j;o!i 2N + 1, 

(A8) 

are contained in the general description provided by 
(AS) and (A6). They can be arrived at by employing 
expressions (9) and (19) to show that 

det [T(n)] = det [T(n)] = ± 1, 

using (AS) to show that the diagonalization (15) 
applies equally well in the (2N)2 subspace (r) defined 
in (A8) and equating determinants between the 
Hamiltonian in its diagonal and in its nondiagonal 
form. Requirement (16) implies that one cannot 
equate determinants in a subspace of dimension less 
than (2N)2. Ifwe confine ourselves to the consideration 
of a real H(n), then it is possible to reduce relations 
(AS) to a more compact form as illustrated in the 
text. 

1 We use the term operator space here instead of the term vector 
space because vectors and tensors-as used in this paper-are 
defined primarily for purposes of notation. 

2 A second-rank tensor is denoted by a boldface upper case letter; 
a vector is denoted by a boldface lower case letter. 

S D. W. Howgate, J. Math. Phys. 10, 604 (1969). 
, The details of this transformation are clarified upon consulting 

Ref. 3. 
• D. W. Howgate, Phys. Rev. 177,1358 (1969). 
8 R. C. O'Rourke, Phys. Rev. 91, 265 (1953). 
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Unit adjoint tensor operators in SO(n) have been obtained, and the eigenvalues of the invariants 
connected with them evaluated. These adjoint tensor operators are keys to the solution of the multiplicity 
problem of the Wigner coefficients of SO(n). These adjoint tensor operators are used in the calculation 
of the Wigner coefficients of SO(5) in the direct product of the lO-dimensional representation with an 
arbitrary representation. The results agree with Hecht [K. T. Hecht, Nucl. Phys. 63, 171 (1965)1. 

INTRODUCTION 

Recently Louck and Biedenharn1 have obtained 
unit adjoint tensor operators for SU(n). Once these 
operators are known, it is not difficult to extend the 
results to all tensor operators of SU(n). Since the 
matrix elements of these tensor operators are related 
through the Wigner-Eckart theorem to the Clebsch
Gordan coefficients of SU(n), we can say that the 
Clebsch-Gordan coefficients of SU(n), together with 
its multiplicity problem, are now within reach of a 
solution. 

We wish to show that similar sets of unit adjoint 
tensor operators of SO(n) can be obtained. To 
achieve this purpose, one must be able to solve the 
following problems. (1) One must obtain a set of 1 
independent invariants, where 1 is the rank of the 
group. In our case, the groups are SO(21 + I) and 
SO (2/). (2) One must obtain 1 sets of mutually orthog
onal adjoint tensor operators, each set transforming 
like the infinitesimal generators of SO (n). (3) In order 
to be able to evaluate explicitly these adjoint tensor 
operators, one must obtain the eigenvalues of the 
invariants formed from these operators. These three 
topics will be considered in the following three 
sections. 

I. INVARIANTS OF THE ORTHOGONAL GROUP 

It is important to realize from the start that the 
invariants are closely connected with the adjoint 
tensor operators. This can be seen from the example 
of SU(n). In SU(n) we have at least two different sets 
of invariants, one obtained by Biedenharn2 and 
another by Gel'fand3 and Racah4 and formulated by 
Gruber and O'Raifeartaigh.5 

Biedenharn's invariants are 

Gn = [ili2jd[N3j2HN4j3]'" [jn-2in-lin]XilXi2'" Xin' 
(1) 

where [ijk] are the symmetrically coupled constants 
given in Eq. (16) of Biedenharn's paper and the Xi 
are the generators. In Eq. (1) and all subsequent 
equations in this paper, the summation sign from 1 
to n is always implied over repeated indices. 

The Gel'fand invariants are 

(2) 

where Eij is a matrix with one at the ith row and jth 
column, but zero elsewhere. 

If we use Biedenharn's invariants, G2 and G3 say, 
in SU(3); we obtain the mutually orthogonal adjoint 
tensor operators 

XA , A = 1,2,"',8, (3) 
and 

(4) 

where the X~) are the symmetrically coupled gener
ators. 

However, if one uses the Gel'fand invariants 12 = 
EiiEji and 13 = EiiEikEki' one obtains the mutually 
orthogonal adjoint tensor operators 

Eii , i,j = 1,2,3, Eii = 0, (5) 
and 

(6) 

Throughout expressions (3), (4), (5), and (6), we 
have 'neglected normalization, which can be easily 
restored. Since Eij and XA are linearly related [see 
Eqs. (9)-(12)], they can be used interchangeably; so 
one can see that (3) and (5) are equivalent. It is, 
however, more important to note that (4) and (6) are 
also equivalent, leading to the conclusion that the 
adjoint tensor operators are independent of the form 
of the invariants used. We shall give ~he proof below 
as to why (4) and (6) are equivalent. 

In expressions (3) and (4) we write the eight 
generators of SU(3) as HI, H 2 , E1 , E_l' E 2 , E_2' E3 , 

1530 
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and E_3 • Then 

G2 = H~ + H~ + (2/31)Hl + 2E_iEi' (7) 

Gs = IH2(1 + H2 + 3*H1)(1 - H2 + 3tH1) 

+ (1 - H2 + 31H1)E_2E2 

+ (1 + 2H2)E_1E1 - (1 + H2 + ~*HJE3E_a 
+ 61(E_1E_3E2 + E_2E3E1)' (8) 

But HI' H 2, and Ei are related to Eij as follows: 

(9) 

82 = -tE22 , (10) .. 
E33 = -En - E22 , (11) 

El = 6-1E1a , E2 = 6-1E12 , E3 = 6-1E32 . (12) 

It is then straightforward to see that 

12 = 6G2 , (13) 

la = 18Gs + 9G2 = (18X1) + 9XA)X_A. (14) 

From Eqs. (13) and (14) one can construct an 
adjoint tensor operator, in the same way as (6), which 
is orthogonal to XA , i.e., 

13XA - G2(18X~) + 9XA) = 18G3X A - 18G2X~), 

(15) 

After normalization, expression (15) is exactly the 
same as (4). Thus we have shown that the adjoint 
tensor operators are unique, i.e., independent of the 
form of the invariants used. 

In the case of the orthogonal group, as far as we 
know, there are also two different sets of invariants, 
one found by Racah4 and formulated explicitly by 
Gruber and O'Raifeartaigh5 and another by Louck.6 

Louck's invariants are, for SO(n), 

12k(L) = C~I( -1)P Jili/i3io ... Jik-likf (16) 

where (-1)P is either + 1 or -1, depending on 
whether the permutation 

is even or odd. 
Racah's invariants are 

12k(R) = Jili/isi/iaio ... Jikil . (17) 

For SO(2k), the invariants 12k expressed by both 
(16) and (17) do not distinguish between positive and 
negative values of m2k.k' However, they are still 
invariants, and we can continue to use them for our 
purposes. 

As we have seen from the example of SU(n), the 
adjoint tensor operators can be extracted from the 

respective invariants and are, moreover, independent 
of the form of the invariants used. For SO(n) it is 
much easier to extract the adjoint tensor operators 
(see Sec. II) from Racah's invariants (17) than from 
Louck's invariants (16). This is done in the next 
section. In Sec. III, we calculate the eigenvalues that 
result from these tensor operators. The eigenvalues of 
Louck's invariants have been calculated by Louck 
using trace formulas and recurrence relations. They 
are useful sometimes as a check on the eigenvalues of 
Racah's invariants. 

II. ADJOINT TENSOR OPERATORS IN SO(n) 

The main result of.. this section depends on the 
following theorem. 

Theorem 1: In SO(n), the operator 

Vij(2q + 1) == Jii/ilis ... Jiz•j - Jji/ilis .•• Jiz•i 
(18) 

transforms as Jii . In other words, VisC2q + 1) 
satisfies the commutation relation 

[Jab' Vi;] = i( c5ai Vbj + c5aj Vib + c5bi Via + c5bi Vai)' 

(19) 

Proof' Although Eq. (19) can eventually be ob
tained by repeated application of the commutation 
relations between the generators Jii , i.e., 

[Jab ,Jii] = i(baiJbj + ba;Jib + bbiJia + bbiJai)' (20) 

we shall break down the proof into three cases so as 
to simplify the massive notation which results from 
large q. 

Case 1: a :;6 i, b :;6 j; It is quite easy to see that in 
this case 

(21) 
Actually, 

[Jab' Jii / ili, ... Ji"j] = 0 for any p. (22) 

Case 2: a = i, b :;6 j: In this case we shall show that 

[Jab' Jai/ilis ..• Ji,,;] = iJbiJilia ... Ji"i (23) 

for any p. Let us take first a simple case where p = 2. 
Then 

[Jab' Jai/ili/isi] = i[Jbi/ili/izi (i1 :;6 a) + JbaJai/isi] 

= iJbl/ili/isj' (24) 

Similarly, one can see that (23) is true. From (23), one 
easily proves that 

[Jab' Va'] = iVbi . (25) 

The other cases where a = j, b :;6 i, or a :;6 i, b = j, 
or a :;6 j, b = i can be treated in exactly the same way. 
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Case 3: a = i, b = j: In this case we find 

[Jab' Jai/ili2 ... Ji~b] = i(Jbi/ili2 .•. Ji~b 

- Ja'/ilt2 •.. JipJ. (26) 
Using (26), we see that 

[Jab, Vab] = O. (27) 

Therefore, Eq. (l9) is proved, and the Vij(2q + 1) 
are the vector operators in SO(n) similar to Vi;(q) = 
Eii E,. j ••• Ej ; in the case of SU(n). 

1 1 2 q-l 

Next we define the invariants I(p, q) in terms of the 
vector operators: 

I(p,q) == Vi;(2p - I)V;;(2q - 1). (28) 

Since Vi;(l) = U j ;, we see that the invariants 

defined in (17) are 

4/2k(R) = 1(1, 2k - 1). (29) 

In general, it should be noted that l(p, q) :;6 
l(l,p + q - 1). However, one can reduce I(p, q) in 
the following way: 

l(p, q) = l(l,p + q - 1) + al(l,p + q - 3) 

+ a2/(I,p + q - 5) + .,. + anl(l, 1), (30) 

where the ai are some numbers. Therefore, to obtain 
I(p, q), it is sufficient to evaluate only 1(1, 2k - 1) or 
12k (R). 

With the vector operators and the invariants 
defined, we now use the Schmidt orthogonalization 
procedure to obtain the unit adjoint tensor operators 
Xi;(q) as follows: 

1(1,1) 

1(3, 1) 

1(1,3) 

1(3,3) 

I(I,2q - 1) 

1(3, 2q - 1) 

(31) 

1(2q - 3, 1) 1(2q - 3,3) 1(2q - 3, 2q - 1) 

Vj;(2q - 1) Vi; (1) Vi;(3) 

Nq = (det Yq_ 1)(det Yq), 

Yo = 1, 

y= q 

1(1,1) 

1(3, 1) 

1(1,3) 

1(3,3) 

1(2q - 1, 1) 1(2q - 1,3) 

The orthogonality relation now takes the form 

Xj;(P)X;i(q) = <5:11,«' (35) 

III. EIGENVALUES OF THE INVARIANTS 
OF SO(n) 

Since the invariants I(p, q) can be expressed as 
linear combinations of 1(1, 2r - 1) = 412r(R), we 
only need to evaluate the latter. There are at least two 
ways one can proceed. The first one is to utilize the 
known eigenvalues of Louck's invariants 121"(L) and 
express I(R) in terms of I(L). Thus, for example, for 
SO(5), 

14(L) = (m51 + 1)(m51 + 2)m52(m52 + 1), (36) 

1iR) = 21~ + 612 - 41iL), (37) 

12 = iJi;Ji ; 

= m:1 + m:2 + 3m51 + m52 , (38) 

1(1,2q - 1) 

1(3, 2q - 1) 

1(2q - 1, 2q - 1) 

liR) = 2(m:1 + m:2 + 6m:1 + 2m:2 

+ 12m:1 + 9m51 - m52)' 

(32) 

(33) 

(34) 

(39) 

However, it would be desirable to obtain a general 
formula relating 12r(R) to 121'(L). 

The second method is to express 12r(R) in SO(n) in 
terms of 12r(R) in SO(n - 1), and continue the process 
until one reaches SO(2), where everything is known. 
We shall use this method to obtain the invariant 
14(R) for SO(n). 

From now on we use the notation defined in a 
previous paper, 7 and let the invariant 14 act on the 
highest weight. In that case, the generator J2:11.2:11-1 = 
H:II has the eigenvalue mn1!' Then one can express 12r 
in terms of A~, B~, C;, D~, E{k+1' and F{k+1 defined 
in Ref.. 7 and commute the raising generators over. 
As a result, one only needs to evaluate V2p,2:11_1(2r - 1). 
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For example, in SO(n), 

14 = tJi/(J;kJk'/Si - Ji~k.J8;) 
= -(3 + J21)V21(3) - (1 + J43)V43(3). (39') 

We thus need to obtain recurrence relations between 
V~~~2V_l(2r - 1) and V~~-:i~_1(2r - 1). For the fourth
order invariants 14 , the recurrence relations are 
summarized in the following equations: 

V~;~tv~I(3) = -2H; + 2 i Hi - 2(2n - p - I)Hv 
i=v+l 

+ V~!~~p_l3), p::;;; n, (40) 
n-l 

V~;~~p-1(3) = -2H; - 2(2n - p - 2)Hp + 2 I Hi 
i=p+l 

+ 2H2 + v(2n-1) < n 2p,2p-1, P n, (41) 
n-l 

V~!~2;~1(3) = -2(2n - p - 3)Hp - 2Hv + 2 2Hi 
;=p+1 

n-1 
V~!~~n-1(3) = V~!~2;:1(3) - 2H! - 2Hn2Hi' 

i=1 
n-1 

V (2n-1) (3) - V(2n-2) (3) 2H ~ H 2n.2n-1 - 2n.2n-1 - n"" i, 
i=l 

V~;~Jv_1(3) = q!~;;~1(3) + 2HnHp - 2nHv' 

(42) 

(43) 

(44) 

p> n, (45) 

V~;~2;~1(3) = Vi!~2;~1(3) - 2H p - (2n - 4)Hp, 

p> n, (46) 

V~~.2v-tC3) = 2HIHp - 2Hp, p> 1, (47) 

V~:~(3) = -2H~. (48) 

Using these recurrence relations, we obtain 

113) = 2m~1(m31 + 1)2, (49) 

Ii4
) = 2(m!1 + m:2 + 4m!1 + 5m~1 - m:2 + 2m41), 

(50) 

Ii5
) = 2(m~1 + m~2 + 6m~1 + 2m:2 

+ 12m~2 + 9ms1 - m52), 

liS) = 2(m:l + 8m:l + 22m:l + 24m61 

(51) 

+ m:2 + 4m:2 + 4m~2 + m!3 - 2m:3), (52) 

Ii7) = 2(m~1 + m~2 + m~3 + 10m~1 + 35m~1 
+ 50m71 + 6m~2 + llm~2 
+ 6m72 + 2m~3 - m~3 - 2m73)' (53) 

One can also obtain these results from I~~)(L) by 
the following relations: 

Ii~)(R) = -4Ii~)(L) + 21; + (n - 2)(n - 3)12' 

n ~ 4, (54) 
where 

(55) 

In principle, these two methods can be extended to 
the case of I~~)(R) for any k and any n. However, so 
far we have not been able to obtain the eigenvalue of 
I~~)(R) in closed form. 

IV. WIGNER COEFFICIENTS OF SO(5) 

We have used the adjoint tensor operators obtained 
above to calculate the Wigner coefficients of SO(5) in 
the direct product of the 10-dimensional representation 
with an arbitrary representation. The results agree 
with Hecht's.s Out of 10 terms, four (56, 57, 59, and 
60) are exactly the same as in Table 4a of Hecht's 
paper, and the other six terms are obtained in a 
different but slightly simpler form. The last four (62, 
63,64, and 65) can be shown to be algebraically equal 
to Hecht's. The third (58) and sixth (61) terms are 
very complicated, containing, according to Hecht's 
expression, approximately 400 terms when expanded. 
We have substituted numerical values and found that 
they agree in all cases. We use the same notation 
below as Hecht: 

Doubled-barred Wigner coefficients of SO(5): 

«JmAm)J1Al; (10)J2A2 11 (JmA m)JA)2 

m = J m + Am - J - A, n = J m - Am - J + A, Gm = Jm(Jm + 2) + Am(Am + 1), 

Y = 2Am(2Am + 2)(2Jm + 1)(2Jm + 3)(Jm - Am)(Jm - Am + 1)(Jm + Am + l)(Jm + Am + 2), 

«J mAm)J A + 1; (10)01 11 (J mAm)JA)2 

= (m(n + 1)(2Am + 2 + n)(2Jm + 1 - n)(2Jm - 2Am - n)(2Am + 1 - m)(2Jm + 2 - m) 

2(2A + 1)(2A + 2)Y 
! 

X (2J m + 2Am + 3 - m)Gm ) , 

«J mAm)J A-I; (10)01 II (J mAm)JA)2 

= _(n(m + 1)(2Am + 1 + n)(2Jm + 2 - n)(2Jm - 2Am + 1 - n)(2Am - m)(2Jm + 1 - m) 

2(2A)(2A + I)Y 
! 

X (2Jm + 2Am + 2 - m)Gm) , 

(56) 

(57) 
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«(JmAm)JA; (10)01 II (JmA m)JA)2 

= _2(A(A + l)Gm)~(Jm - Am + J - A + l)(Jm + Am + J - A + 2)(Jm + Am ~ J + A + 1) 
Y 2A(2A + 2) 

(
A A) (A - J)(J!, + A!, + 2J m + Am - J2 - N - 2J - A) A 

X J m - m - J + + (A + 1) + ( - J) 

_ (J + A)(J _ A) _ (Jm + Am + 1)(Jm + Am :~)(Jm - Am)(Jm - Am + 1»), 

«J mAm)J + 1 A; (10)10 II (J mA m)JA)2 

= (nm(2Am + 1 + n)(2Jm + 2 - n)(2Jm - 2Am + 1 - n)(2Jm + 2 - m)(2Am + 1 - m) 

2(2J + 1)(2J + 2)Y i 

X (2Jm + 2Am + 3 - m)Gm) , 

«(JmAm)J - 1 A; (10)10 II (JmA m)JA)2 

= _(em + l)(n + 1)(2Am + 2 + n)(2Jm + 1 - n)(2Jm - 2Am - n)(2Jm + 1 - m) 

2(2J)(2J + l)Y 
i 

X (2Am - m)(2Jm + 2Am + 2 - m)Gm) , 

«JmAm)J A; (10)10 II (JmA m)JA)2 

= _2(J(J + 1)Gm)~((Jm - Am + A - J + 1)(Jm + Am + A - J + 2)(Jm + Am - A + J + 1) 

Y 2J(2J + 2) 

( A
. A ) (J - A)(J!, + A!, + 2J m + Am - N - J2 - 2A - J) (J A) 

X J - - +J + + -
m m (J + 1) 

A A 
(Jm + Am + 1)(Jm + Am + 2)(Jm - Am)(Jm - Am + 1») 

- (J + )( - J) - , 
Gm 

«JmAru>J +!A + l; (10)H II (JmA m)JA)2 

= _(m(2Jm + 2Am + 3 - m)(2Jm + 2 - m)(2Am + 1 - m»)i 

(2J + 1)(2A + l)YGm 
X [(Jm + Am + 1)(Jm + Am + 2)(Jm - Aru>(Jm - Am + 1) - (J - A)2Gm], 

«(JmAm)J - ! A - !; (10)!! II (JmA m)JA)2 

= (m + 1)(2J m + 2Am + 2 - m)(2J m + 1 -:- m)(2Am - m»)i 

(2J + 1)(2A + l)YGm 
X [(Jm + Am + l)(Jm + Am + 2)(Jm - A.,.)(Jm - Am + 1) - (J - A)2Gm], 

«JmAm)J + ! A - !; (10)H II (JmA m)JA)2 

= (n(2Am + 1 + n)(21m + 2 - n)(2Jm - 2Am + 1 - n»)i 
(21 + 1)(2A + l)YGm 

X [(Jm + Am + l)(Jm + Am + 2)(Jm - Am)(Jm - Am + 1) - (J + A + 1)2Gm], 

«JmAm>J - ! A + l; (10)H II (JmAm>JA)2 

= (n + 1)(2Am + 2 + n)(2J m + 1 - n)(2J m - 2Am - n»)i 
(21 + l)(2A + l)YGm 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

X [(Jm + Am + l)(Jm + Am + 2)(Jm - Am)(Jm - Am + 1) - (J + A + liGm]. (65) 
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A geometrical characterization is given of the space-time with a metric satisfying the equations of 
the de Broglie wave field. To do this, we exploit a formal analogy with a "perfect fluid" whose energy 
and pressure depend on the components of the metric field and its derivatives. To determine the properties 
of the space-time, we use the Ricci principal directions. 

I. INTRODUCTION 

Following the lines of thought inaugurated by 
Eddington,! we can say that in the finiteness of 
space we have the clue to atomicity. The argument runs 
as follows: Atomicity is merely the oldest, best known 
and still most important expression of the inherent 
discontinuities in nature. Generally speaking, the 
latter are accounted for in wave mechanics by means 
of a close analogy with the discontinuous sets of 
proper modes of vibrating systems. However, only a 
finite system possesses discontinuous proper modes. 
So, if the space were infinite, it would be hard to 
explain atomicity along these lines because its proper 
vibrations would form a continuous sequence. 

Perhaps SchrOdinger was the first2 who believed that 
the "P waves are to be identified with waves repre
senting disturbances of the metric field of space-time. 
But then, of course, the components of the metric 
field cannot be a solution of Einstein's equations 
because of the inherent dualism of field and source of 
field (energy momentum tensor). This dualism for "P 
waves is hardly acceptable, and, as a matter of fact, 
the Schrodinger, Klein-Gordon, or Dirac equations 
do not contain any term describing the source of the 
"P-fie1d. 

We assume that matter waves are described by a 
metric field which satisfies the field equations of the 
de Broglie wave field.3.4 These equations are similar 
to the Einstein equations but do not contain any 
terms which We could call sources. Let us note that 
from the field equations it follows that the second 

derivatives of the metric field have essential dis
continuities on the characteristic 3-surfaces. These 
characteristic 3-surfaces represent a history of a two
wave surface of a wave which has a phase velocity 
identical with the phase velocity of an ordinary de 
Broglie wave. The wave with the phase velocity of a 
de Broglie wave is propagated in a 3-space (usually 
called chronometrical 3-space5) everywhere perpen
dicular to the lines .x4.3 In a synchronous coordinate 
system (say the system co moving with the particle) 
the characteristic 3-surfaces and chronometrical 3-
space coincide. 

The field equations impose conditions which are to 
be satisfied by space-time. In order to characterize 
the space-time, we use the notion of principal direction 
introduced by Ricci.6 The method we use is the same 
as in Ref. 7 . We exploit the fact that the field equations 
have on the right-hand side a tensor formally identical 
with the energy-momentum tensor of a "perfect fluid." 
However, the proper density r and the pressure p of 
this "fluid" are functions of the metric field and its 
first and second derivatives. The pressure-density 
equation r = p holds. It then follows from the 
conservation equations, which are a consequence of 
the field equations, that there is a property of space
time represented by a function which is conserved 
during the evolution of the space-time. This con
served scalar function is called the index functionS (in 
analogy with the refractive index of a transparent 
medium) and it is a function of the components of the 
metric field and its first and second derivatives. The 



                                                                                                                                    

UNIT ADJOINT TENSOi{ OPERATORS IN SO(n) 1535 

ACKNOWLEDGMENTS 

I wish to thank Dr. B. Gruber, M. Lorente, J. 
Saldanha, and B. Han for valuaBle discussions and 
Dr. V. Newton for checking the results of Sec. IV. 

1 J. D. Louck and L. C. Biedenharn, J. Math. Phys. 11, 2368 
(1970). 

JOURNAL OF MATHEMATICAL PHYSICS 

2 L. C. Biedenharn, J. Math. Phys. 4, 436 (1963). 
3 I. M. Gel'fand, Mat. Sb. 26,103 (1950). 
4 G. Racah, Atti Accad. NazI. Lincei, Rend., Classe Sci. Fis., 

Mat. e Nat. 8, 108 (1950). 
• B. Gruber and L. O'Raifeartaigh, J. Math. Phys. 5, 1796 (1964). 
6 J. D. Louck, Los Alamos Scientific Laboratory, Report LA2451, 

1960. 
7 M. K. F. Wong, J. Math. Phys. 8, 1899 (1967). 
8 K. T. Hecht, Nucl. Phys. 63, 177 (1965). 

VOLUME 12, NUMBER 8 AUGUST 1971 

Space-Time of the de Broglie Wave Field 

J. KULHANEK 

University of Vienna, Institute for Theoretical Physics, Vienna, Austria· 

(Received 1 October 1970) 

A geometrical characterization is given of the space-time with a metric satisfying the equations of 
the de Broglie wave field. To do this, we exploit a formal analogy with a "perfect fluid" whose energy 
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I. INTRODUCTION 

Following the lines of thought inaugurated by 
Eddington,! we can say that in the finiteness of 
space we have the clue to atomicity. The argument runs 
as follows: Atomicity is merely the oldest, best known 
and still most important expression of the inherent 
discontinuities in nature. Generally speaking, the 
latter are accounted for in wave mechanics by means 
of a close analogy with the discontinuous sets of 
proper modes of vibrating systems. However, only a 
finite system possesses discontinuous proper modes. 
So, if the space were infinite, it would be hard to 
explain atomicity along these lines because its proper 
vibrations would form a continuous sequence. 

Perhaps SchrOdinger was the first2 who believed that 
the "P waves are to be identified with waves repre
senting disturbances of the metric field of space-time. 
But then, of course, the components of the metric 
field cannot be a solution of Einstein's equations 
because of the inherent dualism of field and source of 
field (energy momentum tensor). This dualism for "P 
waves is hardly acceptable, and, as a matter of fact, 
the Schrodinger, Klein-Gordon, or Dirac equations 
do not contain any term describing the source of the 
"P-fie1d. 

We assume that matter waves are described by a 
metric field which satisfies the field equations of the 
de Broglie wave field.3.4 These equations are similar 
to the Einstein equations but do not contain any 
terms which We could call sources. Let us note that 
from the field equations it follows that the second 

derivatives of the metric field have essential dis
continuities on the characteristic 3-surfaces. These 
characteristic 3-surfaces represent a history of a two
wave surface of a wave which has a phase velocity 
identical with the phase velocity of an ordinary de 
Broglie wave. The wave with the phase velocity of a 
de Broglie wave is propagated in a 3-space (usually 
called chronometrical 3-space5) everywhere perpen
dicular to the lines .x4.3 In a synchronous coordinate 
system (say the system co moving with the particle) 
the characteristic 3-surfaces and chronometrical 3-
space coincide. 

The field equations impose conditions which are to 
be satisfied by space-time. In order to characterize 
the space-time, we use the notion of principal direction 
introduced by Ricci.6 The method we use is the same 
as in Ref. 7 . We exploit the fact that the field equations 
have on the right-hand side a tensor formally identical 
with the energy-momentum tensor of a "perfect fluid." 
However, the proper density r and the pressure p of 
this "fluid" are functions of the metric field and its 
first and second derivatives. The pressure-density 
equation r = p holds. It then follows from the 
conservation equations, which are a consequence of 
the field equations, that there is a property of space
time represented by a function which is conserved 
during the evolution of the space-time. This con
served scalar function is called the index functionS (in 
analogy with the refractive index of a transparent 
medium) and it is a function of the components of the 
metric field and its first and second derivatives. The 
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stream lines satisfy the variational principle, formally 
identical with Fermat's optical principle, where, 
however, the refraction index of a transparent medium 
is replaced by the index function. If Ricci's principal 
directions are indeterminate, the space-time cannot 
be considered as a space-time of a "perfect fluid." 

II. IDENTIFICATION WITH PERFECT FLUID 

We can write the field equations3.4 in the form 

Je2 
Rao - iRgao - h2 gao 

= - (R + 4 ~:)Ogab - XaXb), (1) 

where Je is the rest mass, h is Planck's constant, and 
xa are the components of the unit 4-vector normal to 
the 3-wave surface of the de Broglie wave. The left
hand side of (1) is a well-known tensor whose covariant 
divergence vanishes, and we have from (1) four 
conservation equations 

The normal vector xa has unit magnitude, and we can 
rewrite (2) as 

xa = _ !(R + 4 Je
2

)OR xa. (3) 
i
a 2 h2 oxa 

Equation (3) implies that 

- ( - g)! R + 4 - xa = 0 a ( Je
2)! 

oxa h2 
(4) 

or 
(5) 

Whenever a relation in the form of Eq. (5) holds, 
there exists a conserved integral. Consequently, in 
our case the value of the integral 

f (R + 4Je2/h2)!X4
( - g)! dx1 dx2 dx3 

is a constant, independent of time. The energy tensor 
of a "perfect fluid" has the form 

Tab = (r + p)xaxo - pgab, (6) 

where r is the proper energy density and p is the 
pressure. On comparing (6) with the right-hand side 
of (1), we have 

r + p = R + 4Je2Jh2, p = i(R + 4Je2/h2
). (7) 

Combining (7), we obtain 

r = HR + 4Je,2fh2
). (8) 

On account of the foregoing identification, the tensor 
on the right-hand side of (1) represents a "perfect 
fluid" for which r = p is true. From (7) and (8) we 
see that rand p are functions of the components of 
the metric field and its first and second derivatives. 
The index functionS 11 may be written in the form 

l1=expf~' 
r+p 

and characterizes the space-time property which is 
conserved during the evolution of space-time. From 
the foregoing equation, using the pressure density 
relation r = p, we obtain 

11 ='(2)-!(R + 4Je2/h2)l. 

The stream lines of our "perfect fluid" satisfy the 
variational principles 

b f(R + 4Je2/h 2)! ds = o. 

This variational principle is formally identical with 
Fermat's optical principle in a transparent medium 
of refractive index 11. But the problem of determining 
the stream lines is not the same as that of finding the 
rays in a given medium, even after allowing for the 
fact that we are dealing with a curved manifold offour 
dimensions with an indefinite metric form. In the 
optical problem the refractive index is supposed to 
be known, whereas in our problem 11 is not known: 
For its determination the field equations must be 
solved, since 11 depends on the components of the 
metric field and its first and second derivatives. If we 
write 

dS2 = (R + 4Je2Jh2) ds2, 

the variational principle has form 

b f ds = 0 

and the streamlines are geodesics of a metric ds2 

conformal to the metric ds2 of the space-time.9 

Ill. GEOMETRIC CHARACTERIZATION OF 
SPACE-TIME 

The contravariant components A.~ of the Ricci? 
principal directions are solutions of the homogenous 
systems 

(9) 

(no summation over k), where Pk is any root of the 
determinant 

DIIRii + p,.,gijll = 0 (10) 

of the matrix of system (9). When the roots of (10) 
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are simple, the principal directions are uniquely 
determined by (9), and any two of these directions at a 
point are orthogonal. When a root of (10) is multiple, 
say of order s, and the elementary divisors are simple, 
the directions corresponding to this root are linearly 
expressible in terms of s mutually orthogonal direc
tions, which are orthogonal also to the directions 
corresponding to any other root. Hence, when all the 
elementary divisors are simple, an orthogonal n-tuple 
of principal directions can be found. Equation (9) 
may be replaced by 

4 

Rij = - ! PkAkiAkj, 
k~1 

(11) 

where Aki = gi;A~. Hence, substituting Rab from (1) 
into (9), we obtain 

[-Je2/h2gab + (R + 4J€,2fh2)xaXb + Pkgab]A% = O. 

(12) 

Now, if we assume that xa = A~, and since xa is 
unitary, we have thatgabA~A~ = 1 and from (12) we get 

IV. SYNCHRONOUS COORDINATE SYSTEM 

The unitary 4-vector ga4(g44)-1 is tangent to the lines 
.x4 and represents the normal 4-vector of the 3-space 
(usually called5 chronometrical 3-space) which is 
everywhere perpendicular to the lines . .x4. Ifwe assume 
that 

(I 8) 

the chronometrical 3-space is identical, at least 
locally, with the 3-wave surface of the· de Broglie 
wave. Equations (18) are the coordinate conditions 
specifying a synchronous coordinate system. 

Substituting (18) into (I), we get for the components 
of the Ricci tensor 

Rab = (ga~b4/g44)(R + 3Je2/h2) - (Je2/h2) 

X (gab - ga~b4/g4J. (19) 

The conservation law (4), with the help of (18), gives 

(}~4 .Jy (R + 4Je
2
/h 2

)' = 0, (20) 

Hence, 
(13) where y = det II y«p II and y«p = g«p - g«4gP4/g44 ' at, {J = 

1, 2, 3. Mter integration we get from (20), for the 
(14) scalar curvature R, 

Now if A~ are components of any vector orthogonal 
to xa , then from (12) we get 

(15) 

Since every vector orthogonal to xa satisfies this con
dition it follows that PI is a triple root of (12) and the 
elementary divisors are simple. Hence we see that 
the unit 4-vector xa normal to the 3-wave surface is 
the principal direction determined by the simple root 
PI given by (14). The triple root PI is always constant, 
as follows from Eq. (15). For the scalar curvature of 
space-time, from Eqs. (14) and (15) we obtain 

(16) 

and PI and PI are the mean curvatures in the direc
tions xa and AL respectively. When PI and PI are 
equal, we have from (14) and (15) 

R + 4Je2/h2 = O. (17) 

The principal directions are indeterminate and thus 
space-time cannot be identified with the one manifold 
of "perfect fluid" noted above. Under condition (17), 
Eqs. (1) reduce to the special form 

Rab - }Rgab = 0 

and the conservation law (2) is fulfilled identically.9 

R = -4Je2/h2 + F2(X')/y, (21) 

where F(XZ") is a function of the variables xl, X2, r. 
Substituting from (19) into (9), we obtain 

[(ga~b4/g4J(R + 3Je2/h2) - Je2Jh2Yab - gabPk]A~ = 0 

(22) 

(no summation over k), which for the single root PI 
and values A~ given by 

A~ = b:/(g44)' 

becomes 

(23) 

Hence, the simple root 

PI = -(R + 3Je2Jh2), (24) 

and, using (21), we can write 

(25) 

In order that the elementary divisors corresponding to 
the triple root PI be simple, it is necessary and sufficient 
that (9) for PI be satisfied by the values (1,0,0,0), 
(0, 1, 0, 0), (0, 0, 1, 0) for the covariant components 
of A!. If we write (9) in the form 

(26) 
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the conditions are the synchronous coordinate system is given by 

R~ + PI'Y; = 0, IX = 1,2,3, j ,= 1,2,3,4, (27) 

and thus from (27) and (19) we have 

PI = Je2/h2• (28) 

We see that PI and PI are equal only when in (21) 
the function F(xa) = 0. When F(;x") = 0, the field 
equations (1) in the synchronous coordinate system 
are equivalent to the generally covariant equations9 

Rab - iRgab = 0, R + 4Je2/h2 = 0. 

In combining (21) with (7) one sees immediately that 
the total energy density e of the "perfect fluid" in 

JOURNAL OF MATHEMATICAL PHYSICS 

e = r + p = £2 (xa)/y. (29) 

Thus e is a function of the components of the metric 
field ga.P' IX, fJ = 1, 2, 3, and does not depend on the 
first and second derivatives. The same is true for the 
proper material density r and pressure p. 
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An exact statistical set of kinematic dynamo equations is given representing turbulent generation of 
both a large-scale magnetic field and a small-scale turbulent field. These equations do not rely on 
approximately solving the fluctuation equations and using the results in the ordered field equations as 
do most treatments of statistical kinematic dynamos. Instead they treat both the fluctuation equations 
and the ordered field equation exactly. The results obtained indicate several points. First: The fluctuation 
intensity equation has the character of the Bethe-Salpeter equation. Depending on whether one uses the 
long-slow or the short-sudden approximation there may, or may not, be an upper limit on the velocity 
turbulence in order that the energy density stored in the magnetic field fluctuations remain finite. No 
such restriction is found using approximate kinematic dynamo equations. Second: The normal modes of 
the large'-scale field (which obeys a Dyson equation) may, or may not, be mirrored in the singular eigen
modes ofthe fluctuation intensity equation. Third: the structure of the exact statistical kinematic dynamo 
equations is very different from the structure of the approximate kinematic dynamo equations-particu
larly in the equation describing the fluctuation intensity. We have done this problem in order to demon
strate that the exact solution of at least one problem in statistical kinematic dynamo theory introduces 
new and interesting phenomena which are not brought to light in approximate treatments of the same 
phenomena. 

I. INTRODUCTION 
In other papersl - 8 the basic properties of kinematic 

dynamos driven by turbulent velocity fields have 
been outlined. In particular we have demonstrated 
how the normal modes of the large-scale magnetic 
field are influenced by bulk convection, large-scale 
shearing and the turbulent Lorentz force. We have 
also estimated the influence of both large-scale 
boundaries and fluctuations in resistivity on the 
dynamo equations. 

In all the above analyses (with the exception of 

Ref. 4) two basic assumptions were made. The first 
(which is inherent to kinematic dynamo theory) is 
that both the large-scale velocity and the turbulent 
velocity can be freely specified. That is, they are not 
changed by any induced magnetic activity but do 
induce magnetic activity. The second basic assumption 
is that, in handling the fluctuating (or random) part 
of the turbulent dynamo equations, truncation of 
fluctuations at the two-point, two-time level of 
their correlation functions is a reasonable assumption.9 

The purpose of the present paper is to obtain 
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equations describing both the large-scale magnetic 
field and its fluctuations in terms of the velocity 
fluctuations without making the conventional trun
cation of turbulent correlations at the two-point 
level. Instead, we assume the velocity field is of such a 
nature that all correlation functions entering the 
equations below are reducible to the two-point level. 
Note that this is by no means the same as truncating 
the fluctuations at the two-point level. 

We show that the equation describing the intensity 
of the random component of the magnetic field is a 
generalized Bethe-Salpeter equation of tensor form in 
sixteen variables. The equation describing the large
scale field is an extension of the Dyson equation of 
vector form involving eight variables. 

II. FLUCTUATION INTENSITY AND THE 
BETHE-SALPETER EQUATION 

Consider an infinite medium of constant resisivity rJ· 
Then, when bulk motions are absent and the only 
fluid velocity is the random turbulence bv (the 
notation and derivation of the kinematic dynamo 
equations used herein is described more fully in 
Papers I and II), we have 

(~ -1JV2)A i = Eiik(bviMk), (1) 

(:t -1JV2)bA i = Eiik(bviBk + bvibBk - (bViMk»' 

(2) 

where 
obAk 

bBi = Eiik -- , 
OXi 

Let G(x, x', t, t') satisfy 

(:1 -1JV2)G - V x (bv x G - (bv x G» 
= [V x (bv x B»)'b(x - x')b(t - t'), (3) 

and let Go(x, x' , t, t') satisfy 

(~ - rJV2) Go = b(x - x')b(t - t'). (4) 

In Eq. (3) the term [V x (bv x B»)~ is an abbreviation 
for 

Eiik ~ [ek!mbvlx ', t')Bm(x', t')]. 
ax~ 

From Eq. (3) it follows that 

bB(x, t) = J d3x' dt'G(x, x', t, t'). (5) 

Use of Eq. (4) enables Eq. (3) to be cast in the 
integral form 

G(x, x', t, t') = [V x (bv x B)]'Go(x, x', t, t') 

+ J d3x" dt"Go(x, x", t, t")Vx " 

x {bv(x", t") x G(x", x', t", t') 

- (bv(x", t") x G(x", x', t", t')}. (6) 

Consider now the ensemble average quantity 

(Ga(x, x', t, t')Gb(x, x", 1, t"» = Go(x, x', t, t')GO(x, x", 1, t") 

x /\{EaikEk!mEb«PEp"v ~ [bv!(x', t')Bm(x', t')].1" [bv,.(x", t")BV(x", t")]\/ +Jd3~ d(1 daY) dnEaikEk!mEb«pEp"v 
aXi ax« 

x aGo (x,~, t, G)' aGo (x, y), 1, n) /\{bV!(~, G)Gm(~' x', G, t') - (bv!(~, (1)Gm(~' x', (1, t')} 
a'i a1]« 

x {6v,,(Y), n)Gv(Y), x", n, t") - (bv,.(Y), n)Gv(Y), x", n, t"»}}). (7) 

The reason for considering the quantity (GaG b ) is clear. Take 

(8) 

Equation (8) (with i = j, x = x', t = t') represents the average energy density stored in the fluctuating magnetic 
field. 

To solve Eq. (7) for (GaGb)' we need to know the statistical properties of bv. 
In order to make progress with Eq. (7) and at the same time preserve the essential physics of the fluctuation 

intensity equation, we assume for the remainder that the statistical properties of bv are such that all ensemble 
averages of the random variables entering Eq. (7) are reducible to the two-point, two-time level. We realize 
that this is by no means the most general form of velocity turbulence. However, it will suffice to illustrate the 
basic physical behavior of the equations associated with the fluctuation intensity and it will serve to keep the 
mathematical complexities to a minimum. 
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Under this assumption, Eq. (7) reduces to 

(Ga(x, x', t, t')Gb(x, x", t, t"» = Go(x, x', t, t')Go(x", x", 1, t")€aik€klm€b«p€p/lV 

x \/ .i... [bvl(x', t')Bm(x', t')] .i... [(lv,.{x", t")Bv(x", t")]/\ + €ajk€klm€b«p€p/lv 
ox~ ax; 

X Jd3~ dG d3Yj dn ~G~ (x, ~, t, G) ~Go (x, '1), t, n){ (DVl(~' G)(lv,.{Yj, n» (Gm(~' x', G, 1')G.(Yj, x", n, I"» 
~, n« 

+ «(lVl(~' G)G.(Yj, x", n, I"» (bv,.{Yj, n)Gm(~' x', G, t'»}. (9) 

The last two terms on the right-hand side of Eq. (9) can be reduced further by taking Eq. (6), multiplying by 
"v(x', I'), ensemble-averaging the result, and using the statement that all correlations are reducible to the 
two-point, two-time level. Upon so doing we obtain Eq. (9) in the form 

(Ga(x, x', t, t')Gb(i, x", 1, t"» = Go(x, x', t, t')Go(x, x", 1, t")€aik€klmEb«pEP/l' 

x \/ .i... [(lvl(x', nBm(x', t')] .i... [(lv,.{x", t")B.(x", t
fl
)]/\ + €ajk€klm€b«p€P/lV€m1>Q€.rs€Qe,€sf/h ax, ax; 

x (Gm(~' x', G, t')G.(Yj, x", n, t"». (10) 

We recognize Eq. (10) as a tensor Bethe-Salpeter If we now define the spectral intensity P(k, w) as 
equation for (GaGa> in 16 variables, viz., (x, t), 
(x', t'), (x", t"), (x, l). P(k, W) = Paa(k, w), (13) 

As remarked earlier, we are interested in the 
fluctuation intensity (bB. (lB). it follows from Eq. (12) that 

If we write (GaG b) as a Fourier transform, 

(GaCx, x', t, t')Gb(X, x", t, t"» 

== J Rab(kl , WI; k2' W 2 ; ka, Wa; k4' W4) 

X exp [j(kl • x + k2 • x' + ka • x + k4 • x" 
4 

- WIt - w2t' - wst- w4t")] IT dSki dw i , (11) 

then, from Eqs. (8) and (11), 

(Ma(x, t)Mb(x, t» 

i=1 

= (27T)8 f RabCkl , Wi; 0, 0; ka, WS; 0, 0) 

x exp {i[(k1 + ka)· x - t(WI + Wa)]} 

x dakl daka dWI dWa 

== f Pab(k, W) exp [i(k . x - wt)] dSk dw. (12) 

P(k, w) = (27T)8 f d3k l dWl 

X Raa(kl , WI ;O,O;k - kI' W - WI ;0,0). (14) 

It is fortunate that, for power computations, we 
require only the trace of the generalized Bethe
Salpeter equation with eight of the variables set to 
zero. The combination of these two simplifications 
(apparently due to serendipity) is just sufficient to 
enable us to solve the problem at hand. So our main 
interest in the generalized Bethe-Salpeter equation 
[Eq. (10)] is to obtain an expression for 

We Fourier-transform Eq. (10) in the 16 variables, 
as in Eq. (11), to obtain, after some elementary, but 
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extremely tedious, integrations, that 

Rab(kl , WI ; k9' W2 ; ka, Wa ; k4' W4) = -kIika~€aik€b~fJ€klm€fJIlV f dSK dOIIIIl(kl - K, WI - 0) 

x Rmv(K, 0; k2' W 2 ; k3 + ki - K, Wa + WI - 0; k4' W 4) 

- (27T)-8(k4~ + ka~)(k2i + kIi)(1')ki - iWI)-\1')k: - iWa)-1 

x €aJk€klm€b~fJ€fJllv f d3
K dOBm(K, 0) 

x~~+~+~+~-~~+~+~+%-~ 
x IIIIl(kl + k2 - K, WI + W2 - 0) 

+ (27T)-Bklika~€aik€klm€b~fJ€PIlV€mpq€qef€.,rs€Sgh 
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x (1')ki - iWI)-I(1')k~ - iWa)-1 f daK dO d,
3k dwkiKr - k4r - kir + kr) 

x (1')k2 - iW)-I[1') IK - k4 - ki + kl2 - i(w4 + WI - 0 - w)rl 

x Bh(K, O)BtCkl + k2 + ka + k4 - K, WI + W2 + Wa + W4 - 0) 

X IIlikl - k, WI - W) 

X IIlle(kl + k2 + ka - K - k, WI + W2 + Ws - 0 - w), (15) 

where we have assumed homogeneity and stationari
ness of the two-point, two-time velocity fluctuations, 
and have therefore written 

(ovi(x, t)ovlx', t') > = IIii(x - x', t - t'), (16a) 
with 

IIij(r,7") = J dak dwIIij(k, w) exp [i(k. r - W7")] 

(16b) 
Furthermore, we have written the large-scale field 

B(x, t) = J d3k dwB(k, w) exp riCk • x - wt)]. 

Now, for power computations, as remarked earlier, 
we are interested in k2 = W 2 = k4 = W4 = 0 in Eq. 
(15). For brevity we write 

Rab(kl> WI; 0, 0; ka, wa; 0, 0) 

== Rab(kl, WI; ka, W3), (17) 

with the understanding that the "2" and "4" variables 
are set to zero and the ordering of the remaining" 1" 
and "3" variables in the abbreviated representation 
(17) is always in the order "I" followed by "3". Then 
Eq. (15) becomes 

Rab(kl , WI ; X - kl , 'tIT - Wl) + kli(K~ - kh )(1')ki - iwl)-1 

x [1') Ix - kI1
2 - i('tIT - Wl)rl€ajk€klm€b~P€PIlV J daK dOIIIIl(kl - K, WI - O)Rmv(K, 0; x - K, 'tIT - 0) 

= _(27T)-8kIi(k~ - kl~)(1')ki - iWI)-I[1') Ix - kll2 - i( 'tIT - WI)r1 

x €aik€klm€b~p€pp.. J d3K dO{Bm(K, O)B.(x - K, 'tIT - 0) 

x II,ikl - K, WI - Q) - €mpq€qef€.rs€sgh J d3k dwBh(K, 0) 

x BtCx - K, 'tIT - O)kp(Kr + kr - k1r)(1')k2 - iW)-I[1') IK + k - k l 1
2 - i(WI - 0 - W)rl 

x IIlikl - k, WI - w)IIIlI(x - k - K, 'tIT - 0 - w)}. (18) 

We shall refer to Eq. (18) as the reduced Bethe
Salpeter tensor equation since it involves only the 
eight variables k, kl' 1li, WI, whereas the generalized 
Bethe-Salpeter equation [Eq. (15)] involved 16 
variables. 

For arbitrary two-point, two-time spatially homoge
neous and stationary turbulent velocity correlation 
dyadics, we have been unable to solve Eq. (18) in 
general. However, there are two approximations that 
have been extensively used in the literature in discussing 
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kinematic dynamo activity. They are the "short
sudden" approximation2 and the "long-slow" approxi
mation.' 

In terms of Dtlk, w), the "short-sudden" approxi
mation is written 

(19) 

where DI/l is a constant tensor independent of k and 
w. This corresponds to assuming that DI/l(r, -r) IX 

b(r)b(-r), i.e., on the space and time scales over which 
DI/l(r, -r) changes appreciably the large-scale field 
B(r, 7) does not change substantially, and, conversely, 
over the space and time scales over which B(r, 7) 
changes substantially, the velocity turbulence changes 
infinitely rapidly as through Eq. (19) (or its Fourier 
transform). 

In terms of TI1/l(k, w), the "long-slow" approxi
mation is written 

where AII' is a constant tensor independent of k and 
w. In this limit the velocity turbulence Dl/l(r, t) does 
not change appreciably over the space and time scales 
of the variations in the large-scale field. (For a more 
detailed exposition of the crucial differences between 
the "short-sudden" approximation and the "long
slow" approximation see Ref. 1.) It is clear that 
either the "short-sudden" approximation to the 
velocity turbulence or the "long-slow" approximation 
drastically simplifies the reduced Bethe-Salpeter 
equation (18). 

We point out here that the reduced Bethe-Salpeter 
tensor equation (18) has associated with it all the 
usual singularities and divergencies of the "stand~ 

ard" Bethe-Salpeter occurring in quantum field 
theory (see, e.g., Ref. 10). These divergencies and 
singularities are usually split into two classes. 

Class I: Consider Eq. (18) when the Fourier modes 
of the large~scale field are zero, i.e., Bi(k, w) = 0. 
Then Eq. (18) is a homogeneous equation in Rab and 
possesses a solution if and only if a dispersion relation 
is satisfied. (The precise form of the dispersion 
relation depends on detailed statements of the two
point, two-time turbulent velocity correlation dyadic.) 
In quantum mechanics [Ref. 10, Vol. 1, Sec. 9(c)], the 
corresponding dispersion statement determines the 
allowed bound states of the system at hand. 

Class II: Consider Eq. (18) when Bi(k, w) ~ 0. 
Then a particular solution for Rab can, in principle, be 
found. This normally has a resonance structure leading 
to absolutely divergent integrals and corresponds to a 
scattering type of problem in quantum theory. In 
quantum field theory the divergence is removed by 
"mass renormalization" (Ref. 10, Vol. 1, Sec. 25). In 
the present context the analog of "mass renormali
zation" is (i) the statement of infinitesimal velocity 
turbulence occurring at an infinite rate using the 
"short~sudden" approximation, i.e., the Dl/l of Eq. 
(19) will turn out to be infinitesimal in order that a 
finite solution for the power spectrum obtain (but see 
Ref. 3 for a detailed statement of this normalization 
of the velocity turbulence), and (ij) in the "long-slow" 
approximation the analog is finite velocity turbulence 
occurring at an infinitesimal rate, i.e., the All' of Eq. 
(20) will be finite, its precise level depending on the 
structure assumed for Bi(k, w) and on boundary 
and/or initial value statements of (~BibBj)' 

Consider Eq. (18) first under the "long-slow" 
approximation and then under the "short-sudden" 
approximation. 

III. FLUCTUATIONS IN THE LONG-SLOW LIMIT 

With Dll' = All'b(k)b(w), where All' is a constant 
tensor independent of k and w, Eq. (18) reduces to 

RabCkl , Qh ; x - kl' W - WI) = -klj(Ka - kIa)('f]ki - iWI)-l['f] Ix - k I12 
- i( w - wl)rl€ajk€klm€baP 

X €P/lVA1/lRmv(kl, WI ; X - kl' W - WI) 

-(21T)-8klj(K" - kla)('f]k~ - i(1)-1['f] Ix - k l l2 
- i(w - (1)t

1 

X €aJk€klm€baP€P/lv{A1/lBm(kl , wl)Bv(x - kl' W - WI) 

- ('f]k: - iWI)-l['f] Ix - k l 1
2 - i(w - WI)tIEmpqEvrsEqe,ESUhAluA/le 

X klP(Kr - klr)Bh(x - kl' W - wl)B,(k1 , WI)}, (21) 

which is an algebraic equation for Rab rather than an integral equation as is the reduced Bethe-Salpeter tensor 
equation (18). 

Equation (21) can be written 

RabCkl , WI' X - kl' 'tIT - wl){1 + ('f]k~ - iwl)-l['f] Ix - k l l2 
- i(w - WI)]-IAjaklj(Ka - kla)} 

= -(21T)-8Ba(kl , wl)Bb(x - kl,w - wl)C'f]ki - iwl)-l['f] Ix - k l 1
2 

- i(w - WI)r1 

X {AJakiKa - ka) - kjAja(Ka - kJke(K/l - k/l)Ape('f]k~ - iwl)-l['f] Ix - k l12 - i(w - WI)]-l}. (22) 
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The general solution to Eq. (22) gives 

Pab(x, w) = - J d3k dco{Ba(k, W)Bb(X - k, w - co)klK", - k",)A j", 

X ('Y}k2 
- iW)-I['Y} Ix - kl 2 

- i(w - w)rl[('l']e - ico)['l'] Ix - kl 2 
- i(w - w)] + Aj",k;(K", - k",)] 

X [('l']k2 
- ico)['l'] Ix - kl 2 

- i(w - w)] - ke(K/l - k/l)A/le]*-1 

+ Aab(k, x, w, w)d[('l']k2 
- iw)['l'] Ix - kl 2 

- i(w - w)] + Ajak;(K", - ka)]}, (23) 

where we have written for brevity Px-l === X*-l. Also Aab is a tensor, as yet unknown. Suppose, for illustrative 
purposes only, that Aja = Ad;"" where A is real and positive. Then Eq. (23) becomes 

Pab(x, w) = -A f d3k dw{BaCk, W)Bb(X - k, w - w)(k· x - k2
) 

X ('l']k2 
- iW)-I['Y} Ix - kl 2 

- i(w - w)rl [('l']k2 
- ico)['l'] Ix - kl 2 

- i( - ww)] - A(k· x - k2
)] 

X [('l']k2 
- iw)['l'] /x - kl 2 - i(w - co)] + A(k. x _ k2)]*-1 

+ Aab(k, x, w, co)d[('l']k2 
- iw)[1'} Ix - kl 2 

- i(w - w)] + A(k. x - k2
)]}. (24) 

By inspection of Eq. (24), it is clear that we require 
more information before we can obtain Pab(x, w). 
First we require the behavior of BaCk, w). This 
depends on boundary and/or initial conditions 
together with source terms. So, until some specific 
problem is under consideration, no general statement 
about Ba(k, co) can be made (except, of course, for 
the usual divergence condition kaBa = 0). 

Second we require the functional form of 

Aab(k, x, w, co). 

As has been shown elsewherell- 13 knowledge of Aab 
depends on initial value and/or boundary value state
ments for the fluctuating quantities. For example, we 
could demand that (bBa(x, O)dBb(X, 0» = 0, which 
would then relate Aali to integrals over the large-scale 
field B. 

We see then that the singular eigenfunction 

approach to Pab(x, w) leads automatically to a well
posed problem in which the singularities (Le., the 
normal modes of the homogeneous problem) act to 
"absorb" the divergencies of the particular solution 
(represented by the principle value integral over the 
large-scale field). The arbitrary tensor Aab is to be 
found in standard manner by consideration of initial 
value and boundary value conditions. 

Before we can consider Eq. (24) in any detail, it is 
clear that we need the behavior of BaCk, w) in order to 
evaluate the integral over k, co occurring in Eq. (24). 
We defer any discussion of this until Sec. V. 

Consider now the "short-sudden" approximation. 

IV. FLUCTUATIONS IN THE SHORT-SUDDEN 
APPROXIMATION 

With n//l(k, w) = DI/l' where DI/l is a constant 
tensor independent of k and co, Eq. (18) reduces to 

Rab(k] , WI ; X - kl' W - WI) = -(h)-sklj(K", - klr.)('l']k~ - icolrl['l'] Ix - kll
2 

- i( w - Wl)rl 

x DI/l€aik€klm€b"'P€P/lVP m.(x, w) 

where 

- (21T)-SkdK" - kla)('l']k~ - i(1)-l['l'] Ix - k l l2 
- i(w - Wl)t

1 

X €ajk€klm€b"p€p/lv f d3K dQ{ Bm(x, Q)Bv(x - K, 'lIT - Q)DI/l 

- €mpq€vrs€qef€sghDIgD/leBh(K, Q)Bf(x - K, 'lIT - Q) 

x f d3k dwkp(Kr + kr - klr)('l']k
2 

- iCO)-l['l'] IK + k - kll
2 

- i(Wl - Q - w)tl } , 

(25) 

Pmv(x,'lIT) = (21T)Sf Rmv(k, w; x - k,'lIT - w) d3k dw. 

(26) 
Note the crucial difference in the reduced Bethe-

Sa1peter equation for the long-slow and short-sudden 
approximations. In the former, Eq. (18) reduces to an 
algebraic equation for Rab [cf., Eqs. (21) and (22)], 
while in the latter the reduction leads to an integral 
equation for Rab [cf., Eq. (26»). 
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Further, as Parker2•3 has remarked, in the short
sudden approximation one has infinitesimal turbu
lence occurring at an infinite rate. The mathematical 
expression of this physical statement has been con
sidered elsewhere in considerable detaill

-
4 under a wide 

variety of circumstances. In the present context the 
statement of infinitesimal turbulence occurring at an 
infinite rate requires DIP. to be infinitesimal, as we 
now demonstrate directly. 

Consider the integral 

Ivr = f d3k dwkiKr + k, - k1r)('Y)k2 - iW)-l 

X ['Y) IK + k - k l l2 
- i(WI - 0 - w)]-t, (27) 

which occurs in the last term on the right-hand side of 
Eq. (26). Upon performing the integral over w, we 
have 

Iv, = 21T f d3kkiK, + kr - k1,) 

x ['Y) IK + k - k112 - i(Wl - 0) + 'Y)k2]-I. (28) 

With ~ = k + i(K - k1) Eq. (28) becomes 

Ivr = 21T f d3~[,v - HKv - k1V)m, + HK, - k1r)] 

X [2'Y),2 + i'Y) IK - k112 - i(WI - O)rl
• (29) 

Upon performing the angular part of the ~ integral in 
Eq. (29), we have 

Iv, = 81T2 Lt' ,2 d, 

x [H2!5pr - HKv - k1V)(K. - k l ,)] 

x [2'Y)~2 + i'Y) IK - k112 - i(wl - 0)]-1. (30) 

And the integral over' in Eq. (30) diverges as , -+ 00. 

In order to circumvent this divergence, we follow 
Parker's physical statement; its mathematical expres
sion is to write DZIl = !DZIl[!;' ,2 d,]-I, and regard 
!DZIl as finite so that DZIl is infinitesimal (alternatively 
we can run all divergent integrals up to some large 
wavenumber, say k*, define DZIl = !DzIl3k;3, and let 
k* -+ 00 after performing all computations with !DIll 

held finite so that DZIl is infinitesimal). 
Then write 

(31) 

or, equivalently, ~ZIl = !DzIl41T2/3'Y). 
Upon integrating Eq. (25) over d3k l dW I and using 

Eq. (31), we obtain 

P m.(x, 'IIT)[!5ma!5.b - ~zll!5~j€ajk€kzm€baP€PIl'] = €aikf.kzm€baP€PIl.!5j~ f d3K dO 

x {~zIlBm(K, O)B.(x - K, 'lIT - 0) 

- !5vr€mvq€.rs€Q.'€sgh~Zg~lleBh(K, O)B,(x - K, 'lIT - On. (32) 

In order to compare and contrast the fluctuation spectra in the long-slow approximation with the short
sudden results we take, for illustrative purposes only, ~ij = ~(jii' Then Eq. (32) can be solved for Pab(x, 'lIT), 
since it is only algebraic, yielding 

And then 
~(3 +~) 

(1-2~) 

x f d3K dOBm(K, O)Bm(x - K,'IIT - 0). (34) 

But we have 

G: == B(x, t) • B(x, t) 

= f d3K dOBm(K, O)Bm(x - K, 'lIT - 0) 

X exp [i(x . x - wt)] d3x d'llT. (35) 

(33) 

So, from Eqs. (13), (34), and (35) we have 

(J(f == «JB(x, t) . (JB(x, 1» = ~(3 + ~)(1 - 2~)-1<f. 

(36) 

The ratio of energy density stored in magnetic 
fluctuations to that stored in the large-scale field is 

!5<f/<f = ~(3 + ~)(1 - 2~). (37) 

From Eq. (37) it is clear that, in order to keep the 
energy density stored in the fluctuations at a finite 
level, we require 2~ < 1. 

But, prime facie, there is no mathematical, or 
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physical, reason, either explicit or implicit, why the 
"strength" of the velocity turoulence should be re
stricted to less than some fixed level (except, of course, 
for the a posteriori reason that energy density is 
positive and finite). 

In order to account for this apparent dichotomy, we 
note that, although we have replaced the two-point, 
two-time velocity fluctuations by b-function corre
lations in (x, t) space for mathematical convenience, 
in reality they will extend over finite domains in both 
space and time. This complicates the analysis of Eq. 
(18) vide Eq. (25). In particular, instead of an equation 
whose structure is the same as the left-hand side ofEq. 
(32), we would arrive at an equation whose structure 
has k and co dependence in its left-hand side, as does, 
for example, Eq. (22). 

That is to say, in physical reality we would arrive at 
an expression of the form [1 - 2tif (x, 1lT)] instead of 
(1 - 2~). This would give rise to singular eigen modes 
in much the same manner as were obtained in the 
long-slow approximation (Sec III, q.v.). 

An alternative way to look at this point of view is 
to note that neither Eq. (33) nor Eq. (34) admits of 
any freedom in choice of boundary conditions for 
(bBabBb)' Once the boundary conditions on the 
large-scale field are specified, according to Eq. (33) 
the fluctuation field intensity is uniquely specified. 
This apparently contradicts the original Eqs. (1) and 
(2) which allow for boundary value and/or initial 
value statements on both Band bB. 

But under the strong statement of the "short
sudden" approximation (see Ref. 1, Footnote 3) the 
fluctuations are not convected, sheared, nor diffused 
during their lifetime. And under this statement it is 
clear that we are restricting our consideration of Eq. 
(2) to the particular solution. So there is no contra
diction with the original equation. 

To sum up: (1) Under the mathematical assumption 
of b-function velocity correlations, the physics of the 
problem requires ~ < t. [This corresponds to the 
strong statement of the short-sudden approximation 

(Ref. I, Footnote 3).] (2) Under the physical assump
tion of finite (but very small) range velocity correlations 
the mathematics of the problem requires the addition 
of the singular van Kampen modes as also occurred in 
Sec. III in order to allow for boundary and/or initial 
value statements on Pab(q, t). [This corresponds to the 
weak statement of the short-sudden approximation 
(Ref. 1, Footnote 3).] 

Under the present conditions we are working in the 
strong statement of the short-sudden approximation 
and then ~ < t for physical reasons. 

The solution of the reduced Bethe-Salpeter tensor 
equation for the fluctuations involves the large-scale 
field. And while it is possible to determine the "struc
ture" of the fluctuations in terms of integrals over the 
large-scale field (and in the case of the short-sudden 
approximation it is possible to compute the relative 
energy density stored in fluctuations to that stored in 
the large-scale field), it is clear that we require the 
behavior of the large-scale field in order to obtain 
absolute levels of fluctuation intensity rather than 
relative levels [cf. Eq. (37)]. 

So we now consider the large-scale field. 

V. THE LARGE-SCALE FIELD AND THE DYSON 
EQUATION 

From Eq. (1) we have 

(:t -1]\7
2)B - V x (bv(x, t) x bB(x, t») 

= V x Sex, t). (38) 

We have written the right-hand side of Eq. (38) as 
V x S instead of zero, so that all boundary value 
and initial value statements on B are to be considered 
as incorporated in S. 

Using the Green's function for bB, together with 
the statement that the statistical properties of bv are 
such that all correlations entering Eq. (38) are reducible 
to the two-point, two-time level, we obtain Eq. (38) 
in the form 

(
0 t'72)B 0 Ia3 , a '(.It ( ).i (' , iJGo ( , , " aSk ;- - 1] V i + EijkEkabEb!mEmjlv;- X t uVa x, t UVjl x , t » -, x, x , t, t )Bv(x , t) = Eijk - (x, t). (39) 
ut UX j ax! aX j 

With 

Bi(x, t) = f §i(X, x', t, t') d3
x' dt', 

we have the propagator equation for the large-scale field as 

( a t'72)~ ( f t t f
) + a fd3 "a n ( , ') aGo ( " ")'" (" , " ') -a - 1]V i x, x, , EijkEkabEb!mEmjlv - X t all X - x, t - t -If x, x , t, t tlv X , X , t , t 

t aX j ax! 

aSk (' '.It ').It , = Eijk -a x , t )u(x - X u(t - t ), x; 

(40) 

(41) 
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where we have used Eq. (l6a) to rewrite the two-point, two-time velocity correlation. We recognize Eq. (41) as 
the vector form of Dyson's equation. 

Upon Fourier-transforming Eq. (39) in both space and time, we obtain, after some elementary but tedious 
integrations, 

('fjk2 
- iw)B;(k, w) + E"ijkE"kabE"blmE"mllv f aSk' aw'TIaik - k', w - w')k;k;C'fjk,2 - iW')-lB.(k, w) = E"ijkkjSk(k, w), 

(42) 

where, since kiBi = 0, we have written the Fourier 
transform of the source term at right angles to k. 

Consider now the structure of the solution to Eq. 
(42) under both the "long-slow" and the "short
sudden" approximations for TIall . 

A. The Large-Scale Field in the Long-Slow Approximation 

Here, as before, we set 

TIull(k, w) = Ar5allr5(k)r5(w), (43) 

when Eq. (41) becomes 

B;(k, w)[(1)k2 - iw) + k2A('fjk2 - iW)-l] 

= E";jkkjSk(k, w), (44) 
with 

Bi(k, w) = Eiikkjgk(k, w)[('fjk2 - iW)2 + k 2A]-r, (45) 

where we have absorbed a factor ('fjk2 - iw) into Sk 
and have therefore written gk = ('fjk2 

- iW)Sk' 
Note that the dispersion relation for the large-scale 

field [given by setting the coefficient of Bi to zero in 
Eq. (44)] is not the same as the dispersion relation for 
the fluctuation intensity (given by the zeros of the 15 
function in Eq. (24)] indicating that a single normal 
mode of the large-scale field does not act as a source 
of a single mode for the fluctuation magnetic field. 
Instead it generates a band of k and w values giving 
rise, therefore, to nonlinear mode-mode coupling 
terms in the fluctuation field. 

In particular, note that, for the large-scale field, 
those normal modes with 1)k < Ai are regenerative 
while those with 1)k > Ai are degenerative. The 
correspondence to be made with the fluctuation 
intensity is to note that at x = 0 = 'lIT the 15 function 
in Eq. (24) contributes to Pab(O, 0) for 'Yjk > Ai and 
does not contribute for 1)k < Ai, thereby representing 
the "break" between regeneration and degeneration of 
the normal modes of the large-scale field. For real 
values of x and 'lIT differing from zero in Eq. (24), the 
15 function contributes when both 

w Ix - kl 2 = _k2('lIT - w) (46a) 
and 

r;2k2 Ix - kl 2 + w(w - w) = A(k2 - k' x) (46b) 

are satisfied. 
There is no obvious direct representation of the 

"break" between regeneration and degeneration of the 
large-scale field normal modes under these more 

general conditions (x ¢ 0 ¢ 'lIT) due to the nonlinear 
[in (k, w) space] coupling of modes. 

Further, ~n order to evaluate the integral occurring 
in Eq. (24), we need initial value and/or boundary 
value statements about both Blx, t) and Pab(x, t) in 
order to (i) use Eq. {44) in the principle value integral 
in Eq. (24) and (ii) obtain an explicit representation 
of Aab(X, 'llT). Such statements clearly depend on the 
particular problem at hand. In the present analysis, 
in which we are concerned with the basic structure of 
the equations describing kinematic dynamo action, we 
reluctantly forego discussion of any such particular 
systems and/or situations. 

Consider now the opposite extreme. 

B. The Large-Scale Field in the Short-Sudden 
Approximation 

Here we set 
(47) 

and remember that, from Sec. IV, we require D to be 
infinitesimal in order that the fluctuation field energy 
density be finite. Then Eq. (42) becomes 

Ri(k, w)(r;k2 - iw) = E"iikkjSk(k, w), (48) 

since the velocity fluctuations do not contribute to the 
large-scale field in this approximation as can be seen 
directly by inspection of Eq. (42) using Eq. (47). 

So, unless the boundary and/or initial value con
ditions are such as to be proportional to Bi(k, w) and 
hence lead to the possibility of regenerative states, 
under the short-sudden approximation, with no large
scale sheared velocity field present, the physical 
situation described by Eq. (48) corresponds to decay 
of the large-scale field. Once again note that the 
dispersion relation for the large-scale field ('Y}k2 -
iw = 0) is not the same as the dispersion relation for 
the fluctuation intensity, which, in the present 
mathematical statement of r5-function approximations 
to the two-point, two-time turbulent velocity correla
tions is 1 - 26. = O. But the physical constraints 
ensure that this is never satisfied, since the finite 
energy density [Eq. (27)] requires 6. < t· 

VI. DISCUSSION AND CONCLUSION 

In the present paper we have discussed the basic 
equations describing kinematic dynamo theory in a 
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stationary, unsheared medium beyond the level of 
first-order smoothing theory. In particular, under the 
single assumption that the statistical properties of the 
velocity turbulence were such that all correlations 
entering Eqs. (7) and (38) were reducible to the two
point, two-time level, we obtained both the tensor 
Bethe-Salpeter equation (in 16 variables) and the 
vector Dyson equation (in eight variables) describing 
exactly the Maxwell stress tensor of the random 
component of the magnetic field and the exact 
behavior of the large-scale ensemble average field, 
respectively. 

These equations were investigated further under the 
assumption that the two-point, two-time velocity 
tensor correlation was both stationary and homoge
neous. 

We found that, under the "long-slow" approxi
mation, the behavior of the normal modes of the 
large-scale field changed from regenerative for small 
wave numbers ('Y)k < Ai) to degenerative at large 
wave numbers ('Y)k > Ai). This structure appeared in 
the equation describing the fluctuation intensity [Eq. 
(24)] through both the b function [whose tensor 
coefficient represents initial value and/or boundary 
value statements on Pab(x, t)] and the principle value 
integral. It was most readily apparent at)( = 0 = 'llT 

when the 0 function contributed to Pab(O,O) for 
'Y)k> Ai, but did not contribute for 'Y)k < Ai. 

Under the "short-sudden" approximation we 
demonstrated that the mathematical approximation of 
b functions for the velocity turbulence gave rise to a 
physical restriction that the intensity of the turbulence 
(in suitable units) must obey 2~ < 1 in order to 
preserve physical sense. We also argued that a more 
physical approximation to the velocity turbulence 
viz., finite space and time scales for the correlation 
of one fluid velocity element with another, would 
have led us back to an equation involving singular 
eigenfunctions as obtained in the long-slow approxi
mation. This regression is necessary on physical 
grounds in order to include initial and/or boundary 
value effects in the fluctuation equation [Eq. (2)]. 
These would otherwise be overlooked in a mathe
matical b-function statement of the strong form of the 
"short-sudden" approximation. 

We also demonstrated that the large-scale magnetic 
field has, in general, a different characteristic behavior 
than the fluctuation intensity-as represented through 
the dispersion relation for the large-scale field on the 
one hand and the zeros of the b functions representing 
the singular eigenfunction statement on the other. 

In particular: (i) The change over from regeneration 
to degeneration of the normal modes of the large-scale 
field in the long-slow approximation is incorporated 

in the fluctuation intensity equation. However, there is 
not a transparent correspondence between the two 
except when )( = 0 = 'llT in the fluct~ation intensity 
equation; (ii) the degeneration of all the normal 
modes of the large-scale field (barring regeneration due 
to boundary conditions) in the short-sudden approxi
mation is not reflected in the fluctuation intensity equa
tion except through the selection rule 2~ < 1. And 
this latter arises because of the mathematical b-function 
statement of the "short-sudden" approximation. 

We should, perhaps, point out that the statistical 
properties of the velocity turbulence used in the 
present paper are by no means the most general form 
of turbulence available. They do have the advantage 
that the fluctuation intensity equation and the mean 
field equation can be simply studied with the minimum 
amount of mathematics concomitant with physical 
understanding. 

We would, of course, be interested in seeing more 
detailed developments of the properties of fluctuating, 
and ordered, magnetic fields than has been given here. 
Our development was intended to illustrate some of 
the basic properties of kinematic dynamos when the 
equations describing such dynamos are handled 
exactly rather than approximately as is the con
vention. The results contained in this paper should be 
viewed in that light. Different statistical descriptions 
of the velocity turbulence than those incorporated 
here will undoubtedly change the detailed structure of 
the fluctuation intensity equation and the ordered 
field equation. But the basic mathematical and 
physical properties (viz., the "singularities" of both 
the Bethe-Salpeter equation and of the normal modes 
of the Dyson equation) of exact kinematic dynamo 
theory will remain essentially as described herein. 

ACKNOWLEDGMENTS 

This work was supported by the United States Air 
Force, Air Force Systems Command, under contract 
F -19628-69-C-0041. 

1 I. Lerche, Astrophys. J. 164,627 (1971). 
2 E. N. Parker, Astrophys. J. 122,293 (1955). 
3 E. N. Parker, Astrophys J. 162, 665 (1970); 163,279 (1970). 
4 I. Lerche and E. N. Parker, Astrophys J. (August) (1971) (to be 

published). 
5 M. Steenbeck, F. Krause, and K. H. Radler, Z. Naturforschr. 

21, 369 (1966). 
• M. Steenbeck and F. Krause, Z. Naturforschr. 21,1285 (1966). 
7 S. I. Braginskii, Zh. Exp. Teor. Fiz. 47, 1084, 2178 (1964) 

[Sov. Phys. JETP 20, 726, 1462 (1964)]. 
8 K. H. Moffatt, J. Fluid Mech. 41, 435 (1970). 
9 U. Frisch, "Wave Propagation in Random Media," in Proba

bilistic Methods in Applied Mathematics, /, edited by A. T. 
Bharucha-Reid (Academic, New York, 1968). 

10 S. S. Schweber, Mesons and Fields (Row, Peterson, New 
York, 1956), Vol. I. 

11 N. G. van Kampen, Physic a 21, 949 (1955). 
12 I. Lerche, J. Math. Phys. 8, 1838 (1967). 
13 K. M. Case, Ann. Phys. (N.Y.) 7, 349 (1959). 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 12, NUMBER 8 AUGUST 1971 

Korteweg-de Vries Equation and Generalizations. IV. The Korteweg-de Vries 
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It is shown that if a function of x and t satisfies the Korteweg-de Vries equation and is periodic in x, 
then its Fourier components satisfy a Hamiltonian system of ordinary differential equations. The associ
ated Poisson bracket is a bilinear antisymmetric operator on functionals. On a suitably restricted space 
offunctionals, this operator satisfies the Jacobi identity. It is shown that any two of the integral invariants 
discussed in Paper II of this series have a zero Poisson bracket. 

I. A VARIATIONAL PRINCIPLE AND ITS 
HAMILTONIAN FORMULATION 

The Korteweg-de Vries equation 

Ut = UU'" + u"''''''' (I) 

(subscripts denoting partial differentiations) can be 
derived from the variational principle 

where 

b f L dt = 0, 

L == f (icp",CPt - tcp! + H;",) dx (2) 

andcp is a potential for u; that is, 

U = cp",. 
(It is understood here that bcp has compact support.) 
This type of variational principle has been discussed 
by Whithaml in connection with a general class of 
systems of partial differential equations, of which the 
Korteweg-de Vries 'equation is the simplest nontrivial 
example. 

We shall assume throughout that u(x) is periodic 
with period 217 and has continuous derivatives of all 
orders. Thus U can be represented by means of its 
Fourier coefficients Un' which are complex constants 
"uch that 

00 

u(x) = L u./n
",. (3) 

n=-oo 

If the functional F and function / are defined by 

F{u} == f'-f(U, u"') dx == flT(tu3 - !u!) dx, (4) 

then (2) yields the Korteweg-de Vries equation in the 
form 

(5) 

Here ~F/~u means the functional derivative of F 
with respect to u. In general, if F is a functional and 

U(x,ex) is its argument function, depending on a 
parameter ex as well as on the variable x, then the 
functional derivative bF/bu is defined by 

d i2
" bF au -F{u} = --dx. 

dex 0 bu oex 
(6) 

Now the functional F{u} may be regarded as a/unction 
of the variables Un' Its partial derivative with respect 
to Uk is given by (6) and (3), as follows: 

of = {2lT bF eik'" dx. 
aUk Jo bu 

(7) 

Hence, we have the formula 

of =..!. i: of in"'. 
bu 217 n=-oo OU_n 

(8) 

Putting this into (5), we obtain the differential 
equations satisfied by the Fourier components Un' as 
follows: 

dUn i of 
-=-n--. 
dt 217 aU_n 

(9) 

Now (9) is essentially a Hamiltonian system. The 
analogy becomes exact if one defines (for n > 0) 

qn == un/n, Pn == U-n' H == (i/217)F. (10) 

Then (9) becomes 

dqn oB dPn oB 
-=-, -=--
dt 0Pn dt oqn 

(11) 

In terms of the variables qn and Pn one can define the 
Poisson bracket of two functionals, F and G, as 
follows: 

(F, G) ==.i. i (OF oG _ of OG), 
217 n=1 oq" OPn. OPn oqn 

which, by (10), is the same as 

(F G) - .i. i (n of oG _ n of OG) 
, - 217 n=1 OUn OU_n oU_n OUn 

= J... ! n of oG . 
217 n=-oo OUn OU_n 

(12) 

(13) 

1548 
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Using (8), we see that the Poisson bracket also is 

(F, G) = (2u tlF ~ tlG dx. (14) 
Jo bu ox tlu 

From now on it will be assumed that the functionals 
with which we shall deal are representable as integrals, 
as follows: 

F{u} = f"f(X, u, ux , Uxx ,· .• ) dx, (15) 

where f is an infinitely often differentiable function of 
x, u, and a finite number of derivatives of u and where 
f is defined for all values of its arguments. Then, if F 
and G are two such functionals, so is the Poisson 
bracket (F, G) defined by (14), since we have the 
familiar Euler expressions for the functional deriv
atives. Indeed, 

of 
OU = Yo/, 

where the operator Yo is defined by 

o 0 0 o~ 0 
Yo == - - - - + -2 - . . . . (16) 

OU ox aux ax au xx 

The Jacobi identity can now be verified. This is 

«F, G), H) + «G, H), F) + «H, F), G) = O. (17) 

If it were legitimate to make free use of (13), it would 
be very easy to verify (17). The difficulty, of course, is 
that one is not sure of the convergence of the infinite 
series one uses in this calculation. However, this 
difficulty can be avoided: Let g and h be the functions 
related to G and H as f is to F in (15). Suppose that 
f, g, and h are polynomials in the variables u, ux , etc. 
Suppose that the argument function is 

N 

uN(x) = ~ uneinX. 
n~-N 

Then it is easily seen that if Ikl is large enough (how 
large depends on N and also on the polynomialsf, g, 
and h) we have 

aF = 0 aG = 0 aH = O. 
aUk 'aUk 'aUk 

In this case, in (13) and (17) we have only finite sums 
and we conclude rigorously that (17) is correct. Now 
let uN tend to u by making N tend to infinity. Each term 
of (17) will tend to the correct limiting value [expressed 
by (14) and (16)]. We thus have removed the restriction 
that u be a trigonometric polynomial. Now we remove 
the restriction of f, g, and h to polynomials, by 
another limiting process. In the terms of (17), only a 
finite number of partial derivatives off, g, and h occur, 

and one can find a sequence of polynomials fN, gN, 
and hN which tend uniformly to f, g, and h and a 
finite set of whose derivatives tend uniformly to the 
corresponding derivatives of f, g, and h. This com
pletes the proof of Jacobi's identity (I 7). Thus, the 
operator (14) and the space of functionals (15) define 
an infinite-dimensional Lie algebra. 

II. INTEGRAL INVARIANTS 

It was shown in Ref. 2 that the Korteweg-de Vries 
equation (1) possesses an infinite sequence of conser
vation laws-equations in the form 

aTn aXn - + - = 0 n = 1 2 3 ... (18) 
at ax ' , " , 

where Tn , the conserved density, and - X n , the flux 
of Tn, are polynomials in u, u." ux,", etc. The poly
nomials Tn and Xn are of uniform ranks, nand n + I 
(see Ref. 2). 

In this section we shall consider the functionals 

Fn{u} = f" Tn dx, 

where U is assumed periodic. If u depends on t as well 
as on x and satisfies the Korteweg-de Vries equation 
(1), then the functionals Fn are constant in time and 
may be called integral invariants. It happens that F3 
is the Hamiltonian functional which yields the 
Korteweg-de Vries equation in the form (5). The fact 
that F3 is an integral invariant then can be seen as 
follows: 

OF3 = (2" ( tlF3) au dx 
ot Jo tlu at 

= (2" (tlF
3)i.(l!F3) dx = O. (19) Jo ou ax ou 

The statement that Fn is an integral invariant for the 
Korteweg-de Vries equation is equivalent to the 
formula 

that is, the Poisson bracket (Fn, F3) vanishes. We will 
now show that in general 

(21) 
for all m and n. 

The first step is to show the following theorem. 

Theorem: A conserved density of uniform rank 
yields a nonzero integral invariant if and only if the 
rank is an integer. 
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Proof: If the function U be expressed in terms of its 
Fourier series, then an integral invariant with con
served density of rank r is of the following form: 

F= ~ A(m)(l1,12,"',lk)UI,UI2,"',Ulk 
11+1.+"'+!k=0 

+ ~ A(m-2)(l1,12,"',lk+1) 
h+12+"'+lk+l=0 

X uh ••• U1k+l + . . . . (22) 

Here Aim) is a homogeneous polynomial of degree 
m = 2r - 2k and A(m-2) a polynomial of degree 
2r - 2(k + 1), etc. Clearly we may assume that these 
polynomials are symmetric. 

Now, if F is to be invariant, we have, by (9), 

Theorem: The Poisson bracket of any two integral 
invariants of the Korteweg-de Vries equation is zero. 

The proof uses Jacobi's identity. In fact, we have 

«F m' Fn), Fa) + «Fn, Fa), F m) + «Fa,F m), Fn) = 0, 

and the last two terms will be zero if F m and F n are 
integral invariants. Hence, we see that 

will be an integral invariant; but the rank of the 
density of (F m' Fn) is seen by (14) to be 

m - I + n - 1 + t, 
which is not an integer. Hence, it follows that, 

i: n oFa of = O. 
n=-C(; oU_n oUn 

(23) (Fm,Fn) =0. (27) 

Here Fa is given by (4), or 
<Xl 

Fa = 27T I tn 2unu_n + i I uh ' U l., u 1a ' (24) 
n=1 11+12+13=0 

If now (23) is evaluated with the aid of (22) and (24), 
a series of terms results. The terms containing exactly 
k different wave numbers 11, 12 , ••• , Ik arise from the 
first term of (22) and the first term of (24). This must 
be zero. The coefficient must be zero after being made 
symmetric. This yields the following: 

(l~ + I~ + ... + 1~)A(m)(lI' ... , lk) = SaA = 0, (25) 

provided 
II + ... + lk = 0 = SI' (26) 

Now it can be shown that (1) if k = 2 and m is odd, 
then SI = 0 implies A = 0 and (2) if k > 2 and SI = 0 
implies SaA = 0, then SI = 0 implies A = O. The 
first part follows if we observe that, for SI = 0, 
interchanging 11, 12 is the same as reversing the sign 
of each, and the interchange leaves A fixed because A 
is symmetric; and reversing the signs changes the sign 
of A because A has odd degree m; hence, A = O. 
Part (2) can be proved by noting that A can be written 
as a polynomial in SI, S2, ... , Sk' where 

Si = I~ + l~ + ... + n. 
If we set SI = 0, then A becomes a polynomial in 
S2, Sa,'" , Sk' Here, the S2, Sa,'" , Sk may have 
arbitrary values, and hence SaA = 0 must be an 
identity. It then follows that A = O. 

Thus we have shown that there is no integral in
variant whose conserved density is of nonintegral rank 
but zero; for if r is not an integer, the integer m = 
2r - 2k must be odd. 

Now we can prove the following theorem. 

Now, if we regard 

as defining an operator on the space of functionals H 
akin to a directional derivative, then (27) shows that 
the operators defined by F m and Fn commute. One 
obtains an especially interesting formula in this way 
by choosing for H the functional which assigns to the 
function u(x) its value at x = xo. This functional does 
not belOlig to the class for which we have proved 
Jacobi's identity. However, the result is valid. We 
may state it as follows: Let the functions gm (of x, u, 
u"" u"''''' etc.) be defined by 

a (DFm) a 
gm = ox Du = ox Yofm· 

Then the following commutation law follows from 
(27): 

(
0+,0 ,,0 ) = gn- gn- + gn-- + ... gm' 

au au", au",,,, 
(28) 

Here, 

" 0
2 

gm = ox 2 gm' etc. 

To show this, we proceed as follows: The left-hand 
side of (28) would be the value of ogn/ooc if u(x, oc) 
were to depend on oc in such a way that 

au 
-= gm' ooc 

(29) 

Going to the Fourier representation, we see that (29) is 

aUk = ik oFm 
ooc 27T OU_k 
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Thus, (28) is the following: 

I ik aF m ~(L ik aF n eik;) 
21T aU_k aUk 21T aU_ie 

and the right-hand side is 

I ik aFn ~(L ik aFm eikX). 

21T aU_ie aUk 21T aU_k 

The difference between the two sides is now 

I ik eikX _a_(1 ik aF m aF n) 
21T aU_k 21T aU_k aUk 

= ~2ik eikXaO (Fn' Fm) = 0, 
1T U-k 

which proves the statement-at least when the above 
series terminate. As before, this can be extended to the 
general class of functionals to which Fm and Fn 
belong. 

III. CANONicAL TRANSFORMATIONS 

We shall now show formally how one can define a 
canonical transformation which transforms a solution 
U of an equation of the type 

aU a (jF 
-=--
at ax (ju 

(30) 

into a solution u' of an equation 

aU' a of ----
at ax Ou' , 

(31) 

where F is numerically equal to F but depends in a 
different way on u'. 

In fact, one obtains such a transformation in terms 
of a generating functional 'Y, if one can solve the 
following for u': 

u' = u + ~ ~ 'Y(u) (32) 
ax (ju ' 

where u is defined by 

ii = l(u + u'). (33) 

To see this, let us define cfo, cfo' as two potential 
functions such that 

ocfo acfo' , 
-=u 
ax ' 

-=U. 
ax 

(Now cfo and cfo' are not periodic, in general.) We go 
back to the variational principle (2). We see that (32) 

can be written in the following two ways: 

,J. _,J.' _ ~l.'Y 
'f'x - 'f'x ax Oil ' (34) 

,J.' =,J. + ~l. 'Y. 
'f'x 'f'x ax (jii (35) 

Let us multiply (34) and (35) by CPt' cP; and subtract, 
and integrate with respect to x; we obtain 

or 

+ dx dt - ( - cP cPx) - 2 - dt. Jf a , J d'Y 
at dt 

It follows now that 

(j Jf(cPXcPt - cP~cP;) dx dt = 0 

(if (jcP has compact support), and hence 

o(JJ cPxcPt dx dt - 2f F dt) 

= (j(fJ cP~cP; dx dt - 2J F dt) (36) 

if F is any functional of cPx. Now (30) implies the 
vanishing of the variation on the left of (36), which in 
turn implies vanishing of the right of (36), which 
implies (31). 
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It is shown that, for three particles interacting via potentials that are bounded and decrease at least as 
fast as r-i, the Green's function of the Schrodinger equation at physical energies can be calculated by 
the classical Fredholm methods for 1.:2 kernels. . 

1. INTRODUCTION 

The central question in the quantum mechanical 
three-body problem is the construction of the Green's 
function 

(E - Ho - VI - V2 - Va)-l = GI2a (E) (1.1) 

in the center-of-mass system, if VI' V2 , and Va are 
the potentials between particles 2 and 3, I and 3, and 
1 and 2, respectively, and Ho is the kinetic energy 
operator. The technique of Ref. 1 to remove the 
disconnected-diagram difficulties consists of writing 

G12a = (11. - U1 - U2 - Ua)-IGo, (1.2) 
where 

Go(E) = (E - HO)-1 

is the free Green's function and 

Ui = GOVi • 

Then 

(11 - U1 - U2)-1 

= :Rl :R(b2 bl):R2 = :R2:R(bl b 2):R1 

(1.3) 

(1.4) 

=11 + :R1:R(b2b 1)b2 + :R2:R(blb2)b1, (1.5) 
where 

:Ri = :R(Ui) = (11 - Ui )-1, 

b; = b(Ui ) = U;(l1 - U;)-1 = :Ri -11 , 

and we get 

(11 - U1 - U2 - Ua)-1 

= [11 - (11 - U1 - U2)-IUa]-1(11 - U1 - U2)-1 

= :Ra:Ra:R2:R(bl bJ:R1 
= (11 - U1 - U2)-1 

+ (11. - U1 - U2)-11J3:Ra(11. - U1 - U2)-1 

(1.6) 
with the abbreviation 

ia = [11 - :R2:R(blb2)blba - :R1:R(b2b 1)b2b a]-I. 

(1.7) 
In a more familiar notation these equations read 

G12 == (E - Ho - VI - V2)-1 = (11 - U1 - U2)-IGO 

= (11 + GOT1)(:ll - GOT2GoTl)-lG2 

= (11 + GoT2)(11 - GOTI GOT2)-lG1 , (1.8) 

G123 = (11 + GoTa)aG?R12 = G12 + G12Ta:RaG12' (1.9) 

:Ra = [11 - (11 + GoT2)(11 - GOTIGoT2)-IGoTIGoTa 

where 

and 

(11 + GOTl)(l1 - GOT2GoTl)-IGoT2GoTa]-I, 

(l.JO) 

(1.12) 

are the two-particle Green's function and T operators 
(on the three-particle Hilbert space), so that 

(1.13) 

Thus the three-body Green's function G12a is expressed 
entirely in terms of two-body Green's functions and 
resolvents of "connected" operators. 

While the manipulations leading to (1.6) result in 
"connectedness," the actual calculation of the neces
sary resolvents, or of the S-matrix elements for physical 
processes, requires the knowledge of more restricted 
mathematical properties of all the constituents of 
(1.6), and particularly at real positive energies. It is 
the purpose of the present paper to prove that, for a 
very large class of potentials [specified in (3.5)], the 
resolvents required in (1.6) or (1.9) may be calculated 
by classical Fredholm methods for £:2-integral kernels. 
This conclusion goes beyond the powerful results of 
Faddeev,2 who showed that the fifth iterate of his 
kerneP is completely continuous in a suitable Banach 
space. It also transcends the results of Rubin, Sugar, 
and Tiktopoulos,4 who showed that, for a super
position of Yukawa potentials, the Fredholm deter
minant of the Faddeev kernel exists. 

The starting point of this paper is an attempt to 
show that an operator such as 

GOT1GoT2 = G1V1G2V2 

is in the Hilbert-Schmidt class (hereafter called HS). 
This, however, is asking too much. One reason why 
for real positive energies it is not in HS is the same as 
that for which the operatorS goY on the two-particle 
Hilbert space (in the center-of-mass system) is not in 

1552 
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in (1.17), and, correspondingly, HS. The remedy there is to factorize6 

V = UV, lui = v, 
and to form vgou, which is in HS. 

(1.14) Oa = O~ + O~, fia = f;a + f;;. (1.23) 

Generalizing this trick, we consider 

0 12 = V2G1V1G2U2 == v2f 12U2 (Ll5) 
so that 

ell - GOT1GoT2)-1 = 11. + f12U2(11. - (12)-IV2 . (1.16) 

We find that for the class of potentials specified in 
(3.5) the kernel of 0 12 is indeed in 1:2, provided that 
the (1, 3) system has no bound states (i.e., g2 has no 
poles). If there are such bound states, then the 
argument becomes more complicated. It is as follows. 

We split up G2 into two parts, 

(1.17) 
where 

G~ = G2(11. - P2), G~ = G2P2' (1.17') 

and P2 is the orthogonal projection onto the subspace 
spanned by the (1, 3) bound states. Concomitantly, 
0 12 is split up 

0 12 = Oi2 + 0~2. (1.18) 

In Sec. 5 the kernel of 0~2 is shown to be in 1:2, and 
0;2 can be written as the product 

(1.19) 
where 

0 12 = V2GIV1P2S2, 

O2 = S"2lP2G2U2, (1.19') 

and S2 is explicitly given in (6.5). It is shown in Sec. 6 
that the kernels of the operators 0 12 , 020~2' and 
02012 are in 1:2• A lemma stated and proved in 
Appendix F therefore shows that the Fredholm 
theory for 1:2 kernels is applicable to the construction 
of (11. - 0 12)-1 and hence, by (1.16), to that of 
(11. - GOT1GoT J-l. 

The next step then is the construction of the resol

vent 3ta given in (LlO). Using (Ll2), we write 

Gua = G12 + G12(11. + VaGa)Va3taG12 

= G12 + G12(11. + VaGa)va9{auaG12 (1.20) 
and get 

(1.21) 
where 

Oa = 013 + 02a + (VaGlul + Vaf21U1)(11. - .(21)-1 

X (V1f2aUa) + (VaG2U2 + Vaf 12U2) 

X (11. - (12)-1(v2f13ua). (1.22) 

The various terms of O~ will be shown in Sec. 7 to be 
in HS, and 0; can be written as the product 

(1.24) 
where 

Oa = vaG1V1PaSa + VaG2V2PaS a 

+ (VaG1u1 + Vaf 21U1)(11. - (21)-lvIG2V2PaSa 

+ (VaG2u2 + vaf12U2)(11. - (12)-lv2GIV1PaSa. 

(1.25) 

It will be shown in Sec. 7 that Qa, QaQa, and Q30~ 
are in HS. Hence the lemma of Appendix F is again 
applicable and shows that Fredholm theory can be 

applied to the construction of ia . 
There remains the possibility that (11. - 0 12)-1 fails 

to exist. This would mean that the three-particle 
system in which particles 1 and 2 do not interact with 
one another (but both interact with particle 3) has 
a bound state. At an energy at which there is such a 
bound state, the calculation of the full Green's func
tion by means of (1.20) breaks down. It should be 
noted, though, that if this should occur at a given 
energy value, then it is only necessary to use one of 
the equivalent expressions 

G12a = G13 + G13(11. + V2G2)V29l2u2Gla (1.20') 

= G23 + G2S (11. + VI Gl)V1ilUIGlS' (1.20") 
with 

i l = (11. - 0 1)-1, 912 = (11. - O2)-1, 

0 1 = 02l + 0 31 
+ VIG2U2(11. - Oa2)-lv2(f321 + f a1)Ul 

+ v1Gsua(11. - 02a)-lV3(f231 + f 21)Ul, (1.21') 

O2 = 0 12 + Oa2 

+ V2G1U1(11. - 0a1)-lv1(fsu + f S2)U2 
+ V2GaUs(11. - 01S)-lvs(f1a2 + f 12)U2. (1.21") 

The same kind of argument used in Appendix F can 
then be used to show that, even if 0 12 , 0la, and 0 23 
all have the eigenvalue 1 at the same energy, G123 does 
not have a singularity.' The fact, however, remains 
that in such a case the present calculational methods 
break down. 

As far as the Fredholm determinant of the three
particle system is concerned, (1.9) shows that the 
denominator factor that appears is given by 

dus == det (11. - Os), (1.26) 
The bound states of the (1,2) system (i.e., the poles where 
of g3) again cause special difficulties. We split up G3 as (1.27) 
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The determinants 

(1.28) 

do not exist and hence neither does det (:II. - 2 Ui)' 
Equivalent factorizations are given by 

d23l = d23 det (:II. - (1) 

d132 = d13 det (:II. - (2), 

d32 = d23 = det (:II. - (23), 

dal = d13 = det (11 - (13)' 

(1.26') 

(1.26") 

(1.27') 

(1.27") 

The result of this paper is that if the potentials 
satisfy (3.5), then each factor in these expressions is 
well defined as a Fredholm determinant of an 1:2 

kernel. If, at the energy considered, there is a bound 
state of the system without interaction between 
particles 1 and 2, then d12 vanishes and det (:II. - Oa) 
is infinite. In that case (1.26) is useless and (1.26') or 
(1.26") should be used.s 

We now turn to the detailed proofs. Section 2 
deals with some kinematic preliminaries, and Sec. 3 
examines the full two-particle Green's function G(E) 
in some detail. Section 4 is preparatory for the study 
of 0~2 in Sec. 5. Section 6 contains the investigation of 
0~2' and Sec. 7, that of °3, There are six appendices. 
In Appendix A we explicitly construct the Green's 
function Go and give bounds for it. Appendix B con
tains a simple evaluation of a product of two Green's 
functions. Appendices C, 0, and E contain some 
auxiliary estimates of multiple integrals. In Appendix 
F we state and prove a lemma mentioned earlier. 

2. KINEMATICS 

We consider a system of three particles in its 
center-of-mass coordinate frame. Let the position 
vectors of the three particles be R1, R2, and R3 and 
their masses ml' m2, and m3. There are then three 
customary sets of coordinates that are convenient to 
use. We shall label them ri and Pi' i = 1,2,3, so that 
r1 is a vector pointing from the third particle to the 
second: 

(2.1) 

and PI is a vector pointing from the center of mass of 
particles 2 and 3 to the position of particle 1: 

PI = [Rl - (m2R2 + m3R3)/(m2 + m3)](2'ul)t, (2.1') 

#1 = m2m3/(m2 + m3), 'u1 = (ml/M)(m2 + m3), 

M = ml + m2 + m3. (2.2) 

The other two sets, rz, P2 and r3, P3' are obtained by 
cyclic permutation of labels. 

The conjugate momenta are 

k._!dPi 
• - 2 dt ' 

or, in terms of the individual particle momenta Pi ,9 

kl = [2Mml (m2 + m3]-t[(m2 + m3)Pl - ml(P2 + P3)], 

ql = [2m2m3(m2 + m3)]-t(m3Pz - m2P3)' (2.3) 

In terms of these variables the kinetic energy operator 
in the center-of mass system is given by 

Ho = k: + q: = -V;; - V:;, (2.4) 

The transition from the set r i , Pi to the set rj , pj is 
made by 

rz = -[(#1#2)!/m3]r1 - (#2/'ul)!Pl' 

P2 = (#I/'uZ)!r1 - [(#1#Z)!/m3]Pl (2.5) 

and cyclic permutations. The Jacobian of this trans
formation is equal to 1: 

a(ri' Pi) = 1. 
a(rj,pj) 

The Hilbert space Je of the three particles in their 
center-of-mass system can be thought of as the set of 
square-integrable functions of the six variables rl , PI 
or, equivalently, of r2, P2 or of r3, P3' This space 
1:2(R6) is the direct product of two Hilbert spaces, 
which we may refer to as the r;-space Je;;), and the 
pi-space Je~i) : 

Je = Je< i) 'x' "CPU) ; 1 2 3 r \61 oJ\"p, • = , , . 
It is also the direct integral of the Hilbert spaces 
Je~il(ki) in each of which the value of the ki momentum 
is fixed. It is useful to view Je from either one of these 
perspectives. 

3. THE TWO-PARTICLE GREEN'S FUNCTION 

Our first task is to study the Green's function 
G(E) of the system when only one pair of particles 
interacts, say 1 and 2, whereas the third is free. We 
assume that the pair interaction is described by a 
local potential V(R2 - Rl), and we use the coordi
nates r3 and P3, which we shall, in this section, call 
simply rand p. We wish to isolate in G(E) the effects 
of possible bound states of the (1, 2) system. 

Let us, to start with, work in the one-particle 
Hilbert space Jer = 1:2(R3). We split up the (real) 
potential in the form 

V(r) = u(r)v(r), v(r) = W(r) I!. (3.1) 

The one-particle free Green's operator will be denoted 
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by go(E); its integral kernel is given b~ 

go(E; r, r/) = - exp (iEt Ir - r/I)/47T Ir - r/l. (3.2) 

Let k(E) be the operator whose kernel iss 

k(E; r, r/) = v(r)goCE; r, r')u(r'). (3.3) 

It is well known that k(E) is an analytic operator
valued function, regular everywhere in the open cut 
E plane. [This follows from the fact that go (E) is the 
resolvent of the self-adjoint operator extension of 

h~r) = _\72 (3.4) 

whose spectrum is the positive real axis.] 
We shall, throughout this paper, assume that the 

potential V satisfies the inequality 

I V(r)1 ~ M(ro + r)-i (3.5) 

for some ro < 00, M < 00. This is certainly stronger 
than necessary for some purposes and probably 
stronger than needed for all. We have not tried to 
press this condition very hard. 

It follows from (3.5) that 

fCdr) JVCr)1 < 00 

and that there exists a constant M' such that for all r 

fCdr') Ir - r'I-2 jV(r')1 < M'. 

Under these conditions the operator k(E) is in HS 
for every value of E in the cut plane, including values 
on the positive real axis,lo.l1 Furthermore, there 
exists a positive constant C < 00 such that 

Ilk(E)II~ == tr k(E)kt(E) ~ C (3.6) 

for all E. What is more,12.13 as IEI---+ 00 with 0 < 
arg E < 27T, 

Ilk(E)112 ---+ O. (3.7) 

These facts imply the following statements about 
the operator 

m(E) = [lL - k(E)]-1, 

in terms of which the t operator is given by 

tee) = vm(E)u. 

(3.8) 

(3.9) 

The operator m(E) is an analytic function of E regular 
in the open cut plane, except for those values En of E 

at which keEn) has the eigenvalue 1. These are the 
bound states of the two-particle system.14 We know 
that each En ~ 0 and that, under assumption (3.5) 
on the potential, their number N is finite.1s Since, 
even for E > 0, m(E) is the resolvent of a completely 
continuous operator, also its boundary values on the 

positive real axis are bounded operators. Equation 
(3.7) implies that for 0 < arg E < 27T, as IEI- 00, 

Ilm(E) - lLll - O. (3.10) 

Let us write geE) for the resolvent operator of 
h = ho + V, i.e., 

geE) = (E - ho - V)-l. (3.11) 

It has the spectral decomposition 

geE) = ~ P n + g'(E), (3.12) 
1 E - En 

where P n is the orthogonal projection onto the 
(finite-dimensional) eigenspace of h at En and g'(E) 
is an analytic function regular everywhere in the open 
cut plane. 

The operator m(E) is related to geE) by the identity 

m(E) = lL + vg(E)u (3.13) 

and consequently 

m(E) = I vPnu + m'(E), (3.14) 
1 E - En 

m'(E) = lL + vg'(E)u. (3.15) 

For E not on the positive real axis, m' (E) is a bounded 
operator, since g'(E) is. For every E =;6 En, n = I, 
2, ... , N, in the cut plane, including on the positive 
real axis, m(E) is a bounded operator,16 and so is the 
first term on the right of (3.14). Consequently, 
the boundary values of m' (E) on the positive real axis 
are bounded operators. What is more, since the first 
term on the right-hand side of (3.14) approaches zero 
in the norm as IEI---+ 00, it follows from (3.10) that, 
as IEI---+ 00 for 0 < arg E < 27T, 

IIm'(E) -lL II ---+ O. (3.16) 

We therefore conclude that for every finite real 
number A there exists a positive constant C < 00 

such that, for all E in Re E ~ A, 

Ilm'(E)11 ~ c. (3.17) 

That is to say, the operator m' (E) is uniformly bounded 
in every such region. 

We now pass to the full Hilbert space Je. Let Go(E) 
be the free Green's operator, i.e., the resolvent of Ho 
given by (2.4): 

It is a convolution operator on each of the Hilbert 
spaces JeT and Jep (that is, it conserves both of the 
momenta k and q). The operator 

K(E) = vGo(E)u (3.19) 
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(in which it must be remembered that both u and v 
are, on Jep , multiples of the unity) is a convolution 
on Jep but not on Jer . If we subject Jep to Fourier 
transformation (thus forming Jek ), i.e., go to the 
momentum representation, then K becomes a multi
plicative operator there. Its kernel on Jek ® Jer [or 
on Jer(k)] then is 

K(E; k, r, r') = v(r)go(E - k2; r, r')u(r') 

= k(E - k2; r, r '). (3.20) 
We now form 

M(E) = [11 - K(E)]-l. (3.21) 

Insertion of (3.23) gives 

N 

G(E)u = ! Go(E)VG(E)P~)u + GoCE)uM'(E) 
1 

N N 
= ! G(E)P~)u - Go(E) ! p~)u 

1 1 

+ Go(E)uM'(E) 

N 

= ! p~)ug~p)(E - En) - Go(E) 
1 

N 

X ! p~~)u + Go(E)uM'(E) (3.27) 
1 

Its k~nel on Jek ® Jer or on Jer(k) is given by because 
m(E - k2; r, r'), and on Jep ® Jer the kernel of M(E) G(E) = Go(E) + Go(E)VG(E). (3.28) 
is We shall write (3.27) in the form 
M(E; r, p; r', pi) 

G(E)u = L(E) + G' (E)u, (3.27') 

= (27T)-3J(dk)eik
,(p-p

O

)m(E - k2
; r, r'). (3.22) where L(E) = G"(E)u in the notation of (1.17) or 

Inserting (3.14) in this, we obtain 
N 

where 

M(E) = ! vp~)uglr)(E - En) + M'(E) 
1 

N 

= ! vG(E)P~)u + M'(E), (3.23) 
1 

N 
L(E) = ! p~)uglr)(E - En) (3.29) 

1 

is the part of Gu that carries the most important 
effects of the bound states in the interacting two
particle systems, and 

G(E) = (E - Ho - V)-l C3.24) with 
G'(E)u = -Go(E)Pu + GoCE)uM'(E) (3.30) 

and we have used the fact that, because P!i) is the 
projection onto the eigenspace of her) at En, we have 

GCE)P~) = glr)(E - En)P~)' (3.25) 

The superscripts rand p here indicate operators 
acting on Jer or Jep only (i.e., multiples of unity 
on the other space). The (multiplicative) operators 
u and v are understood to act on Jer only. Our results 
for m(E) imply that for every value of E, including on 
the positive real axis, M'(E) is a bounded opera torY 
This conclusion follows from the fact that, for every 
E, m' (E - k2) is a bounded operator on Jer(k) with a 
norm that is uniformly bounded for all k. Thus on an 
element 'Y(k, r) of Jek ® Jer, 

IIM'(E)'Y11 2 

= JCdk) JCdr/) IJCdr)mICE - k2
; r', r)'Y(k, r)r 

S c f(dk) f(dr) 1'Y(k, r)1 2 

and M' is bounded. 
We now consider the operator 

C3.31) 

P is the orthogonal projection ontQ the space spanned 
by the (normalizable) eigenstates of her) in Jer • If these 
(normalized) eigenstates are ![in(r), then the kernel of 
P is given by 

N 

per, r') = ! ![in(r)![i~(r'). (3.32) 
1 

4. THE OPERATOR IJ(E) 

The next step is to study the operator 

~(E) = G(E)VGo(E) = Go(E)T(E)Go(E) (4.1) 

if T(E) is the two-particle T operator on the full 
Hilbert space. We are interested in the structure of 
this operator for complex values of E and as E 
approaches the real axis from above. 

For E not on the real axis, we may write 

~(E) = ~ r dzglr)(E - z)g(r)(z)Vglr)(z), (4.2) 
2m Jc 

where the contour C runs from 00 to - 00 above the 
spectrum of h and below the spectrum of E - ho• 
This formula is easily proved by adding to C a semi-G(E)u = Go(E)[ll - VGO(E)]-lU 

= Go(E)uM(E). (3.26) circle at infinity in the upper half-plane and then 
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c 

FIG. 1. The contour C used in the integral (4.2). The lower heavy 
line is the continuous spectrum"f h, the dots, its point spectrum, 
and the upper heavy line, the spectrum of E - ho when 1m E > O. 

distorting the contour to wrap around the spectrum 
of E - ho (see Fig. 1). 

Let us now add to C in (4.2) a semicircle in the 
lower half-plane, and contract the contour to wrap 
around the spectrum of h, which may be partly discrete 
and partly continuous. That gives 

N 

~(E) = Z gl/')(E - En)P:) V gl;\En) 
n=l 

+ -. - dzgl/')(E - z) 1 (iOO-i. iOO+i.) 
2m 0 0 

X g(r)(z)V g~)(z). 

The first sum on the right-hand side comes from the 
point spectrum of h on Jer • Because P!i) is the projec
tion onto the eigenspace of h at En' it follows that 

(4.3) 
and hence 

N 

~(E) = Z gl/')(E - En)P:) 
n=l 

in the conventional notation of Green's functions, 
i.e., with 

g~)±(z) = lim (z - h~r) ± i€)-l . 
..... 0+ 

The three terms on the right-hand side of (4.4) will 
have to be considered separately: 

~(E) = A + L - 1+, (4.4') 
N 

A = Z gl/')(E - En)p:), 
n=l 

We first consider 1+. The argum~nts for L will be 
entirely analogous. 

In the notation of (3.8) we have 

g(r)+(z)V = g~)+(z)[1L - Vg~l+(z)rlV 

= g~)+(z)um+(z)v, (4.6) 
where 

m+(z) = lim m(z + if) 
..... 0+ 

is a bounded operator for all z > o. The operator
valued function m(z) is analytic and regular for 
1m z > 0, and m+(z) is its boundary value as 
1m z --+ 0+. We denote its kernel by m(z; r, r'). In 
view of (4.6) and (3.2), the integral kernel of the 
operator 1+ is given by 

" a f (dr")(dr"')u(r")v(r"') 
I+(p,r;p,r)=1 'I I "'11' "'1 p-p r-r r-r 

where 
X J(r, r', r", rIll; p, p'), (4.7) 

and 

J = ioodzm+(Z; r", rIll) exp [iCE - z)!R' + iz!RJ 

with 
(4.8) 

R' = Ip - p'l, 

R = Ir - r"l + Ir' - rlili. (4.9) 

For real E, in order for (E - z)! to become positive 
imaginary when E < z, the integral here goes below 
the point z = E, as shown in Fig. 2. Note that the 
integrals in (4.7) are strongly damped by u and v and 
the integral in (4.8), by the exponential. So the 
required interchange in the order of integrations is 
allowed. 

Our aim is to inquire if 1+ is in [2. Thus we must 
study the convergence of the integral 

i+ = f(dr)(dr')(dP)(dP') II+(p, r; p', r')1 2
• (4.10) 

The operator m(z) may be split into three terms: 

m(z) = 1L + vgo(z)u + vm"(z)u, (4.11) 

where 

m"(z) = g(z)Vgo(z) = go(z)Vg(z) 

= go(z)Vgo(z) + go(z) Vg(z) Vgo(z). (4.12) 

E 
\!/ 

FIG. 2. The contour of integration in (4.8). 
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It is easy to see that, in contrast to the first two terms 
on the right of (4.11), the kernel m"(z; r", rill) is, for 
fixed z, a uniformly bounded function of r" and rill. 
It is also an analytic function of z (for fixed r" and 
rill) regular in the cut z plane (except at the point 
eigenvalues of h) and uniformly bounded for all 
complex z outside small circles around the bound 
states of h and for all real r" and rill. 

The contributions to J that correspond to the three 
terms in (4.l1) are 

J l = b(r" - r"')jl, 

jl = fX) dz exp [-(z - E)!R' + iz!Rl 

= 2 flOdt texp [itR - (t2 - E)!R'], (4.13) 

1 v(r")u(r"') 
J=-

2 271' Ir" _ r"'l 

X flOdt t exp [itR" - (t2 - E)!R'], (4.14) 

R" = Ir - r"l + Ir' - r"'l + Ir" - r"'l, 

J3 = 2v(r )u(r"') 

x fX) dt tm"(t2; r", r"') exp [itR - (t2 - E)!R']. 

(4.15) 

All the t integrals here run below the cut for t < E!. 
Let us add to and subtract from (4.l3) an integral 

from 0 to E! running above the cut: 

jl = 2 fX) dt t exp [iRt - (t2 - E)!R'] 

+ 4i iEtdt teiRt sin [R'(t2 - E)!], (4.16) 

where the first integral now runs above t = E!. We add 
a circular arc at infinity and distort the contour to run 
at an angle () = tan-l R/ R' with the real axis : t = 
uei9, dt = duei9 . Then for large It I 

Re [iRt - (t 2 - E)!R'] '" -uR, 

where R2 = R2 + R'2, and the magnitude of the 
first integral in (4.16) is bounded by CR-2. The 
modulus of the second integral being bounded, we 
conclude that for each E there exist positive constants18 

C and Ro such that for all R ~ 0 and R' ~ 0 

(4.17) 

The same argument applied to (4.14) shows that 

IJ21 ~ [Cv(r")v(r"')/Ir" - r"'I](R,-2 + R(2), (4.18) 

where R'2 = R'2 + R"2. Because of the remark below 
(4.13), the same argument may be used also for (4.l5), 
and we get 

IJ3 1 ~ Cv(r")v(r"')(R-2 + R(2). (4.19) 

We want to find the asymptotic behavior of J for 
large values of R. Again we first consider h of (4.l3). 
Since the contour can be made to run above the real 
axis everywhere except in the neighborhood of 
t = E! (see Fig. 2), it is clear that, as R - 00, the 
leadingcontributions must come from the pieces of the 
integral near t = 0 and near t = E!. It is easy to see 
that the contribution from t ~ 0 goes at least as R-2, 
uniformly in R'. In order to calculate the contribution 
from t ~ E!, we consider separately the two terms 

jn = 2i i oo 
dt t sin (tR) exp [_(t2 - E)!R'], (4.20) 

j12 = 2 i oo 
dt t cos (tR) exp [_(t2 - E)!R']. (4.21) 

The value of the first integral is19 

(4.22) 

where Hil
) is the Hankel function of the first kind of 

order two and again R2 = R2 + R'2. The asymptotic 
behavior of (4.22), as R _ 00, is given by20 

jn '" _i(271')!EfR'R-ie-li7TeiEtIl. (4.23) 

Since we know that the asymptotically dominant 
part of (4.21) comes from t ~ E! (or from t ~ 0, 
which we have already evaluated) we may replace the 
factor t by E! and get2l 

j12 ~ 2E! i oo 
dt cos (tR) exp [_(t 2 

- E)!R'] 

= i71'ER' R-lH~l)(E! R) 

~ (271')!EfR'R-ie-il7TeiEin. 

Therefore, 

jl '" _2i71'!EfR'R-ieiEtn. 

(4.24) 

(4.25) 

The same arguments lead to the asymptotic values 
of (4.14) and (4.15) as R - 00 

J '" ii71'-! v(r")u(r"') EfR'R'-ieiEtn' 
2 Ir" _ r"'l ' 

(4.26) 

J 3 '" -v(r")u(r"')m"(E; r", r"')2i71'!EfR' R-ieiEi n. 

(4.27) 

These results, together with (4.l7)-(4.19), allow us 
to conclude that for each fixed E there exist constants 



                                                                                                                                    

FREDHOLM METHODS IN THE THREE-BODY PROBLEM. I 1559 

C and Ro such that, for all r, r', r", rill, p, and p', 

lill ::;;; C(R'R-! + R~R-2), (4.28a) 

IJ I < C v(r")v(r"') (R'R'-! + R!R,-2) (4.28b) 
2 - Ir" _ r"'l 0, 

IJ31 ::;;; Cv(r")v(r"')(R'R-! + RZR-2
). (4.28c) 

Insertion of these inequalities and of (3.5) in (4.7) 
leads to three integrals estimated in Appendix C, in 
(C3), (C5), and (C7): 

II+(p, r; p', r')1 

< C Jl 11 11 { 
1 1 

- Ir - r'j4 (ro + r)8(ro + r')8 

X (1 + Rg ) 
Ip - p'llr - r'l i 

+ -- --+--[ 1 1 (1 1) 
Ir - r'l (ro + r)l(ro + r')1 ro + r ro + r' 

+ 1 ] 
(ro + r)t(ro + r')t 

X 1 + . 0 ( 
R! )} 

Ip - p'l (ro + r)1(ro + r')1 . 
(4.29) 

It is also shown in Appendix C that the resulting r 
and r' integrals in (4.10) converge. On the other hand, 
the p and p' integrals in (4.10) require damping factors. 
IfJ(p) andg(p) are such that IJI2 and Igl2 satisfy (3.5), 
then the argument at the end of Appendix C shows that 
J(p)g(p')I+(p, r; p', r') is in \:2. 

The method for L is the same, but somewhat 
simpler. The analog of (4.8) contains m- instead of 
m+ and - izi R in place of izi R. We may therefore 
run the z contour everywhere just below the real axis 
instead of as in Fig. 2. As a result, the asymptotic 
behavior of L as a function of R is negligible com
pared to that of 1+. (It does not pick up the dominant 
contribution of 1+ from z,...., E.) Consequently, L 
obeys (4.29) a Jortiori. 

We now turn to the first term in (4.4), i.e., A of 
(4.5). Its kernel is 

N 

A(p, r; p', r') = 2 go(E - En; p, p')IPir)IP!(r'), 
n=l 

(4.30) 

where IPn(r) is the normalized eigenfunction of h at 
En and go is given by (3.2). Hence 

fCdr)(dr') IA(p, r; p', r')12 = ~ Igo(E - En; p, p')12 

::;;; C Ip - p'r2
• (4.31) 

Since it follows from (Cl) that 

j<dP)(dP') 1!(pW Ig(p')1 2 Ip - p'I-2 < 00 

if IJI2 and Igl 2 obey (3.5), we conclude that 
J(p)g(p')A(p, r; p', r') is in \:2. 

Thus our conclusion is that if IJ(p)12 and Ig(p)1 2 

satisfy (3.5), then the operator !:'l(E) of (4.1) whose 
kernel is !:'l(E; p, r; p', r') is such that 

J(p)g(p')!:'l(E; p, r; p', ,') 

is, for all E, including real E > 0, in \:2. 

5. THE OPERATOR n~2 

Let us now consider the operator 

B12(E) = v2GI(E)VIGo(E)u2 = V2!:'l1(E)U2 (5.1) 

whose central part YI is of the structure (4.1), except 
that it is explicitly labeled, so that r in it means r1 
and p means Pl. By the same token V2 = V2U2 means 
V2(r 2), with r2 expressed in terms ofrl and PI by (2.5). 
Since !:'l1 is in \:2 as far as rl is concerned, the factors 
V2 and U2 serve the same purpose as J and g in our 
considerations of Sec. 4, provided that V2 obeys (3.5). 
We therefore conclude that B12 is a Hilbert-Schmidt 
operator. 

The same argument applies to the operator 

B312 = vaG1(E)VIGO(E)u2. (5.2) 

It too is in HS. 
The next step is to examine the operator 

012(E) = V2Gl(E)V1G2(E)U2. (5.3) 

We use the decomposition (3.7') for G2U2, so that 

(5.4) 

where, according to (3.30) and (4.1), 

0~2 = V2GIVIG~U2 = V2!:'llU2M~ - V2!:'llP2U2, (5.5) 

0~2 = v2G1 V1L 2 • (5.6) 

The first term on the right-hand side of (5.5) is 
equal to B12M; . Since B12 is in HS and M; is bounded, 
this product is in HS. The second term of (5.5) is an 
operator whose kernel is (as a function of PI, r1 , 

p~, r;) 

n~lV2(r2) f(dr~)Y1(E; PI' '1' p{, r~)IPir~)IP!(,~)u2(r~), 
where '2 must be expressed in terms of '1 and Plo and 
pi and r~ must be expressed in terms of p; and r2. We 
are then led to consider the integral 

f(dr1)(dPI)(dP~) 1V2(r2)I 

X If(dr~)!:'ltCE; PI' '1; p~, rDIPn(r;f 
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Unless CPn describes a zero-energy bound state of Note that the r; and r~' integrals are so strongly 
angular momentum one or two, CPr; satisfies (3.5).22 damped that they do not require any decrease from 
Hence (4.29) and (4.30) together with the estimates g02 and G1. The estimates of Appendix D show that 
of Appendix C show that the above integrals converge G1 contributes a decrease at least as p"_';, and g02 
absolutely. Thus each term in (5.5) is in HS. There- goes as p;-I. Thus the P; integral converges absolutely 
fore, so is n~2' and is bounded as a function of P2' Left multiplication 

The same arguments apply if in n~2 we replace V2 by S;1 therefore makes it square integrable in P2' 
by vs, i.e., to On the other hand, the factor Vl(r~') produces suffi· 

VSr~2U2 = vaGI VI G~U2' (5.7) cient decrease as a function of P;, if (3.5) is satisfied, 
We conclude that VSr~2U2 too is in HS. to make even C12S2 square integrable as a function of 

p~. 23 As a function ofr2 and r~, C12 is square integrable 
6. THE OPERATOR n~2 by virtue of the outside factors CPr; and cP:;" Thus the 

We must now examine the operator n~2 of (5.6), kernel of S;ICI2S 2 = 02D12 is in 1:2. 
which is given more explicitly by The results of Appendix D show that the operator 

N 

n~2 = V2G1(E)Vl L P~~u2g~~)(E - En) 
n=1 

whose kernel is J(Pl)g(P~)(GIVl)(Pl' rl; p~, r~) is in 
1:2 if IJI2 and Igl 2 obey (3.5). The damping role of J 
and gin (6.3) is played by V2 and P2, and the factor S2, 

(6.1) expressed in terms of r1 and PI, is damped out by 
ul(rl)' Thus the operator D12 is in 1:2. The same result 
holds if V2 in (6.3) is replaced by Va. This effect of the bound states in the (l, 3) system is 

not as well behaved as those previously considered. 
Indeed, it is clear that any operator that contains 
g:tl(E), with E ~ 0, as a right-hand factor, is un
bounded. 

We proceed as outlined in Sec. I, following (1.18), 
noting that n~2 can be written as in (1.19), or 

(6.2) 
where 

It remains to study the product 02n~2 or, explicitly 
by-{5.5), 

S;1 P 2G2u2n~2 

= S;1 L P~~u2g~~)(E - En)n~2 
n 

= S;1 L.P~~V2g~)(E - En)~I(E)[U2M~(E) - P2U2]' 

n (6.8) 

(6.3) A look at (4.2) shows that we therefore need the 
product g~~) (E')g~~\E"). It is shown in Appendix B 
that the kernel of this operator product is given by 

O2 = S;IP2G2U2' (6.4) 

The operator S2 is a multiple of unity on Je~2) and 
multiplicative on Je~2). It is given by 

S2 = (P2 + Poil;, 
(6.5) = K~2g0[E', K12(r1 - r~)]go[E", K12(r2 - r~)] (6.9) 

with K12 = (P,I/f-l2lt . Thus in the calculation of 
g~~)(E - EnWl(E) we first look at [see (4.4)] Po being an arbitrary positive _constant. It _must be 

shown that the operators D12 , n12n~2' and n 2D12 are 
in HS for the lemma of Appendix F to be applicable. 

Let us first consider the operator 

Cn == S202D12S;1 = P2G2V2GIVIP2 

= L p~r~gW(E - E n)V2Gl E)VIP2 
n 

and write out its kernel explicitly: 

CI2(P2, r 2 ; p~, ... ~) 

(6.6) 

= ! CPn(r2)cp!(r~) f (dr;)(dr;')(dp;) cp:(r;) CPm(r;')Vz(r;) 

x g02(E - En; P2, p;)G1(E; p~, r~; pt, r~')vlrn, 
(6.7) 

where r~' and pt have to be expressed by (2.5) in 
terms of p; and r~' ; and p~ and r~ in terms of P; and r~ . 

(gWI1+)(Pl, rl; p~, rD 

= _1. f(dr) exp [iKI2(E - En)llr - r11] 
47T Ir - rll 

X I{+(Pl' r; p~, r~), (6.10) 

where I;~ has the same structure as (4.7) except that 
p, p', and r' are replaced by PI, p~, and r~, respec
tively, and R' now is given by 

R' = K12lr2 - r~1 

= Ipl - p{ + (mlm2/Mma)1(r - r~)I· 
All integrals converge absolutely and uniformly, and 
the z integral in (4.8) is estimated as in Sec. 6. We 
arrive at the inequality (4.29), and we must carry out 
the r integral in (6.10). We then see that arguments 
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based on these inequalities fall short by an rt~ to 
prove the square integrability of g~) 11+ as a function 
of r~. We must therefore make use of the oscillatory 
nature of the r integral. This is done in Appendix E, 
in which it is shown that the r~ integral of the square 
modulus of g~) 11+ exists and is bounded as a function 
of Pi> P~, and ri' The factors S;lp~~ V2 in (6.8) 
provide the necessary damping to make the result 
square integrable in rl and PI (or in r2 and P2); and 
the factors U2 or P2U2 make it square integrable in Pl' 
The operator M~ being bounded, we conclude that the 
term 11+ for ~1 [see (4.4)] in (6.8) results in an £.2 
kernel. The same holds for L. There remains the A 
term';'of (4.4'), given by (4.5), inserted in (6.8). The 
product g~~)g~~l is given in (6.9), and all four variables 
are strongly damped: r 2 and P2 are damped by S;l and 
V2, and r~ and p~ are damped by pi~ and U2 or P 2U2' 
Hence the operator product 020~2 in (6.8) is in HS. 

The same argument is applicable if we replace 
U2M; - P2U2 in (6.8) by uaM; - Paua. Hence02u2r~aua 
is also in HS. 

7. THE OPERATOR Oa 

We now look at the terms of Oa in (1.22). First we 
consider O~ of (1.23) and (1.22). The first two terms, 
O~a and O~a, have already been proved to be in HS. 

In the operator vaG2u2(11 - (12)-lv2r~aUa we write 

(11 - ( 12)-1 = 11 + O~ll1 - 012r1 

+ n12Q2(11 - ( 12)-1, (7.1) 
so that 

vaG2u2(11 - (12)-lV2r~aUa 

= vaG2VZr~aUa + (vaG2Vzri2uz)(11 - (12)-I(v2riaua) 

+ (var21V1P2S2)Oll1 - 012r1(vzriaua). (7.2) 

It has been shown in Sec. 5 that V2r~aU3 is in HS and, 
in Sec. 6, that n2V2r~aU3 is in HS. Hence by the 
corollary to the lemma of Appendix F, both 
(11 - ~2)-I(V2r~aUa) and O2(11 - (12)-1(V2r~aUa) are 
in HS. The operator var 21 VIP 2S2 is written as 

Var2IVIP2S2 = (var~IUI)(VIP2S2) 

+ (VaGzV2PISI)(SllPIGIV1PZSZ)' (7.3) 

V3r~IUI is in HS, and the operator vIP2S2 is not difficult 
to show to be bounded. Hence the first term in (7.3) 
is in HS. 

The operator vaGz V2PISI was shown in Sec. 6 to be 
in HS. The operator 

(7.4) 

has the kernel 

QIZ(PI, rI ; pL r~) 
= ~ (PI + po)-ifPnCrI ) 

n,m 

x f(dr;)fP:(rngOI(E - En; PI - p~) 
X VI(ri')CPm(r;)cp!(r~)(po + p~)i, 

in which P~ and r~ must be expressed in terms of P~ 
and r~, The r~ integral converges absolutely and is 
bounded by C(po + p~)-t. Hence the result is square 
integrable in the four variables PI, r I , p;, and r~. 
Hence the last term in (7.3) is in HS. 

The only terms il1' (7.2) that remain are 

vaGzVzrisua = va6'2V2~1(U3M3 - Paua) (7.5) 
and 

vaGz vlirizuz = vaGzli2~l(uzM~ - Pzuz). (7.5') 

We must examine V3G2V2~1' 
If we expand Gz(E) as in (4.2), we arrive at the 

analog of (4.4), 

N 

G2(E) = I giiz'(E - En)P~~ 
n=l 

+ -2
1 

. f'''' dz' giiz'(E - z') 
1Tl Jo 

X [g~l-(z') - g~l+(z')]. (7.6) 

The first term, from the (1,3) bound states, leads 
to the exact analog of (6.8), the only difference being 
the replacement of S;l by Va. This term, used in 
vaGzVz~I' therefore leads to an HS operator. As for 
the z' integral in (7.6), we may divide it into two pieces, 
one for 0 ~ z' ~ Z, Z > E, and the other for z' > Z. 
In the latter part, g~~)(E - z') is the Green's function 
for negative energy, whose kernel decreases exponenti
ally as a function of p. The factor Va may then be 
used to dampen the r z dependence of g~r)±, making 
the result square integrable. 

We are then left with the z' integral from 0 to Z; 
which we may write 

Gz = iZdP~r'(z')giiz'(E - z'). (7.7) 

Here dP~rl (z') is the spectral projection for h~r), which 
is such that 

1'''' dP~)(z) + Pz = 11. 

It follows that S~ dP~)(z)f(z) is a bounded operator 
iff(z) is a bounded function. We now treat 

X = Va iZdP~)(Z')V2gW(E - Z')~IUa 
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and we did (6.8), using (6.10) and the result of 
Appendix E, according to which the kernel of g~~) 11+ 
is such that the r~ integral of its square modulus 
exists and is bounded as a function of PI, P~, and r l . 

The factors Va ft dP~r) (z') V2 on the left and Ua, P aUa, 
U2, or P2U2 on the right thus make the contribution 
from 1+ in ~l to the kernel of X square integrable. The 
same holds for the contribution from L. The con
tribution from A of (4.5) is again handled by (6.9) and 
seen to have the same property as g~~) / 1+, Thus X is 
in HS. 

As a result the operatOr product on the left-hand 
side of (7.2) is in HS, and, of course, so is 

The next term of (l.22) to be considered is 

(var 12U2)( 11. - 012)-1( V2r~aUa) 

= (Van2U2)(:Jl - 012)-\V2r~aUa) 

+ (VaGl~P2S2)02(:Jl - 012)-1(V2r~aUa). (7.8) 

The first term on the right is a product of two opera
tors that were shown to be in HS and of a bounded 
operator. The second term consists of two factors, 
the first of which, vaGI VIP2S 2 , differs from 0 12 only 
by the substitution of Va for V2 • It is shown in Sec. 6 
to be in HS. The second, O2(11. - 012)-I(V2r~aUa), has 
already been 'shown to be in HS. The same argument, 
of course, applies to the product 

We have therefore shown that O~ of (1.22) and 
(1.23) is an HS operator. To complete the argument 
of Sec. 1, we must now demonstrate that Oa, .oaOa, 
and OaOa are also in HS. 

The operator Oa is given in (1.25). The first two 
terms are 013 and 02a, and these have already been 
shown to be in HS. The other two terms differ from 
the corresponding two terms in O~ only by the 
substitution of vIG2V2PaSa and V2GIVIPaSa for 
Vlr~aUa and V2r~3Ua, respectively. But these terms, in 
turn, have already been shown to be in HS, and their 
ranges include the domains of 0 1 and O2 , respectively. 
Hence the arguments given above, to show that .Q~ 
is in HS, carryover to the demonstration that Oa is 
also in HS. 

Next, there is the operator 03.Q~. The first two 
terms are 03Q~3 and Oa.Q;a, and these have already 
been shown to be in HS. Then there is Oa right
mi.Iltiplied by the operator of (7.2). The first factor of 
the last term of (7.2) is analyzed in (7.3) and, when 
left-multiplied by Oa, is seen to be in HS, by previous 

arguments. The other two terms of (7.2) lead to 

.oavaG2V2riaua = (S;-lPara2U2)(V2riaua) (7.9) 
and 

(7.10) 

Now the kernel of S31r~2U2 is in t2 just as V2r~2112 is; 
S;-l provides the same Pa damping as V2' The (l, 3) 
bound-state contributions to r 32 give rise to 

(7.11) 

where Q32.iS given by the analog of (7.4). It was shown 
to be in HS, and so was 02(V2r~alla). Hence the 
operator of (7.9) is in HS, and so is the operator of 
(7.10). Consequently, (7.2), when left-multiplied by 
.oa, is in HS, and, similarly, 

OavaGIU1(11. - 021)-1(V1r 2aUa)· 

The only remaining terms are (7.8) left-multiplied 
by Oa, and the same with 1 and 2 exchanged. In both 
terms on the right-hand side of (7.8), the left-hand 
parentheses are operators of the same structure as the 
left-hand parentheses of (7.3), which have already 
been argued to be in HS when left-multiplied by .0". 
The other factors in (7.8) are in HS. Hence the opera
tor of (7.8), left-multiplied by Oa, is in HS, and so is, 
by the same arguments, OaVar21Ul(11. - Q21)-lvIr 2"Ua' 
Therefore, Oa.Q~ is in HS. 

Finally, there is the product OaOa, with Oa given 
by (1.25). The first two terms are Oan13 and Oan 2a 
and, hence, in HS. The arguments for the remaining 
terms are exactly like the corresponding ones for 
Oa.Q~. The only difference is that the right-hand 
factors V1r;3Ua and V2r~aU3 are replaced by other 
terms which have already been shown to be in HS 
and whose ranges include the domains of 01 and O2 , 

respectively. Hence all the arguments used in the 
examination of OaQ~ carryover to Dana, and .oana 
is in HS. 
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APPENDIX A 

In this appendix we construct the free Green's 
function on Je = JeT ® Jep , using the same technique 
as in (4.2)-(4.4); 

Go(E) = 2~ r dzglr)(E - z)gi{)(z) 
7TI Jc 
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or, explicitly, 

1 1 f"" 
Go(E; p, r; p', r') = - 2(27T)3Ir- r'llp _ p'l 0 dz 

x eiR'<E-z)! sin (z*R), 

where R' is given by (4.9) and R is now 

R = Ir - r'l. 

As in (4.8), the integral runs below the point z = E. 
It is the same as in (4.19), and its value is given by 
(4.22): 

Go(E; p, r; p', r') = -(Ei/167T2R2)H~I)(E*R), (Al) 

where R2 = R2 + R'2. Since 

H~I)(Z) = 0(Z-2) as z -+ 0 

= O(z-*) as z -+ 00 

for real z, there exists a constant C such that 

IH~I)(z)1 $;; C(z-* + Z-2). 

Consequently, 

IGoCE; p, r; p', r')1 $;; C(R-4 + R-iEi), (A2) 

where C is independent of E. As r -+ 00, all other 
variables being fixed, this leads to 

Go = O(r-i). (A3) 

APPENDIX B 

We evaluate here the product of two Green's 
functions. According to (2.5), 

(r2P21 g~) gW Ir~p~> 

= J(dr~)Cdr;)CdPn(dP;) 
x (r2P21 gW Ir~p;><r~p~ I r~p~> <r~p~1 gi/2Ir~p~> 

= f (dr~)( dr~)( d pD( d p~) 
x g02(P2 - p~)d(r2 - r~)gol(P~ - p~) 

x !5Cr~ - rD!5(r~ + ari + bpD!5(p~ - cr~ + ap~) 

= f(d Pn!5(r2 + ar~ + bpi) 

X gOiP2 - cr{ + apDgol(P~ - p{) 

= /('~2go2[/('12(rl - rmgol[/('12(r2 - r~»), (B1) 

where a = (ftlft2)*/ma, b = Cft2/#1)!' c = (ftl/#2)*' 
and /('12 = (#-I/ft2)* and where r; and r1 are to be 
expressed in terms of r~, p~ and r 2, P2, respective I)' , 
by (2.5). 

APPENDIX C 

Let us first consider the integral 

fer) =J (dr')(ro + r,)-n 
Ir' - rill 

for 0::;; (J < 3 and n > 3. We can carry out the angle 
integration 

fer) = 27T i"" dr'r,2Cro + r,)-n 

and we have 

x i:du(r2 + r,2 - 2rr'uf!1l 

27T 1 i""d "( + ')-n = --- r r ro r 
2-{Jr 0 

x I(r + r,)2-p - Ir - r'1 2
- PI 

(adr'r'(ro + r,)-n I(r + r,)2-P - Ir - r'12-1lI ::;; Cr1- P 
Jo 
(<Xl dr' ... $;; r4,-p-n ("" dxx1-n 

Ja Jalr 
X 1(1 + X)2-p - 11 - x1 2- PI $;; Cr1- p. 

Since f (r) is bounded for all finite r, we conclude that 

f (dr')(ro + r,)-n < C(r + rrP• 

Ir' - riP - 0 
(CI) 

We now study the integral 

r r' -J (dr")(ro + r,,)-n 
f(, ) - Ir" - rllr" - r'l (Ir" - r/ + Ir" - r'I)a 

for IX = t, 2. Since 

we have 

{

Ir - r'l 

Ir" - rl + Ir" - r'l;?: Ir" - rl, 

Ir" - r'l 

, 1 (dr")(ro + r,,)-n 

fer, r ) $;; I 'Io:-i II " ('-I " 'IU 
r-r r-r 8 r-r" 

$;; I (J (dr")(ro + ;~')-n)! 
Ir - r'lo:-1 Ir" - rl-4 

x (f (dr")(ro + ~}-n)! 
Ir" - r'I"" 

by Schwarz's inequality. Therefore, by (Cl), 

(C2) 

fer, r') $;; C/[Ir - r'I"'-1 (ro + r)¥(ro + r').ll). (C3) 

The next integral we need is 

r r' -J (dr")(dr"')(ro + r,,)-n(ro + r",)-n 
g(, ) - Ir" - rllr'" - r'l (Ir" - rl + Ir'" - r'I)'" ' 

in which we use 
(C4) 

r" - rl + Ir'" - r'l ~ (lr" - rllr'" - r'D! 
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and then use (CI): 

r r' cJ (dr")(ro + r"rnJ (dr"')(ro + r"'r
n 

g(, ) ~ Ir" - rIH!" Irlll - r'IH!" 

~ CCro + r)-1-11l(ro + r,)-I-i". (C5) 

Another integral needed is 

her, r') 
f (dr")(dr"')(ro + r"rn(ro + r",)-n 

to (C3), (C5), and (C7), 

IIfll~ S. C J(dr)(dr') Ir - r'I~-211 

x (ro + r)-¥(ro + r/)-¥, (C8) 

(C9) 

Ilhll~ s. C J(dr)(dr') Ir - r/r 2 (ro + r)-I-II(ro + r')-II 

X [(ro + r)-1 + (ro + r')-I]. (CI0) 

J 

(drlll)(ro + rlll)-nJ (dr")(ro + r,,)-n 
~ Irlll - r'11+111 Ir" - rlHllllr" - rill I . (C6) The integrals in (C9) obviously converge for 0( = j

and 0( = 2. In (C8) we do the angle integral 

Doing the r" integral, we insert 

1 ~ (lr" - rl + Ir" - rlllD/lr - r"'l 

and then have the two integrals 

f (dr")(ro + r,,)-n +f (dr")(ro + r,,)-n. 

Ir" - rl!" Ir" - rill I Ir" - rl1+111 

The first is handled by Schwarz's inequality 

(f (dr")(ro + r,,)-n )2 
Ir" ...., rllllir" - rllli 

f 

(dr")(ro + r,,)-nf (dr")(ro + r,,)-n 

~ Ir" - rlIX Ir" - r"'1 2 

~ CCro + rr'(ro + rlll)-2 

by (CI). The second integral is also estimated by (CI), 
so that 

f 
(dr)(ro + r"rn 

Ir" - rl1+1IX Ir" - rllli 

< C (_1_ + _1_). 
- Ir - r"'l (ro + r)t" ro + r ro + rill 

We then have the rill integral 

J 

(drlll)(ro + r"'rn 

Irlll - r /l1+11lI r'" - rl 

C (1 1) ~ --+--
Ir - r/l (ro + r/)tIX ro + r' ro + r ' 

and hence 
C her, r') S. -----...;=-----

Ir - r'l (ro + r')lIX(ro + r)lIX 

x --+--( 1 1) 
ro + r ro + r' . 

(C7) 

The next question is whether the functions fer, r'), 
g(r, r'), and her, r') are 1.:2 in both variables. According 

A =11 du(r2 + r,2 - 2rr'u)-fl 
-1 

1 1 = - I(r + r,)2-2fJ - Ir _ r'1 2- 2fJ
l 

2(1 - fJ) rr' 

~ Crl-2flr,-l I( 1 + ;r-2fJ -11 - ; r-2fJl· 
For 0( = -1-, we have fJ = t, and hence 

A ~ CCr + r'r! S. Cr-ir'-!. 

For 0( = 2, fJ = t, and hence A contains an integrable 
singularity at r = r'. For r'lr S. a ~ 1, we have 
A ~ C,-i and, for r'lr ~ b > 1, A ~ Cr'-i. In both 
cases (C8) is easily seen to exist. 

In (ClO) the angle integral is 

A = -I-In [(r + r')/(r - r')]2 
2rr' 

so that it too has an integrable singularity, and, for 
r'/r s. a < I, A ~ C,-2 whereas, for r'/r ~ b > 1, 
A ~ Cr'-2. Hence both for 0( = -I- and 0( = 2, (ClO) 
is seen to exist. 

APPENDIX D 

We shall here estimate G(E)u in a manner analogous 
to the estimate of ~(E) in Sec. 4. The analog of (4.2) 
now is 

G(E)u = ~ r dzg:t')(E - z)g(r)(z)u, (Dt) 
2171 Jo 

and hence G is split up as ~ in (4.4), where A is the 
same as in (4.5), and I± are given by integrals analogous 
to (4.7): 

I+(p, r; p', r') 

C I (dr")u(r") J( , ", ') (D2) = r, r , r , r ; p, p . 
Ip - p'l Ir - r"l 

J is the same as in (4.8), except with rill = r'. We now 
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insert the inequalities (4.28) in (02) and obtain 

II+(p, r; p', r')1 
~ Cv(r/)(l + R! Ip - p/l-i) 

x ( 1 +f (dr") W(r")1 
Ir - r/l i Ir" - rli 

f (dr") W(r")1 1 ) 

+ Ir" - rllr" - r/l (Ir" - r/l + Ir" - rl)% . 

(D3) 
These integrals are estimated by (Cl) and (C3): 

II+(p, r; p', r')1 

~ Cv(r/)(1 + R! Ip - p/r%)[lr - r'l-i + (ro + r)-i 
) 11 11 + Ir - r/r" (ro + rrB(ro + r')-B]. (D4) 

The same holds for L, and A, by (4.30), is bounded 
by 

IA(p, r; p', r/)1 ~ CCro + r)-t(ro + r/)-t/lp - p/l. 

(D5) 

Consequently. IG(p, r; p', r/)u(r/)1 is bounded by the 
sum of (04) and (05). 

APPENDIX E 

Let us split the r integral in (6.10) into two parts, 

-47Tg~~)/1+ = ( (dr)··· +J (dr)"', (E1) 
Jrc;A r>A 

where A = A'r?, 0 < y < 1, and A' is a constant. 
Insertion of the inequalities (4.28) shows that the 
first integral is bounded by (ro + r{){Y-¥- and hence 
it is square integrable in r~. In the second integral we 
insert the asymptotic values (4.25)-(4.27). We then 
arrive, for large r~, at the integral 

1 1 (dr) exp (ivr + iii· f + iEtR) 

ro + r{ r>A r\r + r{)1 

r~-i I = --f(rI ), (E2) 
ro + r{ 

where v > 0 for real E and fi = rlr. Changing variables 
of integration to x = r/r~, we get 

JAlrl' 
f(rD = fdQ.,. exp (iii. f) (eo dx(x + 1)-1 

X exp (ivr{x + iEiR), (E3) 

R = {[PI - p{ + (m1mz/Mma)!r{(x - iii)t 
+ r~2(x + 1)2}! 

~ ra(x + 1)2 + (m1m2/Mma)(x - 0;)2]! 

+ (m1m2/Mma)t(x-fiD'(PI-P{) +O(r~-l). 
[(x + 1)2 + (m1m2/Mma)(x _ii{)2]t 

(E4) 

Consider the x integral in (E3): 

i"O dx'" 
Afrl' 

= Leo dx(x + 1)-1 

x exp [ig(x) + ir~h(x)J - LA
,r

l

'l'-

l

dX' .• , (ES) 

where 

hex) = vX + [(x + 1)2 + (m1mz/Mma)(x - fi{)2]lEl 

and g(x) is the second term in (E4). The second term 
in (E5) goes lik~ r'Y-l and hence, with the factor 
r~-t(ro + r{)-l in (E2), is square integrable in r~. In 
the first term of (£5) we may use hex) ,,;, y as the 
new variable of integration. Since h'(x) ;;::: t5 ;;::: 0 for 
all x and (x + 1)-1 is square integrable, the x integral 
is (one-dimensionally) square integrable as a function 
of r~. The outside factor of r{-l(ro + rD-l in (E2), 
"and the fact that since (x + l)-l is integrable, the 
x integral is bounded for all r~ , makes the result three
dimensionally square integrable as a function of r~ . 

There remains the solid angle integral in (E3). An 
integral over a finite range, whose integrand is in [2 

as a function of a parameter, is also in [2. This 
establishes that g~) /1+ is, for each r1 , PI, and p~, 
square integrable as a function of r~. What is more, 
its [2 norm (in r~) is bounded as a function of r l , PI, 
and p~. 

APPENDIX F 

Lemma: Let A and B be Hilbert-Schmidt operators, 
and let C be such that CA and CB are also in the 
Hilbert-Schmidt class. Then the operator D = 
AC + B is such that the Fredholm determinant 
det (1L - AD) exists and can be calculated as an 
absolutely convergent power series in A for all values 
of A by the classical Fredholm theory for [2 kernels. 
The same applies to the calculation of the operator 
(11. - }.D)-l det (11. - AD) = {(11. - AD)-l} which, for 
every A, is well defined on the domain of C and 
a bounded operator on any closed subspace Je' 
on which C is bounded. Moreover, the range of 
{(1L - AD)-l} (on the domain of C) is included in the 
domain of C and the operator C{(1L - AD)-I} is 
bounded on :Ie.'. ("Fredholm determinant" here means 
modified Fredholm determinant.) 

Corol/ary: If the operator E is in HS such that CE is 
in HS, then both {(1L - AD)-l}Eand C{(11. - AD)-l}E 
are in HS for every A. 
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Proof: We formally consider24 

rCA, fJ) == det ell. - AAC - fJB) 

= {det (11 - AAC)[1 - fJ(l1 - )'AC)-lB]} 

= gl(A, fJ) det (11 - ACA) 

x det [11 - fJB - fJAA(l1 - ACA)-ICB], 

gl(A, fJ) = exp {-AfJ tr [CBA(l1 - ACA)-l]} 

in which each determinant is defined by its power 
series and the indicated inversion of the order of 
operators is correct term by term. The resulting 
expression shows f(A, fJ) to be of the form 

00 

f(A,fJ) = "2fJ nfn(A). 
o 

Eachfn(A) is an analytic function of A, regular every
where except for those values A = Ai, i = 1,2, ... , 
for which ACA has the eigenvalue 1, and for each 
A =;t6 Ai the power series in fJ converges absolutely 
for all fJ. Hence, for each A =;t6 Ai ,f(A, fJ) is an entire 
analytic function of fJ. 

We may also write 

f(A, fJ) = det {(11 - fJB)[l1 - AAC(l1 - fJB)-I]) 

= g2(A, fJ) det (11 - fJB) 

x det [11 - ACA - AfJCB(ll - fJB)-IA], 

g2(A, fJ) = exp {-}.p tr [ACB(ll - fJB)-I]} 

thus exhibitingfin the form 
00 

f(A,fJ) = "2 Angn(fJ)· 
o 

This shows that f (A, fJ) is an entire analytic function 
of A for each fJ =;t6 fJi' i = 1, 2, ... , if fJi l are the 
eigenvalues of B. 

Thus f is an analytic function of both variables,25 
with singularities possible only at (A, fJ) = (Ai, fJi)' 
i,j == 1,2, .... But isolated .singularities of an ana
lytic function of two variables are always removable.26 

Hence 1(.1, fl) is an entire analytic function of both 
variables. Therefore, it can be expanded in a power 
series for A = fJ which converges absolutely for all 
A. This is the Fredholm series of det (11 - AD). 

Next we argue similarly for the construction of the 
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F(A, fJ) == {(1l - AAC - fJB)-I} 

= {[1l - fJB - fJAA(ll - ACA)-ICB]-l} 

X [11 det (11 - ACA) 

+ AA{(l1 - ACA)-I}C]gl(A, fJ) 

=g2(A, fJ){(ll - fJB)-l}[ll det [11 - ACA 

- AfJCB(ll - fJB)-IA] + AA{[l1 - ACA 

- AfJCB(ll - fJB)-lA]-I}C(ll - fJB)-I). 

On the domain of definition of the operator C, the 
first equation exhibits the (operator-valued) function 
F(A, fJ) as an entire function of fJ for each A =;t6 Ai, 
and the second as an entire function of A for each 
fJ =;t6 fJi' Thus it is an entire analytic function of both 
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series for every A. Hence the domain of {(1l - AD)-I} 
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Now let X' be a (closed) subspace on which C is 
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hence (11 - AD)-I is a bounded operator on X' for 
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and it shows that the range of {(1l - AD)-l} (on the 
domain of C) is included in the domain of C. What is 
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The corollary follows from the fact that if CE is in 
HS, then C is bounded on the range of E (which is a 
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Tbe Glauber scattering amplitudes for the excitation of the ns and np levels of atomic hydrogen by 
electrons (or protons) incident upon the ground state have been obtained in closed form. In contra
distinction to previously quoted results, these new expressions require no numerical integration. For 
small n, the amplitudes reduce to simple sums of hypergeometric functions. Hence the Glauber ampli
tudes for these transitions now can be computed with scarcely more difficulty than the Born amplitudes. 
A selection rule for arbitrary transitions is derived. 

I. INTRODUCTION 

Recently, the Glauber approximationl for scattering 
amplitudes has been applied, with considerable 
success, to elastic and inelastic scattering of elec
trons2- 4 and of protons5 by atomic hydrogen. In 

electron-hydrogen collisions especially, the Glauber 
approximation has been shown to be more useful than 
the Born approximation for estimating differential and 
total cross sections. However, the usefulness of the 
approximation would be appreciably enhanced if these 
Glauber amplitudes could be expressed in forms more 
readily computable than those already quoted in the 
literature.2 ,3 

We have, therefore, reconsidered the Glauber 
scattering amplitudes for the excitation of atomic 

hydrogen by the impact of arbitrary structureless 
charged particles. By approaching the amplitude 
integrals in a slightly novel way, we have been able 
to obtain closed form expressions for the amplitudes. 
In contradistinction to the previously quoted results, 
these new expressions require no numerical integration. 

Specifically, for the transitions is ~ ns, np, the 

amplitudes reduce to finite sums of hypergeometric 
functions; when n is small, these sums involve com~ 

paratively few terms and are very simple to compute. 
The contents of this paper now can be summarized 

explicitly, as follows. In Sec. II we discuss the re
duction of the amplitude integrals corresponding to 

the two classes of transitions Is ~ ns and Is -4- np, 
where n is arbitrary; the amplitudes in each class are 
expressed in terms of a generating function. We 
conclude Sec. II with several examples from the above 
classes. In particular we present expressions for the 
amplitudes Is -4- Is, 2s, 2p. In Sec. III, a selection rule 
for arbitrary hydrogenic transitions is derived. 

For convenience, certain details of the analysis 
leading to the aforementioned results are deferred to 
appendices. In Appendix A we derive a useful and 
novel (at least to our knowledge) integral repre~ 

sentation for the integral 
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where 'fJ is purely real and m is a positive or negative 
integer. In previous computations2•3 the integral Jm 

has been expressed as a hypergeometric function, but 
that simplification did not enable determining a closed 
form expression for the scattering amplitude, which 
involves a further integration over the variable s on 
which Jm depends. Use of our new integral repre
sentation for Jm yields the scattering amplitude in 
terms of double integrals of the form 

where m and r are integers greater than or equal to 
zero. The reduction of the integrals J\,m.r to closed form 
hypergeometric functions is given in Appendix B. 
The results of these two appendices enable us to 
express the scattering amplitude in closed form as a 
finite sum of hyper geometric functions. In Appendix C 
we discuss the behavior of the generating functions, 
and hence the scattering amplitudes, in the limit of 
small momentum transfers. 

II. THE REDUCTION OF THE GLAUBER 
AMPLITUDES 

In this section we consider the scattering of an 
arbitrary, structureless, spinless particle of charge Z 
by ground state atomic hydrogen. Let IlKi , ilK, == 
flv;., flv, define the initial and final momenta of the 
incident particle in the center of mass system, where 
fl is the reduced mass of the incident particle-hydrogen 
atom pair and viand v f are respectively the initial and 
final relative velocities of the colliding particles. If 
the hydrogen atom is initially at rest, Vi is just the 
velocity of the incident particle in the laboratory. 
Furthermore, define the momentum transfer vector q 
by 

q == Ki - Kf • 

Then the Glauber approximation to the scattering 
amplitude F (i --+ f; q), in the center of mass system, 
for collisions in which the atom, initially in some state 
i, is directly excited to some final state f, is 

where Ui and Uf are the initial and final bound state 
wavefunctions of the atom, 

reb, r) = 1 _ eixlb.r>, 

and the phase shift function X is defined by 

X(b, r) = l Joo V(b, r; z') dz', (2) 
IlVi -00 

where V(b, r; z') is the potential seen by the incident 
particle. In the case of incident electrons, identifying 
(1) with the scattering amplitude ignores electron 
exchange (i.e., ignores the effects of particle in
distinguishability), as has been discussed previously.4 
In addition, spin-dependent interactions between the 
incident particle and the hydrogen atom will be 
ignored, i.e., V is nothing more than the sum of 
Coulombic interactions between the incident particle 
and the electron-proton pair. 

In Eqs. (1) and (2), r' and r denote the coordinates, 
relative to the atomic nucleus, of the incident particle 
and the bound electron, respectively, and are expressed 
as 

r' = b + z't 
r = s + z;, 

where ; is the direction in the center of mass system 
along which the integration in Eq. (2) is performed. 
To make the five-dimensional integrals of Eq. (1) 
tractable, we quantize all bound state wavefunctions 
along the same direction ;. Evidently the above 
relations mean z' and z are the components of r' and 
r, respectively, parallel to ;, while band s are the 
projections of r' and r, respectively, onto the plane 
perpehdicular to ;. Furthermore, in Eq. (1) q is 
assumed to lie in the plane containing band s. For 
structureless particles of charge Z incident upon 
atomic hydrogen (with V purely Coulombic, as 
explained above), it is now readily seen that2 

X(b, r) = 2'fJ In (Ib - sl/b), 

where 'fJ = -Ze2/Ilvi' 

A. Is --+ ns Amplitudes 

The Glauber amplitudes of Eq. (1) for the class of 
transitions Is --+ ns can be considered as a whole; this 
class includes, of course, elastic scattering from the 
ground state. The product ujui appearing in Eq. (1) 
then reduces t08 

u:(r)u;(r) = _ .l(~)3 ![(n
4

- l~!Jle-lP.e-lPIL~(Pf)' 
471 ao 2 n (n!) 

(3) 

where L~(Pf) is the generalized Laguerre polynomial 
and 

2 
Pi = - T, 

ao 

2 
P, = - T, 

aon 
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ao is the Bohr radius. The conventional definition of 
the generalized Laguerre polynomial6 

L!~J(p) = -[en + 1)!]2 
n-H (-l)ip; 

X ~ (n -1-1-j)!(21 + 1 +j)!j! 

(4a) 

is a bit cumbersome. However, we note that if j has 
the range of values indicated in Eq. (4a), excluding for 
the moment j = 0, then 

(n - 1 - 1 - j)! 

= _____ --'-Cn_-_1_----:;1)_! ----
(n - 1 - 1)(n - 1 - 2) ... (n - 1 - 1 - (j - 1» 

(n - 1- 1)! 
(4b) 

where (a)} is Pochhammer's symbol,7 Moreover, 
since (a)o == 1 for all a, Eq. (4b) is valid for all j in 
the range of (4a). Inserting (4b) into (4a) and removing 
a factor (21 + I)! from the denominator of (4a), we 
obtain a convenient alternative to (4a), namely 

L2Hl ) _ _ [en + 1)!]2 
. n+Z(P - (n - 1 - I)! (21 + I)! 

x IF1(-n + 1 + 1; 21 + 2; p), (4c) 

where IFI is the conventionally defined confluent 
hypergeometric function.s In particular 

L!(p) = _ (n!)2 II (-n + 1),(3...)'. (4d) 
(n - 1)! '=0 (2);i! nao 

With Eq. (4d), Eq. (3) becomes 

u*u- = ..l(1.\3 1.( n! )te-(1/QOH1+1/n)r 

!, 41T ao/ 2 n'(n - 1)! 

n-l ( _ n + 1) _ ( 2r )' x ~ . 1 - • (5) 
;=0 (2),J! nao 

By inserting (5) into (1), the amplitude becomes 

F (1s _ ns' q) = iK; A nflX (n)Ir i e-(llaOHl+l/n)r 
, (21T)2 n,=o; 

X [1 - ('b ~ sTleiq.b dr d2b, (6) 

where 

An == (2/ao)3![n !/n4(n - 1) !It = (2/ao)3i:n-i 

and 
1X;(n) == [( -n + IM(2);j!](2/nao)i. 

Equation (6) can be written in terms of a generating 

function [00., q) such that 

F (Is - ns; q) 

{
n-l 01+1}/ = iKiAn ~1X;Cn)(-I)1+1:l J+110C).,q) , 
;=0 {lA .I.=(1/ao)[1+(l/tr}] 

where 

I (A. ) = _1_ fe-.l.r ![1 _ (Ib - SI,\i'l]eiq.b dr d2b. 
o ,q (21T)2 r b / 

(7) 

Note that the above generating function differs slightly 
from the generating function 10 (A. , q) defined by Eq. 
(11) of Tai et al.4 The generating function of Eq. (7) 
contains an extra factor of ,-1, which does not affect 
the convergence properties of the integrals. Now 
introduce polar coordinates in the plane containing s 
and b such that 

q • b = qb cos (CPb - cPq) 
and 

Ib - sl = [b2 + S2 - 1bs cos (CPs - cp/)1t. (8) 

Of course, r = (S2 + Z2)t. Via the periodic properties 
of the cosine functions, the generating function Io(A, q) 
then becomes 

1 i<Xl i<Xl f<Xl _.1.(8
2
+Z

2
). 

Io(A,q)=-- bdb sds dz
e t 

(21T)2 0 0 -co (S2 + Z2) 

(9) 

1 1<Xl i<Xl J<Xl _.l.(s·+z2)t 
= - b db sds dz e 1/o(qb) 

21T 0 0 -<Xl (S2 + Z2) 

l 2" [ (b
2 + S2 - 2bs cos cP )i1 xdcp. 1 - 2 • 

o b 

(10) 

1 100 100 

= - b db s dsKo(AS)Jo(qb) 
1T 0 0 

x f"dCP.[l - e2 

+ S2 ~;bS cos cpsr} 
(11) 

The reduction of Eq. (9) to Eq. (11) parallels closely 
the preliminary_ reduction of Eq. (11) of Tai et al. 
However, at this point we depart from the analysis of 
Refs. 2 and 4. In Eq. (11) replace s by bs. The integral 
over CPs now is independent of b; moreover, the orders 
of integration over sand b may be interchanged. 
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Next, the integral over b may be done by using9 

('" db b3JO(qb)Ko(J..sb) = -±- 2Fl(2, 2; 1; - L). Jo (J..S)4 ),2S2 

Consequently, 

JoCJ.., q) = 81"'s dS(J..S)-4 2Fl(2, 2; 1; - L) 
o . ),2S2 

X (1 - 2~ f"(1 + S2 - 2s cos cp.)i1/ dCP.). 

(12) 

When q is nonzero, the term in Eq. (12), proportional 
to the first term in brackets, vanishes. This is seen as 
follows. Let z = q2(J..S)-2 so that 2s-3 ds = _J..2q-2 dz 
and 

8 {'" S dS(J..S)-4 2Fl (2,2; 1; - !L.) Jo J..2S2 

4 1'" = 22 dz 2Fl(2, 2; 1; -z). 
). q 0 

(13a) 

However,lo 

l'XJ2F1(a, b; c; -z)z-S-ldz 

rea + s)r(b + s)r(c)r( -s) 

r(a)r(b)r(c + s) 

provided c~o, -1,"', Res<O, Re(a+s), 
Re (b + s) > O. In the right side of (13a), s = -1 and 
the above conditions are satisfied. Moreover, r(c + 
s) = reO). Hence, for nonzero q 

8 ["'sdS().sr'2Fl(2,2; 1; _L) =0. (13b) Jo ).2S2 

One also can verify (l3b) directly for nonzero q by 
explicity expanding the hypergeometric function [see, 
for example, Eq. (16)] and then integrating over s. 

If q = 0, the integral over s in the left side of (13a) 
does not exist; the integral is strongly divergent. 
Hence, the first term in Eq. (12) diverges at q = O. 
However, the second term in Eq. (12) diverges 
absolutely; moreover, the divergence is of the same 
order as the first term. In fact, the divergence of the 
integral in (12) at q = 0 is of a lower order than either 
of the first or second terms in (12). Since (13b) is 
strictly valid for all nonzero q, the only physical way 
to define IoU., 0) is as limit as q -+ 0 of Jo()., q), where 
10(J.., q) is obtained from Eq. (12) using Eq.(13b). 
In order to be sure that, in using (13b), we do not 
neglect a significant contribution to fo (and hence the 
amplitude) at q = 0, we have examined the asymp
totic behavior of the integrals in Eq. (12) as q -+ O. 

In Appendix C we explicitly show that the asymptotic 
behavior of Eq. (12) as q -+ 0 is identical with the 
asymptotic behavior of our final expression for 
f o()., q) obtained with (13b). 

The CPs integral of Eq. (12) is of the class Jm defined 
in Sec. I and discussed in Appendix A. The case m = 0 
is of interest in this present subsection. Letting m = 0 
in Eq. (A6) of Appendix A, we have 

1- (2"(1 + S2 _ 2s cos CPs)iq d9ls 
27T Jo 

= _22i1/ r(1 + ~'Y]) ['" dt r 2i,,!! [Jo(st)Jo(t)]. (14) 
r(1 - l'Y]) Jo dt 

Integrating by parts does not simplify the right side of 
(14) [see comments following Eq. (A6)]. With Eqs. 
(l3b) and (14), Eq. (12) becomes 

Ji)., q) = 8 ("'s ds().sr4 2Fl(2, 2; 1; _.!l.) Jo ).2S2 

X 22i" r(1 + i'Y]) ('" dt t-2;" ~ [J (st)J (t)]· 
r(1 - i'Y]) Jo dt 0 0 , 

(15) 
Eq. (15) can be handled best by expanding the 
hypergeometric function. Applying the standard 
analytic continuation formulasll for the 2Fl, we get 

2F 1 ( 2, 2; 1; - 1.;:2) 

= 1 +!L 2Fl 2, -1; 1; ----'q~~-( 2 )-2 ( 2/).2S2 ) 
).2S2 1 + q2/).2S2 

=s s +- 1--....!...!.--4( 2 q2)-2[ 2q2fJ..2 ] 
).2 (S2 + q2j).2) . 

(16) 

Hence 

The two terms in (17) are multiple integrals of the 
class discussed in Appendix B. They are J{,o.o and 
J{,O.l as defined by Eq. (B1). Therefore, 

Jo()" q) = 22i1/+3[r(1 + i'Y]);r(1 - in»),'] 

x [J{,o.o - 2(q2p,2)J\,Q,l]' 

which reduces, via (B6) or (B7), to 

Jo(;', q) = _4;.-2-2i"q-2+2i1/r(1 + i1)r(1 - i1) 

x [2Fl( -in + 1, -i1); 1; _).2Jq2) 

- (1 - in) 2Fl( -ifJ + 2, -ifJ; 1; _).2Jq2»). 

(18) 
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The two hypergeometric functions in (18) may be 
combined via a Gauss recursion relation12 

({l - lX) 2Fl(lX, (l; y; z) + lX 2Fl(lX + 1, (l; y; z) 

- {l 2Fl(lX, (l + 1; y; z) = O. 

Hence, 

0
1
+1 I x i+l [o()" q) , (19a) 

0,1 A=(llao)(l+1lnl 

where 

[o()" q) = -4i1'}r(1 + i1'})r(1 - i1'}»),~2-2i~q-2+2i~ 

x 2Fl(-i1'} + 1, -i1'} + 1; 1; _),2jq2); 

(19c) 

Eq. (19) is the desired closed form expression for 
F (Is ---+ ns; q). 

B. Is ---+ np Transitions 

The amplitudes for transitions of the class Is ---+ np 
can be considered in much the same way as in the 
previous subsection. Quantizing the atomic wave
functions along t we again introduce polar coordi
nates such that Eqs. (8) are satisfied. Hence the product 
uj(r)ui(r) appearing in Eq. (I) becomes 

u:(r)ulr) 

1 (3(1 - Iml)!)!(2 )31 ( (n - 2)! )t 
= - 47T (1 + Iml)! ao 2" n4[(n + 1)!]3 

X e-i(Pi+Pfl PIL~+ipI)p!ml (r ~ ~) e-im<p" (20) 

where L~+1' Pi ,and PI are as previously defined and 
m = 0, ± I. However, from Eq. (4c), 

L 3 ( ) - [( n + I)! ]2 F ( 2· 4. ) 
n+1 PI - - (n _ 2)! 3! 1 1 - n + , ,PI' (21a) 

where n ~ 2. Furthermore, we note that 

r· ~Jr = ZJ(S2 + Z2)!. (2Ib) 

Therefore, using Eqs. (21) in Eq. (20) and expanding 
the confluent hypergeometric function of (2Ia), we 

obtain for the amplitudes of Eq. (1) 

F (1s ---+ npm; q) 

_ iK; J3((1-lml)!)!(~\![ (n + I)! li ~ 
- (27T)2 4 (1 + 1m!)! ao! n n4(n - 2)!J 3! 

X ,%Pln) L"'b db f"dlPbL2" dlPsLctJs ds L: dz 

X eiQ.be-Ulao)(1+1/nlrri+l[Piml ( z )] 
(S2 + z2)i 

X e-;m<p'[1 _ (b
2 + S2 - 2b;2COS (IPs - IPb»);1, 

(22a) 

where 

(lin) = (-.n + 2)1(2)1. (22b) 
J!(4)1 nao 

In Eq. (22a), the integral over z is of the form 

foo dZJ«S2 + z2)i) [Plm, ( z )]. 
-00 (S2 + z2)i 

However, the parity of the piml is (_I)Hml; hence, 
when m = 0, 

F(1s---+np, m = 0; q) == o. 

Therefore, one only needs to evaluate (22a) for mag
netic quantum numbers m = ± I. As in Subsection A, 
the amplitude of Eq. (22a) can be expressed in terms 
of a generating function [1(,1, q). From the periodic 
properties of the trigonometric functions one can 
show that 

F (1s ---+ nP±1; q) 

= 2iKl~)i !(~)4 ![(n + l)!]!e-im<p. 
4! ao n3 (n - 2)! 

n-2 .:'t OH1 I 
x.I{lln)(-I)'+ ~),i+l[P"q) , 

,=0 u A=U/a )(H1/nl 

(23a) 

X fIT dlPb exp i(qb cos IPh - mlPb) fIT dIP. 

X e-iffl<P'[1 _ (b 2 
+ S2 ~;bS cos IPs)l. 

(23b) 

In (23a), lPa is the polar angle of q in the plane perpen
dicular to ;. The reduction of Eq. (23b) is similar to 
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that of Eq. (9). We find, then, that 

X L211 dlPse-im'P,(I + S2 - 2s cos IPst' 

(24a) 

by letting s -+ bs. The orders of integration over b 
and s may now be interchanged. Furthermore,9.ll 

La> db b4KOOsb)JI(qb) 

= 25(J.S)-6q 2FI(3, 3; 2; _q2JJ.2S2) 

= 25q(AS)-6(I + £)-S F (3 -1' 2' q2J).2 ) 
12 2 2 I, "2 2J 12 
AS S+qA 

= 25qJ.-6 (S2.+ q2)-S(I _ ~ q2JJ.2 ). (24b) 
).2 2 (S2 + q2J). 2) 

Again the integral over IPs is of the class Jm discussed 
in Appendix A where Iml = 1, so that 

2~ L211 ei (±1)'P'(I + S2 - 2s cos IPsY~ dIPs 

= _22i~ r(1 + i1]) ra> dt t-2i~ !!.. [Jist)JI(t)]. 
r(I - i1]) Jo dt 

Hence Eq. (24a) becomes 

I (J. ) = i22i~+5 r(I + i1]) ;,-6 
I ,q r(I - i1]) q 

X S2 ds S2 + 1- 1 - - -~q-,---100 ( 2)-S( 3 2J).2) 
o ).2 2 (S2 + q2J).2) 

X roo dt t-2i~!! [Jl(St)JI(t)] 
Jo dt 

= i22i~+5[r(I + i1])Jr(l - i1])]J.-6q 

x {J\1..0 - f(q2J).2)J\1..I}' (25) 

where J{,m.r is defined in Appendix B. Therefore, 
using Eq. (B7), we have 

I
I
()., q) = i22r(I + i1])r( -i1) + 2)(i1]»).-2iI!-2q2i~-3 

x {2aFI(-i1] + 2, -i1] + 1; 2; _).2Jq2) 

- (-i1] + 2) 

x 2FI(-i1] + 3, -i1] + 1; 2; _).2Jq2)}. 

(26) 

The sum of hypergeometric functions in Eq. (26) may 
be rewritten via the Gauss recursion relations.12 We, 

therefore, find that 

F(ls-+2Po;q) == 0 (27a) 
and 

(27b) 
where 

I I ()., q) = i4r(I + i1])r(2 - i1])(i1]»).-2iI!-2q2i~-3 

x {-2FI(-irJ + 2, -irJ + 1; 1; _J.2Jqa) 

+ (1 + irJ) 

x 2FI(-i1) + 2, -i1] + 1; 2; _J.2Jqa)}, 

(27c) 
p;(n) = [( -n + 2);/j!(4);](2/nao);. (27d) 

Equations (27) complete the specification of the 
general amplitude F (1s -+ np). 

C. Special Cases 

The Glauber amplitudes for the five transitions 
Is -+ Is, 2s, 2p, 3s, 3p have been discussed previously 
in the literature.2- 4 In each case the amplitude has 
been expressed in the form of a nontrivial integral of a 
hypergeometric function (or an equivalent double 
integral) which, heretofore, has been done numerically. 
Using Eqs. (19) and (27), one can reduce each of these 
amplitudes to a simple sum of hypergeometric 
functions which can be readily computed. We evaluate 
only the first three transition amplitudes. as specific 
examples of the results of Eqs. (19) and (27). 

Consider first the s transition amplitudes defined by 
Eqs. (19). When n = 1, Eq. (19a) reduces to 

F (Is -+ Is; q) = -iKl2/ao)3![~ 10(1., q)JI ; 
01. ).=2/ao 

10 is defined by (19c). The hypergeometric function in 
10 is readily differentiated vial3 

d 
- 2FI(ex., P; y; z) = (ocPJY)2FI(ex. + 1, P + l;y + I;z) 
dz 

so that 

F (Is -+ Is; q) 

= -2iKi(i1])r(I + i1])r(1 - i1])(ao/2)2(2Jaoq)2-ai~ 

X {(I + i1])2FI(1 - i1], 1 - i1]; 1; -4/a~q2) 

+ (1 - i1)2(4/a~q2) 

x 2FI(2 - i1),2 -i1]; 2; -4Ja~q2)}. (2Sa) 
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Furthermore, when n = 2, 

F(1s ~ 2s; q) 

= -iK;(2/ao? 1/ {(1 + _1 ..E.-)..E.-Io(A, q)}/ 
8",2 2ao A). A). ).=3/2ao 

= iKi --±- (l/ao)4A-6().2/q2Y-iQr(l + it})r(1 - it})(it}) 
..}2 

x {2it}(1 + it})2F1(1 - it}, 1 - it}; 1; _).2/q2) 

+ 4it}(1 - it})2().2/q2) 

X 2Fl(2 - it}, 2 - it}; 2; _).2/q2) 

+ (1 - it})2(2 - it})2(A4/q4) 

x 2F1(3 - it}, 3 - it}; 3; _).2/q2)}\.<=3/2ao' (28b) 

The Is ~ 2p transition amplitudes are determined 
by Eqs. (27). Setting n = 2, we find, for the nontrivial 
amplitude Is ~ 2p ± 1, 

F (Is ~ 2P±I; q) 

gen. Furthermore, the rudimentary selection rule 
derived for Is, np transitions is fully generalizable. 
Consider a general transition in which the quantum 
numbers of the initial and final bound states are 
respectively nlm and n'l'm'. Again quantize the bound 

,state wavefunctions along t then 

F(i~j; q) 

= - A(i ~ f) d b dre' . reb, r) iKi J 2 'f! b 

217 

X Rnl(r)Rn'l'(r)pjm l r : ;) pj?"'1 r : ;) ei(m-m')ip" 

(30) 

where Rnl(r) is the usual hydrogenic radial wave
function and A is a normalization constant. Equations 
(8) still hold. As in Sec. II, the integrations over Cf!. 
and Cf!b may be separated so that 

(29a) F (i ~ j; q) 

so that 

F (Is ~ 2P±1; q) 

= -4Ki(aor4e'fiipqr(1 + it})r(2 - it})it}q-3+2 i Q).-2iQ-3 

x {2(i + it})2F1(2 - it}, 1 - it}; 2; _).2/q2) 

- (2 - it})(1 + it) + 2A2jq2) 

x 2Fl(3 - it}, 2 - it}; 2; _).2/q2)}\.<=3/2ao' (29b) 

Equation (29b) is obtained from (29a) first by per
fqrming the indicated differentiation of Il(A, q) with 
respect to ). and then by combining the four resulting 
hypergeometric functions via the Gauss recursion 
relations. 

Our experience, together with the known properties 
of the Gauss recursion relations,12 indicates that 
whenever more than two hypergeometric functions 
appear in the amplitudes, as determined by Eqs. (19) 
and (27), the amplitude expressions can be reduced 
further, via the Gauss relations, to a sum of two 
hypergeometric functions with coefficients which are 
rational functions of it} and ).2/q2. The hypergeometric 
functions then can be readily computed from their 
standard expansions when ).2/q2 < 1 and their 
appropriate analytic continuation when ).2/q2 > 1. It 
appears, therefore, that these Glauber amplitudes now 
can be computed with scarcely more difficulty than 
the Born amplitudes. 

III. SELECTION RULE FOR ARBITRARY 
TRANSITIONS 

As one might suspect the results of Sec. II can be 
generalized to arbitrary excitations in atomic hydro-

= iKi Aei(m-m')ipq roo b db {21T dCf!b 
217 Jo Jo 
X exp i[qb cos Cf!b + (m - m')Cf!bl 

foo 100 Iml (r .;) Im'l (r . ;) 
X -00 dz 0 s dsRnlr)RnT(r)PZ -r- PI' -r-

i 21T , ,[ (b
2 + S2 - 2bs cos Cf! )iq] X dCf!se,(m-m )ips 1 - 2 s. 

o b 

(31) 

The z integral in (31) immediately yields the Glauber 
selection rule for induced transitions in atomic 
hydrogen. Ignoring all other integrations, we have 

F (i ~ j; q) oc i: dzj(r)pjml C: ;)Pj?"'1 (r: ;), (32) 

where f (r) is defined by the radial functions and is a 
purely even function of z since r = (S2 + Z2)!. Recall 
that 

r· ; 2 2-! 
- = z(s + z) . 

r 

However, the parity of the associated Legendre 
polynomial pjml is I - Iml; hence Eq. (32) becomes 

F (i ~ j; q) 

oc L" dzj(r)pjml[z(s2 + z2r!)pl:»'I[z(s2 + z2r!] 

x [1 + (_1)1+1'-lml-1m'I]. 

Therefore, if 1 + l' - Iml - Im'l is odd, the right side 
of (32) vanishes. 



                                                                                                                                    

1574 B. K. THOMAS AND E. GERJUOY' 

Hence, when the hydrogen bound state wave
functions are quantized along ;, the Glauber ampli
tude 

F (nlm --+ n' l' m' ; q) ~ ° (33) 

when I + I' + Iml + Im'l = odd integer. Otherwise, 
the amplitude is given by Eq. (31). 

The techniques of Sec. II ca,n be generalized to 
perform the reduction of Eq. (31) when / + /' + 
Iml + Im'l is an arbitrary even integer. In this case, 
one can reduce (31) to the evaluation of a generating 
function which is related to the amplitude by an 
equation similar to, but far more complex than, 
either Eq. (l9a) or Eq. (27b). The general result is 
given elsewhere.14 

APPENDIX A: AN EQUIVALENT INTEGRAL 
FOR 3m 

Whenever the Glauber approximation is applied to 
charged particle collisions with neutral atoms whose 
bound state wavefunctions are approximated by
products of hydrogenlike wavefunctions, one en
counters integrals of the class 

Jm = 2
1
7T f7t dcpeimf/J(1 + S2 - 25 cos cp)i

q
, (Al) 

where m is a positive or negative integer, rJ is purely 
real, and ° S s < 00. Since sin (mcp) is an odd 
function, :1 m can be reduced to 

:1m = - dcp cos (mcp)(l + S2 - 2s cos cpY~ (A2) 1 12

" 

27T 0 

and only m ~ ° need be considered. The integral CA2) 
can be evaluated vials 

1 f27t cos (ncp) dcp , 

27T Jo (1 - 2z cos cp + Z2)" 

r(1X + n) n 2 
= Z 2FI(IX, IX + n; 1 + n; z), (A3) 

r(lX)n! 
provided 

n = 0, 1,2, .. " IX ~ 0, -1, -2, .. " Izl < 1. 

When s < 1, (A2) is evaluated by directly applying 
(A3); when s > 1, one first removes a factor of S2 

from the integrand of (A2) and then applies (A3) to 
the resulting integraL Alternatively, (A2) can be 
evaluated by expanding (1 + S2 - 2s cos cpl~ in 
powers of [2s cos cp!(I + S2)] and integrating term 
by term. The hypergeometric function obtained from 
the latter method can be shown to be equivalent to the 
results obtained via (A3) by using a standard quadratic 
transformation.16 However, the direct integration of 
(A2) is not particularly useful because it considerably 
complicates the ensuing integrals over s. 

We, therefore, seek an integral representation for 
:1 m such that the integral over s is readily doable. This 
is accomplished as follows. It is knownl7 that 

100tp-1Jv(at) dt = 2P-1a-p r(tV + tft) 
o [(1 + iv - ift) 

provided -Re v < Re ft < ~. 
If a == (l + S2 - 2s cos cp)!, then 

a2t~-1 = it~ ,'/ dt t-2iQJ
1
(at), , , r(I + i'YI) i oo 

r(1 - IrJ) 0 

(A4) 

where fl = - 2i17 + 1 and v = I, thereby satisfying 
the above conditions on fl and v. But 

Hence 

1 d 
Jl(at) = - - - Jo(at). 

a dt 

11" :1 m = - dcp cos (mcp)(l + S2 - 2s cos cpyq 
7T 0 

2i~ r(I + i'Y) 1 100 
,d i" = -2 . _r1tt-2t~ - dcp cos (mcp) 

r(1 - 11J) 7T 0 dt 0 

X Jo([1 + S2 - 2s cos cp]tt). (AS) 

To obtain (A5), we have assumed, for the moment, 
that interchanging the order of integration and 
differentiation with respect to t with the integration 
over cp is justified. As we shall ultimately see, this 
assumption is valid. 

Now expand Jo((1 + S2 - 2s cos cp]tt) in the Neu
mann series18 

00 

Jo(at) = '2:,enJn(st)Jn(t) cos (ncp), 
n=O 

where EO == 1, En = 2 for n ~ I, and perform the 
integration over cp term by term. One readily finds that 
:1m can be written 

, r(1 + i'YI) 100 ,d = -i'~ "dt t-2'~ -. [J (st)J (t)] 
r(1 - i'Y) 0 dt Iml Iml 

(A6) 

for arbitrary (positive or negative) integers m. 
Equation (A6) is the desired result. It can be 

reduced by integrating by parts when 1m/ > 0. When 
m = 0, the first term from such a reduction is pro
portional to t-2i%(st)Jo(t) evaluated at t = ° and 
t = 00. However, the limit of this term as t --+ ° is 
bounded but not defined. Hence, when m = 0, one 
must perform the indicated differentiation with 
respect to tin (A6). 
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Keeping the preceding remarks in mind, one can 
use the known hypergeometric function results for 
Weber-Schafheitlin discontinuous integrals19 to evalu
ate the right side of (A6). (When m = 0, one obtains 
two hypergeometric functions which can be combined 
via the Gauss recursion relations.20) If these results are 
compared with those obtained, via (A3), from the 
left side of (A6), one immediately sees that the 
integrations on both sides of (A6) yield results 
identical for all s ~ 0. Thus we validate, a posteriori, 
the assumptions which led to equation (A5). 

APPENDIX B: THE CLASS OF INTEGRALS .x,m,. 

When the integral representation (A6), derived in 
Appendix A, is used to evaluate the Glauber ampli
tudes for arbitrary transitions in atomic hydrogen, 
one can express the amplitudes as finite sums of 
integrals .x,m.r of the type 

X dtt-2ilf - [J m(t)J m(st)], (Bl) 100 d 

o dt 

where m and r are integers greater than or equal to 
zero. The reduction of (BI) to a form easily computed 
is accomplished in a relatively straightforward way, 
p~ovided one keeps in mind the comments following 
Eq. (A6). 

First consider the case m = 0. Perform the differ
entiation as indicated. As long as q2/),2 > 0, one may 
interchange the order of integrations so that (BI) 
becomes 

.x,o .• = - iOOdtt-2ilf[Jit) ioodSSJo(st)(s2 + ~r2-' 

(00 (q2)_2-'] + Jo(t) Jo ds s2J1(st) S2 + ),2 • (B2) 

However,21 

(00 dx Jibx)xv
+1 = aV-flbflKv_iab) , (B3) 

Jo (x 2 + a2)1l+1 2I'r(,u + 1) 

provided -1 < Re v < Re (2,u + i), a, b > 0. 

Each term in (B2) satisfies the conditions of (B3) for all 
integers r ~ 0. Therefore, since K_n(z) = Kn(z), 

.x,o.r = - (~J 2-
1
-'[r(2 + r)r1 

x i oo 

dtt-2ilf+1+'[~ J l(t)K1+r (~ t) 

+ Jo(t)Kr(~ t)]' (B4) 

provided q2/),2 > 0. Moreover,9 

i oo 

dt t-P Jv(Pt)Kirxt) 

= 2-1-prxp-V-lpVr C + v ~ p + ,u) rC + v ~ p - ,u) 

1 (1 + v - p +,u 
X [f( 1 + v) r 2F 1 2 ' 

1 + v - p - ,u . . P2
) 

----'--~ ,1 + v, - 2 
2 rx 

provided Re (rx ± iP) > 0, (B5) 

Re (v - p + 1 ± ,u) > 0. 

Again, the terms in (B4) obey the conditions of (B5) 
for all r ~ 0, so that 

.x,o .• = - 2-2ilf-\A!q)2r+2-2ilf 

X r( -i1} + 1 + r)r(-i1} + 1)[r(2 + r)r1 

x {2Fl(-i1} + r + 1, -i1} + 1; 1; _),2/q2) 

+ (),2/q2)(_i1) + r + 1) 

x 2Fl( -i1} + r + 2, -i1} + 1; 2; _),2/q2)}. 

The hypergeometric functions can be combined via 
the Ga~ss recursion relation20 

Y 2Fl(rx, P; y; z) - y 2Fl(rx, P + I; y; z) 

+ rxz 2Fl (rx + I, P + I; Y + I; z) = 0. 

Therefore, when m = 0, the double integral of (BI) 
reduces to 

~.r = _2-2ilf-l(A!q)2r+2-2ilf 

X [r( - i1} + 1 + r)r( - i1} + 1)/f(2 + r)] 

X 2Fl(-i1} + r + 1, -i1}; 1; _).2Jq2). (B6) 

When m > 0, the reduction of (BI) is simpler. First 
integrate once by parts with respect to t. Then, after 
interchanging the orders of integration, 

.fum.r = (2i1}) i oo 

dtt-2ilf- 1J met) 

X 100 

ds s1+m (S2 + ~r2-m-r J m(st). 

Using (B3), one can perform the integration over s. 
One finds that 

.fu = 2i1) -(
),)l+r 2-1-m-r 

m.' q r(2 + m + r) 

X 100 

dt t-2i
lf+

m
-f

rJ (t)K (t 9..) o m l+r ),' 

Since Re [I + 2m - 2i1} + r ± (1 + r)] ~ 2m > 0, 
the final integral over t can be done using (B5). 
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Therefore, 

J(,m.r = i'Yjr2i1/-1().jq)-2i1/+2m+2r+2r( - i'Yj + m + r + 1) 

X r( -i'Yj + m)[r(l + m)]-1[r(2 + m + r)]-1 

x 2Fl(-i'Yj + m + r + 1, -i'Yj + m; 

1 + m; _A2jq2) (B7) 

when m > O. However, when m = 0, (B7) reduces to 
(B6) since i'Yjr(-i'Yj) = -r(-i'Yj + 1). Hence (B7) is 
valid for all integers m and r ~ O. 

APPENDIX C: ASYMPTOTIC FORMS OF THE 
GENERATING FUNCTIONS 10 AND II 

In this appendix we discuss the asymptotic behavior 
of the generating functions Io(A, q) and II (A, q) as 
q - O. In particular we examine in detail the asymp
totic form of Io(A, q) as determined by Eq. (12) of 
Sec. II. We apply Eq. (A3) of Appendix A to evaluate 
the ips integral of Eq. (12); then, via Eq. (l6), Eq. 
(12) becomes 

Io(A, q) = 8A-4{fs dS(S2 + ~:r2 

[ 
q2( q2)-1] 

X 1 - 2 J:2 S2 + ,A2 

X [1 - 2Fl(-i'Yj, -i'Yj; 1; S2)] 

+ 1°Os ds(i + ~rTl -2A~2(i + ~r] 
X [1- S2i1/2Fl-i'Y), -i'Y); 1;s-2)]}. (e1) 

Since the integral in (e 1) over the region [1, (0) is 
well behaved as q - 0, the behavior of IoCA, q) as 
q _ 0 is determined by the integral over the region 
[0, 1]. We expand the hypergeometric function 
2Fl( -i'Yj, -i'Yj; 1; S2) in powers of S2, retaining only 
the first few terms, so that 

[1 - 2Fl(-i'Yj, -i'Yj; l;s2)] = _(_i'Yj)2S2 

X [1 + HI - i'Yj)2S2 + "3\-(1 - i'YJ)2(2 - i'Yj)2S4 + ... ] 
and 

I o().., q),......, -8A-4fs dS(S2 + ~)2 

X l--s+-[ 
2q2 (2 q2)-1] 
A2 A2 

X (_i'Yj)2s2[1 + t(1 - i'Yjls2 

+ is(1 - i'Yj)2(2 - i'Y)2S4]. (e2) 

Note that, in obtaining Eq. (e2) , we already have 
subtracted off the possible divergence stemming from 
the first term under the brackets in Eq. (12). Now, let 
t = (S2 + q2j).2). Then, one can readily show that, as 
q _ 0, the leading term in (e2) is proportional to 

In (q2jA2); all other terms are either finite or vanish 
at q = O. Hence, as q - 0, 

Io(A, q) '"" 4A-4(i'Yj)2In (q2jA2). (e3) 

Equation (e3) is precisely the asymptotic behavior of 
(I9C) obtained by using the standard analytic continu
ation of the hypergeometric function22 appearing in 
(I9C) as q - O. Therefore, Eqs. (19) are valid for 
all q ~ O. 

The logarithmic divergence of Io(A, q) as q - 0 leads 
directly to the logarithmic divergence of the elastic 
scattering amplitude in the forward direction, which 
has been noted and discussed by Franco.2 Further
more, it should be apparent from Eqs. (I9) that all 
amplitudes F (Is - ns; q) diverge logarithmically as 
q-O. 

In a fashion similar to that described above, one 
can obtain from Eqs. (24) the asymptotic behavior of 
11 (A, q) as q - O. However, one now finds that, as 
q-O, 

(C4) 

As one might suspect, Eq. (e4) agrees with the 
asymptotic behavior of Il(A, q) obtained from Eq. 
(27c). Furthermore (e4) implies that each of the 
nonzero Is - np amplitudes of Eq. (27b) diverges as 
q-l asq-O. 
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The MCCoy-Wu treatment of the two-dimensional ISing model with random impurities is generalized 
to allow both vertical and horizontal interactions to vary randomly from row to row (while still keeping 
them constant in any row). If the random impurities are narrowly distributed, the order-one term in the 
specific heat at T. is infinitely differentiable but nonanalytic. 

Recently, McCoy and Wul wrote a series of articles 
analyzing the Ising model with the horizontal inter
action energies fixed and the vertical energies varying 
randomly from row to row. They found that the 
specific heat was indefinitely differentiable but non
analytic at Tc ' when the impurities were distributed 
with a power law distribution function. 

Subsequently, McCoy2 generalized these considera
tions to any narrow distribution function, and found 
the same behavior of the specific heat eM' near Tc. 

Does a study of a more general lattice yield similar 
results? The most obvious way to generalize McCoy
Wu lattice is to allow the horizontal coupling constant 
to be a random variable keeping each translationably 
invariant. McCoy3 has conjectured that the analytic 
properties of eM will remain the same. It is the 
purpose of this article to prove this conjecture by a 
direct computation. 

Consider the Hamiltonian 
M 

H = - I {El(m)O'm.,.O'm+l.,. + E2(m)O'm.nO'm.n+l}, 
n.m=l 

(1) 
where EI(m) and E2(m) are random variables distrib
uted symmetrically4 around a narrow peak, with a 
distribution function P(El' EJ. 

Define the new variables 

z(m) = coth [2K2(m)], y(m) = tanh2 [Kl(m)J (2) 

and their distribution function as 

P(EI , E2) dEl dE2 

= N2D[N(z - zo), N(y - Yo)] dy dz, (3) 

where N is large but finite. 
McCoy and Wul located the critical temperature 

Tc ' which is given by 

0=11 dz dy N2D[(N(z - Zo), N(y - Yo)] 

x In [y(z + l)(z - 1)-1J. (4) 

By assuming that T - To = O(N-2) and expanding 
(4) in powers of N-1, we obtain 

Yo(zo + l)(zo - 1)-1 

= 1 + [(1 + o)bj2]N-2 + O(N-2), (5) 

where b is given by b = DlIlIYo2 + 4zoD •• (z~ - 1)-2, 
o is the scaled temperature proportional to IT - Tel, 
and DII• the second moment of the distribution D 
with respect to the variables (y, z). 

The integral equationl.2 for the limiting distribution 
vex) is given by (q is treated as a parameter) 

vex) = III dz dy dx'v(x')N2D[N(z - Zo), N(y - Yo») 

x o(x _ x'(Z. - cos q) + y sin q). (6) 
x' sm q + y(z + cos q) 

We first carry out the integral over x' to obtain 

vex) =fJdY dz[v(Y[Si~ q - x(z + cos q)J)N2D[N(Z - zo), N(y - Yo)] 
X sm q - (z - cos q) 

x y(Z + cos q)[-x sin q + (z - cos q)] + sin q[x(z + cos q) - sin q))J. 
[x sin q - (z _ cos q»)2 (7) 

Following McCoy,2 we expand both sides of (7) 
around the peak of D in powers of N-l, set sin q = 
qN-2, cos q = 1, and equate orders of N-l. The terms 
of order one, N-1 give identities. 

The O(N-2) term gives a differential equation for 1i 
which is our approximation for vex). Explicitly, 1i is 
given by 

ix2A dii(x) + [1(1 + b)bx + 2xB 
dx 

where A = D'Vyy;2 + 4Dz.(z~ - 1)-2 and 

B = D •• (1 - zo)(z~ - 1)-2 + Dy.(zo - 1)-2. 

Let P = bA-l; then the solution of (8) is given by 

vex) = CX-1
-

6P exp {-iT[Yoix + ytx-1]}, (9) 

where T = 4qygA-1(zo - 1)-1, the normalization 
constant C is given by 

C-1 = 2y;"P/2K".(T) (10) 

+ x 2q(zo - lr1]ii(x) = 0, (8) and K,,'(T) is the Bessel function of the third kind, 
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and b' = bP. The function Y(x) has identical analytical 
behavior to the case investigated by McCoy.2 The 
evaluation of C M near To using our ii(x) yield similar 
results as obtained by McCoy, which we now quote 
for completeness. The most singular part of C M is 
given by 

CM oc (OOdq; (~ln K~{q;) - (q; + 1)-I} E J(b'). Jo oW) 
(11) 

feb') does not have a convergent power series for 
b' f"'Oo.J 0 but is infinitely differentiable,1.2 in agreement 
with McCoy's conjecture.s 

JOURNAL OF MATHEMATICAL PHYSICS 

ACKNOWLEDGMENT 

The author wishes to express his deep gratitude to 
Professor B. M. McCoy for many stimulating discus
sions, and to Professor C. M. Bender for his interest 
in this work. 

,. Work partially supported by National Science Foundation 
Grant GP26526. 

1 B. McCoy and T. T. Wu, Phys. Rev. 176, 631 (1968); 188, 982 
(1969); B. McCoy, ibid. 188, 1014 (1969); 2, 2795 (1970). 

2 B. McCoy, "Exact Calculation on Random Systems," to appear 
in the book edited by C. Domb and M. S. Green (Academic. New 
York, 1971). 

3 B. McCoy, private communication (1971). 
4 This requirement is made without loss of generality. 

VOLUME 12, NUMBER 8 AUGUST 1971 

Vector-Scalar Sector Solutions to the Spinor-Spinor 
Bethe-Salpeter Equation * 

NOBORU NAKANISHIt 
Applied Mathematics Department, Brookhaven National Laboratory, Upton, New York 11973 

(Received 16 November 1970) 

A new method is proposed to discuss the exact J = 0 vector-scalar sector solutions to the equal-mass 
spinor-spinor Bethe-Salpeter equation for the massless-meson exchange ladder model at the vanishing 
total 4-momentum. Under the assumption that all solutions belonging to a discrete spectrum have a 
discrete spectral representation in the relative 4-momentum squared, it is proved that no discrete solutions 
other than the solution (in the vector-coupling case) found by Bastai, Bertocchi, Furlan, and Tonin 
exist in any case of the scalar, pseudoscalar, and vector couplings. As for the case of the axialvector 
coupling, it is shown that possibJe eigenvalues have to belong to one of three exponentially increasing 
sequences; but the existence of any solution other than Kearn's one is quite unlikely. It is mathematically 
interesting that in the above analysis one encounters some Diophantine equations of the second degree. 

1. INTRODUCTION 
In spite of its importance, our knowledge on the 

spinor-spinor Bethe-Salpeter (B-S) equation is yet 
very little because of its complexity. It is especially 
difficult to find exact solutions to it even in the ladder 
model. So far the only manageable case is the case of 
the vanishing total 4-momentum (PI' = 0). In this 
case, the spinor-spinor B-S equation is decomposed 
into three sectors: pseudoscalar sector, tensor
axialvector sector, and vector-scalar sector, where we 
assume that both constituent particles have the same 
mass. If the exchanged mesons are massless, we can 
find some exact solutions. 

In the pseudoscalar sector, which is called the 
Goldstein equation,! we obtain a set of solutions 
belonging to a continuous spectrum, but there exist no 
discrete solutions. 

In the tensor-axialvector sector, it is remarkable 
that one of two coupled integral equations becomes 

trivial in the vector-coupling (V-coupling) case and in 
the axialvector-coupling (A-coupling) case. In 1964, 
noting this fact, Kummer2 found a set of exact 
solutions belonging to a discrete spectrum in the V
coupling case. Recently, some further analyses of 
Kummer's solutions have been made on the basis of 
the 0(4) symmetry consideration by Set03 and by 
ItO.4 

The vector-scalar sector consists of two coupled 
nontrivial integral equations. Until recently, only one 
exact solution was known only in the V-coupling case. 
It was found by Bastai, Bertocchi, Furlan, and 
Tonin,s who employed a technique similar to the 
proof of the Ward identity. Recently, Keam6 found a 
new J = 0 solution in the A-coupling case by means 
of a computer (see Sec. 2 for details). 

In the present paper, we make a systematic study of 
the J = 0 vector-scalar sector solutions. Under a 
reasonable assumption stated in Sec. 3, the problem 
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and b' = bP. The function Y(x) has identical analytical 
behavior to the case investigated by McCoy.2 The 
evaluation of C M near To using our ii(x) yield similar 
results as obtained by McCoy, which we now quote 
for completeness. The most singular part of C M is 
given by 
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A new method is proposed to discuss the exact J = 0 vector-scalar sector solutions to the equal-mass 
spinor-spinor Bethe-Salpeter equation for the massless-meson exchange ladder model at the vanishing 
total 4-momentum. Under the assumption that all solutions belonging to a discrete spectrum have a 
discrete spectral representation in the relative 4-momentum squared, it is proved that no discrete solutions 
other than the solution (in the vector-coupling case) found by Bastai, Bertocchi, Furlan, and Tonin 
exist in any case of the scalar, pseudoscalar, and vector couplings. As for the case of the axialvector 
coupling, it is shown that possibJe eigenvalues have to belong to one of three exponentially increasing 
sequences; but the existence of any solution other than Kearn's one is quite unlikely. It is mathematically 
interesting that in the above analysis one encounters some Diophantine equations of the second degree. 

1. INTRODUCTION 
In spite of its importance, our knowledge on the 

spinor-spinor Bethe-Salpeter (B-S) equation is yet 
very little because of its complexity. It is especially 
difficult to find exact solutions to it even in the ladder 
model. So far the only manageable case is the case of 
the vanishing total 4-momentum (PI' = 0). In this 
case, the spinor-spinor B-S equation is decomposed 
into three sectors: pseudoscalar sector, tensor
axialvector sector, and vector-scalar sector, where we 
assume that both constituent particles have the same 
mass. If the exchanged mesons are massless, we can 
find some exact solutions. 

In the pseudoscalar sector, which is called the 
Goldstein equation,! we obtain a set of solutions 
belonging to a continuous spectrum, but there exist no 
discrete solutions. 

In the tensor-axialvector sector, it is remarkable 
that one of two coupled integral equations becomes 

trivial in the vector-coupling (V-coupling) case and in 
the axialvector-coupling (A-coupling) case. In 1964, 
noting this fact, Kummer2 found a set of exact 
solutions belonging to a discrete spectrum in the V
coupling case. Recently, some further analyses of 
Kummer's solutions have been made on the basis of 
the 0(4) symmetry consideration by Set03 and by 
ItO.4 

The vector-scalar sector consists of two coupled 
nontrivial integral equations. Until recently, only one 
exact solution was known only in the V-coupling case. 
It was found by Bastai, Bertocchi, Furlan, and 
Tonin,s who employed a technique similar to the 
proof of the Ward identity. Recently, Keam6 found a 
new J = 0 solution in the A-coupling case by means 
of a computer (see Sec. 2 for details). 

In the present paper, we make a systematic study of 
the J = 0 vector-scalar sector solutions. Under a 
reasonable assumption stated in Sec. 3, the problem 
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of finding the solutions is reduced to a system of 
recurrence relations for parameters. From it, we 
encounter some Diophantine equations of the second 
degree, which are well known in number theory. By 
investigating them, we prove that no solution exists in 
the scalar-coupling (S-coupling) case and in the 
pseudoscalar-coupling (P-coupling) case, that no 
solution other than that of Bastai et al. exists in the 
V -coupling case, and that possible eigenvalues in the 
A-coupling case have to belong to one of three 
exponentially increasing sequences. It is expected that 
our method is useful also for finding the J ¥= 0 vector
scalar sector solutions and the tensor-axialvector 
sector solutions in the S-coupling and P-coupling 
cases. 

2. KNOWN SOLUTIONS 

The vector-scalar sector of the equal-mass spinor
spinor B-S equation for the massless-meson-exchange 
ladder model at P Il = 0 consists of two coupled 
integral equations': 

(1 - p2)cg(p) + 2pIlPvcf>~(p) - 2PIlcf>S(p) 

= A
V 

fd4q cf>:(q) , 
7T2i _(p _ q)2 - ie 

(1 + p2)cf>S(p) - 2p"cf>:(p) 

AS f 4 cf>S(q) 
= 2. d q 2. . (2.1) 

7T I -(p - q) - Ie 

Here Pil is the relatwe 4-momentum of the two 
constituent particles, whose mass is put equal to 
unity; cf>~(p) and cf>S(p) denote the vector components 
and the scalar component of the B-S amplitude, 
respectively; AV and AS are given by Table I, with 
). == (g/47T)2 [). = -(g/47T)2 can also occur only in the 
V-coupling case], g being the coupling constant. 
Physically, we should have A > 0 except for the V
coupling case, but we do not impose this condition 
because the B-S equation often yields physically 
unexpected results' and because we can construct a 
model having A < 0 by considering nonidentical 
fermions as constituent particles. 

We confine ourselves to the spinless (J = 0) case 
alone, that is, we set 

cf>IlV(P) = PIlV(p2), cf>s(p) = S(p2). (2.2) 

Then (2.1) reduces to 

PIl[(l + p2)V(p2) - 2S(l)] 

_ AV fd4 qIlV(q2) 
- 2 q 2' 

7T i -(p - q) - ie 

(1 + p2)S(p2) _ 2p2V(p2) 

= ~ fd4q S(q2) . (2.3) 
7T2i _(p _ q)2 - ie 

TABLE I. 

S-coupling P-coupling V-coupling A-coupling 

1 
-1 

2 
-4 

2 
4 

Bastai et af.5 found the following solutions to (2.3) 
in the V-coupling case (AV = 2). and AS = -4A): 

2 3-l 
A = -t, V(p) = C 2. 3' 

(1 - p - IE) 

S( 2) - c 2 (2 4) 
p - (1 2 . )3' . - P - Ie 

where c is a constant. 
Keam6 investigated the solutions by analyzing an 

equivalent fourth-order ordinary differential equation 
with boundary conditions by means of a computer.s 

His computer test was made for the following ranges: 
o < A ~ 10 in the S-coupling case, 0 < A < i in the 
P-coupling case, 0 < A < is in the V-coupling case, 
and 0 < A ~ 50 in the A-coupling case. (It was argued9 

that no acceptable solutions would exist for A ~ i in 
the P-coupling case and for A ~ is in the V-coupling 
case.) He found only one solution only in the A
coupling case (AV = 2A and AS = 4A): 

A = ¥" 
V(p2) = c' (-7y-s + 56y-9 - 126y-10 + 84y-ll), 

S(P2) = C'(2y-7 - 28y-s + 112y-9 - 168y-10 

+ 84y-ll), (2.5) 

where c' is a constant and 

y == 1 - p2 - ie. (2.6) 

It is noteworthy that we can rewrite the expressions 
for V(p2) and S(P2) as 

C,-lV(p2) = -7y-sp(-3,8;3;y-l) 

= i-y-Sd(2y-l - 1), 

c,-lS(l) = 2y-7p( -4,7; 2; y-l) 

= 125y-'dC2y-l - 1), (2.7) 

respectively, where F and C~ denote the hyper
geometric function and the Gegenbauer polynomial, 
respectively. It is somewhat remarkable that the above 
expressions are quite akin to the solutions in the 
eq ual-mass Wick-Cutkosky model at P Il = 0.' 

3. RECURRENCE FORMULAS 

From the known results in the B-S equation,' it is 
natural to conjecture that any solution to the equal
mass B-S equation for the massless-meson-exchange 
ladder model belongs to a discrete spectrum of the 
eigenvalues if and only if the B-S amplitude has a 
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discrete spectral representation 'in p2. In the present 
paper, we assume that this conjecture is true. Since 
each discrete value of the spectral variable in the p2 
spectral representation yields an independent contri
bution, it is sufficient to consider only the case in 
which the spectrum consists of only one point IX. 

Since IX ¢ 0 because of the (infrared) convergence 
condition of the integrals, we can set 

2 N IXkak 
V(p ) = ~ ( 9. k' 

k=2 IX - p~ - IE) 

2 N IXkbk 
S(p ) = ~ 2. k' (3.1) 

k=2(IX-p -IE) 

where ak and bk are constants such that 

(3.2) 

with N ~ 2; the term with k = 1 has been excluded 
because of the (ultraviolet) convergence condition of 
the integrals. Hereafter, we omit -iE in the denomi
nator for simplicity. 

It is straightforward to show that 

1 J qIJd
4
q PIJ (1 X dx 

7T2; [-(p _ q)2](1X _ q2)k = k - 1 Jo (IX - Xl)k-l ' 

1 J d
4
q 1 (1 dx 

7T2; [_(p _ q)2](1X _ q2)k = k - 1 Jo (IX _ Xp2)k-l' 

(3.3) 

Therefore, in order that no logarithmic terms appear 
in the right-hand side of (2.3), it is necessary and 
sufficient that 

(3.4) 
Indeed, 

i l dx ( X 2 + XIX 2 2) = _1_2 ' 
o IX - xp (IX - xp) IX - P 

il X dx 1 k-2 (j - 1)IX-k+i+1 
---2-= ~ 2' 

o (IX - xp l-1 (k - 2)(k - 3) i=2 (IX - P )' 

for k ~ 4, 
(1 dx 1 k-2 IX-Hi+l 

Jo (-IX-_--=X:..:..p-2)-k--l = k---2;~ (IX _ p2)i for k ~ 3. 

(3.5) 

On substituting (3.1) in (2.3) and using (3.4), (3.3), 
and (3.5) in the right-hand sides, we obtain 

N kb N-I k+lb 
(1 + IX) L IX k _ L IX HI 

k=2 (IX - p2)k k=l (IX _ p2)k 

N IXka N-l IXk+1a 
- 21X ~ k + 2 L HI 

k=2 (IX - p2)k k=l (IX _ p2)k 

N-2 IXHI N b 
= ;.S ~ ~ I (3.6b) 

k=I(1X - p2ll=k+2 (1 - 1)(1 - 2) 

Since N ~ 2, by comparing the coefficients of 
(IX - p2rN in (3.6), we obtain 

(l + lX)aN - 2bN = 0, (1 + lX)bN - 2IXaN = O. 

(3.7) 
Hence (3.2) implies that 

I
I + IX -21 = (1 - 1X)2 = 0 (J.8) 
-21X I + IX ' 

that is, we have IX = I and therefore, from (3.7) and 
(3.2), 

(3.9) 

Hereafter we set IX = 1 in (3.6). From (3.4) and (3.9) 
we see that the only possible solution for 2 ~ N ~ 3 
is (2.4). 

For N ~ 4, by considering the terms of (1 _ p2)-N+1 
and (1 - p2)-NH in (3.6), we have 

2aN_l - aN - 2bN_1 = 0, 

2bN_1 - bN - 2aN_l + 2aN = 0 (3.10) 
and 

;.Va 
2aN - aN 1 - 2bN 2 = N 

-2 - - (N - 1)(N - 2) , 

;'SbN 2bN_2 - bN- 1 - 2aN_2 + 2aN_l = , 
(N - l)(N - 2) 

(3.11) 

respectively. Equations (3.10) are identical because of 
(3.9), and reduce to 

(3.12) 

The sum of Eqs. (3.11) reads 

aN-l - bN- 1 = (;.v + ;,s)a/(N - 1)(N - 2). (3.13) 

From (3.12) and (3.13), we have 

;.V + ;.S = t(N - 1)(N - 2). (3.14) 

The left-hand side of (3.14) equals 2), for the S 
coupling, 0 for the P coupling, - 2), for the V coupling, 
and 6;' for the A coupling. Therefore, the P-coupling 
case has no solution. 

It is important to note that, in general, a2 can be 
nonzero only if ;'V = -1, as is seen from the co
efficients of (1 - p2)-1 in Eq. (3.6a). Because then 
;'V + AS ~ 1 for any coupling, N ~ 4 is incompatible 
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with a2 =F 0 as is seen from (3.14). We thus conclude 
that a2 = as = 0 aside from the solution (2.4) of 
Bastai et al. 

The comparison of the coefficients of (1 - p2)-k in 
(3.6) yields 

2(ak - bk) - ak+1 = AV(k - l)fk+2 

for 2 ~ k :s;; N - 1, (3.15a) 

-2(ak - bk ) + 2ak+l - bk+l = ASgk+2 

for l:S;;k:S;;N-l, (3.15b) 

where al = b1 = 0 and 

N a 
fm == L I , fN+1 == 0, 

I=m (l - 1)(1 - 2)(1 - 3) 

_ N bl gm = L ,gN+1 == O. (3.16) 
l=m (/ - 1)(1 - 2) 

The sum of Eqs. (3.15) is 

ak+l - bk+l = ;,v(k - l)fk+2 + ;'Sgk+2' (3.17) 

By using (3.17) with the replacement of k + 1 by k, 
we eliminate ak - bk from Eq. (3.15a): 

(1 - 2;,v/k(k - l»ak+1 - [2;,s/k(k - 1)]bk+l 

= ;,v(k - 3)fk+2 + 2).Sgk+2' (3.18) 

From (3.17) and (3.18), we can uniquely solve ak+1 
and bk+1' 2 :s;; k :s;; N - 2, because of (3.14). Thus 
ak+l and bk+1 are expressible in terms of a and ;.. The 
eigenvalue ;. is determined by the requirement that 
two sequences 

and 
{bN , bN - 1 ,'" ,bk ,"'} 

have to terminate. This problem is discussed in the 
next section. 

4. DIOPHANTINE EQUATIONS 

We rewrite (3.15) by replacing k by k - 1: 

2(ak_l - bk- 1) - ak 

= ;,v(k - 2)fk+2 + ;,vak+1/k(k - 1), 

-2(ak_l - bk- 1) + 2ak - bk 

= ;'Sgk+2 + ).Sbk+l/k(k - 1). (4.1) 

It is straightforward to eliminate fk+2 and gk+2 from 
(3.15) and (4.1). We find 

2(k - 1)(ak_1 - bk-:-1) - (3k - 5)ak + 2(k - 2)bk 
+ [(k - 2) - ;,v/k]ak+l = 0 

for 3:S;; k :s;; N - 1, 

-2(ak_l - bk- 1) + 4ak - 3bk - 2ak+l 

+ [1 - ;"s/k(k - 1)]bk+1 = 0 

for 2:S;; k :s;; N - 1. (4.2) 

Let n be the greatest integer such that ak = bk = 0 for 
all k :s;; n; of course, 

2:S;; n:S;; N - 2. (4.3~ 

Then (4.2) with k = n reads 

[n(n - 2) - ;,v]an+1 = 0, 

[n(n - 1) - ;,s]bn+1 = 2n(n - l)an+1' (4.4) 

Since lan+11 + Ibn+11 =F 0, we have either an+l = 0, 
bn+1 =F 0, and 

AS = n(n - 1) (4.5) 

).V = n(n - 2). (4.6) 

If we combine (4.5) and (4.6) with (3.14), we obtain 

(N - 1)(N - 2) = ;n(n - 1), 

(N - l)(N - 2) = 1]n(n - 2), 

(4.7) 

(4.8) 

respectively, where 

; = 4, 1]=4 for S coupling, 

~ = 1, 1] = -2 for V coupling, (4.9) 

~ = 3, 1]=6 for A coupling. 

Since Nand n are unknown integers, (4.7) and (4.8) 
are nothing but Diophantine equations of the second 
degree, which are well known in number theory.lO 

It is evident that neither (4.7) nor (4.8) have 
solutions satisfying (4.3) in the V-coupling case. 

Next, we consider the S-coupling case. In (4.7), 
the discriminant D with respect to n is given by 

D = N2 - 3N + 3. (4.10) 
Since 

(N - 2)2 < D < (N - 1)2, (4-.11) 

D cannot be a perfect square. Thus (4.7) has no 
solution in the S-coupling case. In (4.8), the discrim
inant D with respect to n is given by 

D = N2 - 3N + 6. (4.12) 

Hence (4.11) holds for N ~ 6. For 4 ~ N:S;; 5, (4.8) 
is satisfied by (N, n) = (5,3). In this case, however, 
from (4.2) together with (4.4) and (4.6), we have 
as = -(t)b" and bs = -nnb" in contradiction with 
(3.9). Thus there exists no solution to (3.6) in the 
S-coupling case. 

In the A-coupling case, both (4.7) and (4.8) have an 
infinite number of solutions satisfying (4.3). In order 
to obtain all solutions, we quote the following results 
known in the theory of Diophantine equations.lo 
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Given a prime p and a positive integer d which is 
not a perfect square, all solutions (u, v) to the Dio
phantine equation 

u2 - dv2 = ±p 

can be written (not uniquely) as 

(4.13) 

u + vJd = ±(uo ± voJd)(x ± yJd)k, 

k=0,1,2,"', (4.14) 

with all double signs being independent, where 
(uo, vo) is the smallest positive solution, which always 
exists, to (4.13) and where (x,y) is the fundamental 
solution (i.e., the smallest positive solution), which 
always exists, to an auxiliary Diophantine equation 

X2 - dy2 = 1. (4.1S) 

By setting N = Hu + 3) and n = Hv + 1), (4.7) 
with ~ = 3 reduces to 

u2 - 3v2 = -2. (4.16) 

From (4.14), it is easy to see that any positive solution 
to (4.16) is uniquely expressed as 

u + vJ3 = (1 + J3)(2 + J3)k, k = 0, 1,2, .... 

(4.17) 

In particular, the smallest five solutions are (N, n) = 
(2,1), (4,2), (11,6), (37,21), (134,77), where the 
first solution is excluded by (4.3). 

Next, by setting N = Hu + 3) and n = Hv + 2), 
(4.8) with 'YJ = 6 reduces to 

u2 - 6v2 = -23. (4.18) 

Hence, any positive solution is uniquely expressed as 
either of 

u + vJ6 = (1 + 2J6)(S + 2J6)k, 

k = 0, 1,2, ... , 

u + vJ6 = (19 + 8J6)(S + 2J6)k, 

k=0,1,2,···. (4.19) 

In particular, the smallest five solutions are (N, n) = 
(2,2), (11, S), (16,7), (97,40), (146,60), where the 
first solution is excluded by (4.3). 

Finally, we discuss whether or not the above 
solutions to the Diophantine equations lead us to 
solutions to the original B-S equation. We can 

uniquely solve (4.2) with respect to ak+l and bk+1 for 
k > n if and only if we do not have 

3k(k - 1) = (N - 1)(N - 2). (4.20) 

[The exceptional case (4.20) is realized for k = 6 in 
the case (N, n) = (11, S).] Then all of an+1' an+2' .•• , 
aN and bn+1' bn+2 , ••• , bN are expressible in terms of 
(and proportional to) bn+1 t6 O. Since (3.7) is not 
included in (3.IS), the former implies a relation 
independent of (4.2). Therefore, we obtain a solution 
to the original B-S equation if and only if (3.9), 
namely aN = bN , is satisfied when aN and bN are 
expressed in terms of bn+1 • Since (3.9) is an additional 
condition, almost all solutions to the Diophantine 
equations do not lead us to solutions to the original 
B-S equation. Kearn's solution (2.S), which corre
sponds to (N, n) = (11,6), is a very fortunate example. 
It is cumbersome to check (3.9) explicitly for N large, 
but it is much easier to see whether or not V(p2) and 
S(p2) can be expressed in terms of single hyper
geometric functions as in (2.5). It is unlikely that there 
exists any solution other than Kearn's one.ll 

Note added in proof' Kearn and his collaborator 
independently obtained the Diophantine equations by 
his differential-equation method, and examined the 
acceptability of two solutions (N, n) = (37,21) and 
(134, 77) by a computer (private communication). 

* Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

t On leave of absence from Research Institute for Mathematical 
Sciences, Kyoto University, Kyoto 606, Japan. 
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Corresponding to any irreducible proposition system L in general quantum mechanics there is a 
division ring D with an anti-automorphism * and a vector space (V, D) over D with a definite sesquilinear 
form <p such that L is isomorphic to the set of <p closed subspaces of (V, D). The main task remaining 
in connecting the general quantum mechanics to the conventional quantum theory in a complex Hilbert 
space is to give physical arguments which force D to be the complex field. In this paper it is shown 
that if L admits a certain type of observable (together with other structure which seems to be physically 
justified), then D contains the real field as a subfield. Steps are then indicated that can be taken to move 
from the reals to the complexes or quaternions. 

1. INTRODUCTION 

Using physical arguments, Jauch and Piron l 

have shown that the collection of propositions for a 
physical system form a complete, atomic, semimodular 

We then indicate steps that can be taken to move from 
the reals to the complexes or quaternions. 

2. SMOOTH MAXIMAL OBSERV ABLES 

orthomodular lattice or, as we shall call it, a propo- Recall that a stateS is a map m: L -+ [0, 1] c R 
sitional system L. Using standard arguments, one can that satisfies: (Sl) m(l) = I; (S2) m(V ai ) = Lm(ai ) 

show that a propositional system can be represented as if ai -.l aj , i ¢ j; (S3) if mea) = m(b) = I, then 
a direct product of irreducible propositional systems; mea A b) = 1. We denote the set of all states on L 
and Piron2 has shown that corresponding to any by S. We say that L satisfies the first Gleason theorem 
irreducible propositional system L there is a division if a state m is pure if and only if there is an atom 
ring D with an anti-automorphism * and a vector a E L such that mea) = 1. It clearly follows from 
space (V, D) over D with a definite sesquilinear form Gleason's theorem9 that the lattice of closed subspaces 
c/> such that L is isomorphic to the propositional of a separable complex Hilbert space satisfies this 
system L(V, D) of all c/> closed subspaces of (V, D). condition. In the sequel we shall assume that L 
As Jauch has said,3 this forms the bridge which satisfies the first Gleason theorem. We shall also 
connects the general. theory, as an abstract propo- assume that S is a separating set of states; that is, if 
sitional system, with conventional quantum theory in a¥: b, there is an m E S such that mea) ¢ m(b). 
a complex Hilbert space. However, this bridge is not Let S be a set and B a Boolean a-algebra of subsets 
yet complete in the sense that there are no convincing of S. A map X:B -+ L is an observable on (S, B) if 
empirical grounds why our Hilbert space should be (01) XeS) = 1, (02) E, FEB and E () F = c/> 

constructed over the field of complex numbers. In this implies X(E) -.l X(F), (03) X(UEi) = V X(Ei) if E; is 
paper we attempt to close this gap and complete the a sequence of mutually disjoint sets in B. Now let fl 
bridge. be a measure on B.lO To eliminate certain pathologies, 

Some progress has been made in determining the we shall always assume that there are three mutually 
division ring D,4 and work has been done on quantum disjoints Ei E B of positive measure such that X(Ei) ¢ 

mechanical theories over real5 and quaternionic6 0, i = 1, 2, 3. It seems that this condition only 
Hilbert spaces and even vector spaces over certain eliminates the case in which there are only two 
algebras. 7 It seems to us as though the propositional essential points in S, that is, physically those systems 
system L alone does not contain enough empirical in which only a two-valued observable is considered. 
structure to expose the division ring D. It thus seems We say that an observable X on (S, B, fl) is smoothll 

likely that more physical data must be includ~d in L if fleE) = 0 whenever X(E) = 0: We will show in 
to restrict the choice of D. In this paper we show that Theorem 1, Sec. 3, that all reasonable physical systems 
if L admits a certain type of observable (together with admit a smooth observable. 
the other structure which seems to be physically All physical systems contain the following mathe
justified), then D contains the real field R as a subfield. matical structure. There is a locally compact, second 

1583 
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countable, Hausdorff space 8, which we call a 
physical space and a locally compact, second countable 
Hausdorff group G, which we call a symmetry group 
acting as a continuous, transitive, transformation 
group12 on 8. Furthermore, there is a representation 
g -+ W" of G on the group of automorphisms aut (L) 
of L which is continuous in the sense that g-+ 
m(W"a) is a continuous function for all m E S, a E L. 
The Borel a-algebra of 8 being denoted by B(8), all 
physical systems admit an observable X: B(8) -+ L that 
satisfies X(gE) = W"X(E) , for all E E B(8), g E G,l3 
We call such observables covariant. One example of a 
covariant observable is the position observable. 
However, X need not be a position observable in the 
ordinary sense. 8 could be a momentum space, an 
energy space, a charge space, or a coordinate-spin 
space for example. A nontrivial a-finite measure ft on 
B(8) is quasi-invariant if ft(E) = 0 if and only if 
ft(gE) = 0 for all E E B(8), g E G. It can be shown 
that there exist quasi-invariant measures on B(8).14 

Let X be an observable on any measure space 
(8, B, ft). We now consider a requirement in which X 
is maximal in a certain sense. Denoting the range of 
X by R(X), maximality relative to a set of states 
M s;; S means (roughly) that R(X) is so large that 
states on R(X) can be uniquely extended to states in 
M, that superpositions of states on R(X) correspond 
to superpositions in M, and that compatibility of 
states on R(X) corresponds to compatibility in M. 
We now make the above vague statements mathe
matically precise. If m is a state with domain R(X), 
then clearly m defines a probability measure E-+ 
m(X(E» on B. For this reason we call such states 
probability measures on R(X). We first assume that 
there is a set of pure states M S;; S such that every 
probability measure v on R(X) has a unique extension 
v E M. Now for every pure state m there is a unique 
atom a(m) such that m(a(m» = 1 since if m(ai) = 
m(a2) = 1 for distinct atoms a1 , a2, then m(a1 A a2) = 
1 and hence a1 A a2 = a1 so that a1 ~ a2 which implies 
a1 = a2, a contradiction. If m1, m2 are distinct pure 
states, we say that a pure state ma is a superposition of 
m1 and m2 if a(ms) < a(ml) V a(m2) (a < b means 
a ~ b but a =;f:. b). We must now define what is meant 
by a superposition of probability measures on R(X). 
Suppose VI, '1'2, and Va are distinct probability measures 
on R(X) that are absolutely continuous relative to ft.15 
If there exist real numbers ex, fJ such that (dva/dft)! = 
ex(dVl/dft)! + fJ(dV2/dft)!, we say that Va is a super
position of VI and '1'2' Our next assumption is that if 
Va is a superposition of 'Ill and '1'2' then Va is a super
position of VI and V2' Finally we say that two distinct 
probability measures VI and '1'2 that are absolutely 

continuous relative to ft are compatible if [(ldvl/dft)! + 
(ldv2/dft)!]2 is a density function for a probability 
measure, and we assume that if VI and '1'2 are com
patible, then so are a(vl) and a(v2).16 The motivation 
for this definition of compatibility stems from the fact 
that if 'Ill and '1'2 are compatible, then 

1 = J[(tdVl/dft)! + (!dv2/dft)!] dft 

= 1 + t J(dVl /dft)!(dV2/dft)! dft 

which implies that tdVl/dft)! and (dv2/dft)! are or
thogonal normalized functions in L 2(8, ft). Now unit 
vectors in L 2(8, ft) correspond to atoms and distinct 
atoms in a proposition system are compatible if and 
only if they are orthogonal. 

It turns out that we need more than the conditions 
in the previous paragraph. We need these conditions 
to hold not just for probability measures on R(X) but 
for signed probability measures on R(X). We say that 
a signed measure V on R(X) is a signed probability 
measure if the total variation measure I'l'l is a prob
ability measure on R(X)Y It follows from the Jordan 
decomposition theorem18 that every signed probability 
measure V on R(X) that is not a measure has the 
unique form V = cv+ - (1 - c)1I-, where 0 < c < 1 
and '1'+ and '1'- are mutually singular [i.e., v+(a) = 
v-(b) = 1 for some a -.l b] probability measures on 
R(X). Besides '1'+ and '1'-, a third important probability 
measure associated with V is '11* = (1 - c)v+ + cV-. 
Now we have seen that if V is a probability measure 
on R(X), there is an associated atom a(v) == a(v) E L. 
In a similar way, if V is a signed probability measure 
on R(X) that is not a measure, we associate with it the 
atom a(v) = [a(v+) V a(1I*)] A a(1I*),.19 That a(v) is an 
atom is demonstrated in the proof of Theorem 2 in 
Sec. 4. We now generalize the conditions of the 
previous paragraph to include signed probability 
measures. We thus say that an observable X on 
(8, B, ft) is maximal relative to a set of pure states 
M S;; S if the following conditions hold: 

(1) Every probability measure 11 on R(X) has a 
unique extension ii E M. 

(2) Let VI, '1'2, Va be distinct (i.e., Vi =;f:. ±V;, i =;f:. j = 
1, 2, 3) signed probability measures on R(X) that are 
absolutely continuous relative to ft. If (dva/dft)! = 
ex(dV1/dft)! + fJ(dV2/dft)! for some ex, (J E R, then 
a(va) < a(vl ) va(v2)' If ex = fJ = (2)-!, then a(vl) +-+ 
a(v2). (We define ex! = ex/lexl! for 0 =;f:. ex E Rand 
at = 0.) 

We now give an example of a smooth maximal 
observable. This is the usual formulation of a spinless, 
nonrelativistic particle moving in one-dimensional 
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space. The proposition system L is the lattice of closed 
subspaces (or equivalently, the lattice of orthogonal 
projectors) of the complex Hilbert space L 2(R, fJ), 
where fJ is Lebesgue measure and the real line R is 
the physical space. The observable is given by 

(X(E) I> (A) = XE(A) f (A), 

where XE is the characteristic function of E E B(R). 
Clearly X is a smooth observable. Also X is the 
covariant position observable relative to the repre
sentation of R given by W"P = U"PU~l for all PEL, 
oc E R, where (Ud)(A) = f(A - oc), fE L 2(R, fJ). Let 
M be the set of pure states of the form mf(P) = <f, Pf), 
wherefE L 2(R, fJ), Ilfll = 1 andf~ O. We now show 
that X is maximal relative to M. We first check 
condition (1). Let v be a probability measure on R(X) 
and define voCE) = v(X(E», E E B(R). Then Vo is a 
measure on B(R) that is absolutely continuous relative 
to fJ so by the Radon-Nikodym theorem there is a 
unique fE L1(R, fJ), f~ 0 such that voCE) = fEfdfJ 
for all E E B(R). Let g = f1 so that voCE) = S Eg2 dft = 
fR XEg2 dfJ = (g, X(E)g). Therefore, mg EM and, since 
mg(X(E» = v(X(E), we see that mg is the unique 
extension of v in M. We now verify condition (2). 
Let VI' V2' Va be distinct signed probability measures 
on R(X), or equivalently on B(R), that are absolutely 
con~inuous relative to fJ, and suppose (dva/dfJ)l = 
oc(dv1/dfJ)1 + f3(dv2/dfJ)1 for some oc, f3 E R. Now 
(dvi/dfJ)l E L 2(R, fJ), i = 1, 2, 3, and, if we denote the 
ray generated by a unit vectorfby [f], we obtain 

[dvs/d,u)t] < [dVl/d,u)t] v [(dv2/d,u)1]. 

If VI, v2, V3 are probability measures, we have a(v3) < 
a(Jll) v a(v2). Now any real unit vector f admits the 
unique representation f = cf+ - (I - c)f-, where f+, 
f- are nonnegative, orthogonal, unit vectors and 
0< c < I. Bydefiningf* = (I - c)f- + cf+, it is clear 
that if 0 ~ c ~ I, then [f] = ([f+] V [f*D A ff*]'. 
Thus, if dVl/d,u, say, is not nonnegative, we have 

[(dVlldfJ)t] 

= {[«dv1/dfJ)+)1] v [«dv1/dfJ)*)ln A f«dvl/dft)*)l], 

= {[(dvildft)l] v [(dvt/dft)iJ) A [(dvtldft)i], 

= [a(vt) v a(v:)] A a(v:)' = a (v}). 

We then obtain for every case that a(v3) < a(vl) v 
a(v2)' Finally, if oc = f3 = (2)-i, then (dVlldft)i..l 
(dV2Idft)i so that a(vl) ..1 a(v2) and hence a(vl) ~ a(v2). 

A smooth maximal observable need not have a 
continuous spectrum as in the previous example; it 
may have a discrete spectrum consisting of a finite 
number of points. Let us consider, for example, the 
three-valued magnetic moment with values Al = -1, 

.1.2 = 0, A3 = I. The space S = {-I, 0, I} and the 
measure is given by ft({ -I}) = ft({O}) = ft({l}) = 1. 
The proposition system is the lattice of subspaces (or 
lattice of projectors) in three-dimensional complex 
Hilbert space ca. Let CPl = (1,0,0), CP2 = (0, 1, 0), 
CP3 = (0,0, 1) be the usual orthonormal basis. Define 
the observable X by X(E) = V {CPi: Ai E E}, E s; 
{-1,0, I}. Clearly X is smooth. Let M be the set of 
pure states of the form m,,(P) = (/X., Poc) where 
oc = (OCl' OC2, cx.a) E C3

, Ilocll = 1, ai ~ 0, i = 1, 2, 3. 
Any probal;>i1ity measure V on R(X) is given by three 
nonnegative numbers OCI' OC2' /X.a, where v([cpiD = OC; 

and ~~=l OCi = 1. Letting cp" E C3 be defined by cp" = 
(oct, oct , oct>, we see that mq,,, E M and 

v(X(E» = L {V([CPi]): Ai E E} = L {oci : CPi E E} 

= (cp", X(E)cp,,) = mq,,,(X(E» 

so that mq,,, is the unique extension of V to M. We thus 
see that this example is just a special case of the previ
ous one and the demonstration that X is maximal rela
tive to M is similar (and easier) to the previous 
example. It is also clear that the Hilbert space need 
not be Ca but could be some infinite-dimensional 
Hilbert space. 

3. THE FIELD IN QUANTUM MECHANICS 

We first show that any reasonable physical system 
admits a smooth observable. 

Theorem 1: Let S be a physical space, G a sy.nmetry 
group on S, g - Wg a continuous representation of 
G on aut (L), and fJ a quasi-invariant measure. If 
X: B(S) - L is a covariant observable satisfying 
condition (1), then there is a set FE B(S) with ft(F) ~ 
o such that X: B(F) - L is smooth. 

We shall give the proof of this theorem in Sec. 4. 
Note that FE B(S) in Theorem 1 gives the spectrum 
of X. 

We DOW state our main result. 

Theorem 2: Let L be a proposition system that 
admits a smooth maximal observable on a measure 
space (S, B, ft). Then there is a lattice monomorphism20 

from the lattice of finite-dimensional subspaces of the 
real Hilbert space L 2(S,,u) to the lattice of finite 
elements of L that maps atoms to atoms. 

The proof of this theorem is given in Sec. 4. Upon 
examining the proof one can see that the theorem is 
true under slightly weaker conditions. We can elimi
nate condition (S3) for states and the requirement that 
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Gleason's first theorem holds if we impose the 
condition that for each pure state m [satisfying (Sl) 
and (S2)] there is a unique atom a(m). such that 
m(b) = I implies a(m) :::;; b and different pure states 
correspond to different atoms. Besides being useful in 
determining the field, Theorem 2 has an interest in 
its own right since it gives a correspondence between 
certain subspaces of the Hilbert space L 2(S, p) and 
elements of L. 

Let us now suppose that L is irreducible so that it 
may be represented as the closed subspaces L(V', D') 
of a vector space (V', D') over a division ring D'. 
Our next theorem is now applicable. 

Theorem 3: Let (V, D) and (V', D') be vector spaces 
over division rings with dim V ~ 3. Let ~ be a lattice 
monomorphism from the lattice of finite-dimensional 
su bspaces of (V, D) to the lattice of finite-dimensional 
subspaces of (V', D') that maps atoms of (V, D) to 
atoms of (V', D'). Then there is an injection T: V --)0- V' 
and a map a (c -+- CO): D --)0- D' such that T(Xl + x 2) = 
TXl + TX2, T(cx) = c"Tx, ~(Dx) = D'Tx. 

The proof of this last theorem is very similar to the 
proof of the stronger result when'; is an isomorphism 
given, for example, in Varadarajan.21 It is easy to 
show that a: D -+- D' is a field monomorphism. In
deed, if CI =;6 C2 E D and 0 =;6 x E V, then Clx =;6 C2x so 
that crTx = T(CIX) =;6 T(C2X) = c;Tx and ci =;6 c;. If 
Cl , C2 are now arbitrary elements of D and 0 =;6 x E V, 
then Tx =;6 0 and (ci + c2)"Tx = T«ci + c2)x) = 
T(CIX) + T(c2x) = (cr + c2)Tx so that (ci + c2)" = 
cr + cg . Similarly 

(CIC2)"Tx = T«Cl(C2X» = ciT(C2X) = crc;Tx 

so that (ClC2)" = ci c; . 

The next theorem now follows. 

Theorem 4: Let L = L(V, D) be an irreducible 
proposition system that admits a smooth maximal 
observable. Then D contains the real field R as a 
subfield. 

Strictly speaking, of course, we should say that D 
contains a subfield that is isomorphic to R. 

We thus see that if an irreducible proposition 
system L(V, D) admits a smooth maximal observable, 
then D is an extension of R. It seems physically 
reasonable that D should. be a finite extension of R 
since otherwise elements of D would not be accessible 
from elements of R using a finite number of steps. We 
now quote a theorem of Frobenius whose proof, for 
example, is in Pontryagin.22 

Theorem 5: If D is a division ring which contains 
the reals in its center and is a finite extension of the 

reals (i.e., there are el , ••• , ek E D such that every 
XED has a unique representation 

x = do + dlel + ... + dkek, 

di E R, i = I, ... , k), then D is the reals, complexes, 
or quaternions. 

Finally ~e conclude that under physically reason
able circumstances, if an irreducible proposition 
system L(V, D) admits a smooth maximal observable, 
then D is the reals, complexes, or quaternions. Other 
physical criteria m~st be used to determine which of 
these three fields is the correct one. 

4. PROOFS OF THEOREMS 

Proof of Theorem 1: If m E M then E -+- m(X(E», 
E E B(S), is absolutely continuous relative to f.t by 
Lemma II.2 Gudder.23 By the Radon-Nikodym 
theorem there exists a unique fE LI(S, p), f~ 0, 
such that m(X(E» = J E f dp, for all R E B(S). Let 
m =ft; then m EL2(S, p,), Ilmil = 1, m ~ O. Let 
V = sp{m: m EM}, the closed span of {m: m EM}. 
Let Eo E B(S) and mE M. If m(X(Eo» = 0, then 
m = 0 a.e. on Eo so that mXEo = 0 E V. If m(X(Eo» =;6 
0, define v on R(X) by v(X(E» = m(X(E () Eo))! 
m(X(Eo». Then v is a probability measure on R(X). 
Hence 

r i1m2 dp, 
JE 

= m(X(E () Eo»jm(X(Eo» 

= m(X(Eo»-l r m2 dp = r m2XEolm(X(Eo) dp JE("IEo JE 
so that "Vm = [m(X(Eo))]tmXEo and again mXEo E V. 
Thus, iff E V, we have XEaf E V. Since multiplication 
by characteristic functions forms a maximal set of 
projections, it follows that V = L 2(F, p,) for some 
FE B(S). Now p,(F) =;6 0 since for mo E M we have 
1 = mo(X(S» = J s m: dp = J F m: dp,. To show X is 
smooth, suppose X(E) = O. Then m(X(E» = 0 for 
all m E M and hence m = 0 a.e. on E for all m E M. 
Hence g = 0 a.e. on E for all g E V which implies 
p,(E) = O. 

Proof of Theorem 2: Let[fl, fE L 2(S, p,), II/II = I, 
f ~ 0 be a positive ray. Consider the function X(E) -+

J E f2 dp" E E B. This is a well-defined function on 
R(X). Indeed suppose X(£) = X(F), E, FEB. Let 
Ef.).F = (E - F) U (F - E) be the symmetric differ· 
ence of E and F. Then X(Ef.).F) = (X(E) - X(F» v 
(X(F) - X(E» = 0 and, since X is smooth, p,(Ef.).F) = 
O. It follows that J E r dp, = J F f2 dp,. It is now clear 
that X(E) -+- fEr dp is a probability measure on 
R(X). Applying condition (1), we have a unique 
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mf E M such that mf(X(E» = hP dft for all E E B. 
Define "P[/] = a(mf )· If [f] ¥:- [g] are positive rays, 
then f E /2 dft ~ f E g2 df.l for some E E B and hence 
mf ¥:- mg. It follows that a(mf) ~ a(mg) since other
wise (lm, + !mg)(a(m,» = 1, which contradicts Glea
son's first theorem. Thus "P is injective. Now suppose 
If] 1- [g] are positive rays and hence/ 1- g. Then there 
exist F1, F2 E B such that F1 n F2 = cp, F1 U F2 = S, 
/ = 0 a.e. on F2 and g = 0 a.e. on Fl. Now X(F1) 1-
X(F2)andm,(X(F1» = mg(X(F2» = 1. Sincemla(m,) A 
X(F1» = I,it follows that a(m,) ~ X(F1). Similarly 
a(mg) ~ X(F2) and hence a(m,) 1- a(mg) or "P[/] .1 
"P[g]. Thus "P preserves orthogonality. We now extend 
these results to arbitrary rays. We first prove that if 
p ¥:- q E L are atoms, then a = (p V q) A q' is an atom. 
Indeed a V q = «p V q) A q') V q = p V q by weak 
modularity. Hence by semimodularity (the covering 
law) p V q covers a. Now a ~ 0 since otherwise p V q 
is an atom which would imply p = p V q = q, a 
contradiction. Now suppose a is not an atom. Then 
there exists an atom, < a and a = , V (a A ,') and 
so there is an atom '11- , such that r V '1 ~ a. Now 
, V q covers q since, .1 q and'l V (, V q) covers, V q 
since '11- , and '11- q, which implies '1 .1 , V q. We 
thus haveq < , V q <'1 V, V q ~ p V q, which contra
dicts the fac~ that p V q covers q. Thus (p A q) A q' is 
an atom. Now let [f] be a ray generated by a non
positive (by this we mean/takes positive and negative 
values on sets of positive measure) unit vector fE 
L 2CS, f.l). We can write f = ocf+ - (1 - oc2)lj-, where 
/+ = max (j, O)/llmax (j,O)II and j- = max (-j, 0)/ 
Ilmax (-f, 0)11, 0 < oc < 1. Thus f+ and f- are 
orthogonal positive unit vectors. Iff* = (1 - oc2)fJ+ + 
ocj-, we see thatj* is a positive unit vector orthogonal 
to f Define 1jI[f] = (1jI[j+] V 1jI[f*]) A 1jI[f*]', which is 
an atom in L. Now "P thus extended is defined on all 
rays of L2(S, f.l) and has range a subset of the atoms 
of L. We now show that "P is injective. If1jlff] = 1jI[g}, 
where f, g are nonpositive unit vectors in La(S, f.l), 
then ("P[f+] V 1jI[f*]) 1\ "P[f*]' = (1jIfg+] V 1jI[g*]) A 

1jI [g*]', where/ = ocf+ - (1 - oc2)lj- and g = {Jg+ -
(1- {J2)tg-. Definev[(X(E» =SE (f±)2 df.l, Vf(X(E» = 
f E (g±)2 df.l for all E E B and let VI = oc2vi - (I -
oc2)vl and '1'2 = {J2vt - (l -/12)'1'2. Now since f* = 
(l - oc2)!f+ + ocf-, g* = (1 - (32)tg+ + (3g-, we have 

fEU*Y df.l 

= (1 - oc2
) fE(f+)2 df.l + oc2fE (r)2 df.l 

= (1 - oc2)vi(X(E» + oc2vl(X(E» = vi(X(E» 

and hence 1jI[j*] = aM'). Similarly, 1jI[g*] = a(vi), 
1jI[f+J = a(vi), 1jI[g+J = a(vtJ· Thus a(v1 ) = a(v2). 

Now there are real numbers oc, fJ such that OC(dV1/df.l)t + 
(3(dV2/df.l)t = (dvs/df.l)!, where Vs is some signed 
probability measure on R(X). Now, if VI ¥:- ±va, ap
plying condition (2), we have a(v3) < a(v1) V a(va) = 
a(v1), a contradiction. Thus VI = ±v2• It follows that 
OC2(j+)2 - (1 - OC2)(j-)2 = ± [,82(g+)2 - (1 _ P2)(g-)2] 
a.e. (f.l). NowletE1 = {co E S:f+(co),g+(w) > O},E2 = 
{co E S: j-(w), g-(w) > O}, E3 = {w E S: /+(w), 
g-(w) > O}, and E4 = {w E S: f-(w), g+(w) > O}. 
Suppose the plus sign holds. Then, on E} , oc2(f+)2 = 
P2(g+)2 so that ocf+ = (3g+ on E1 and hence f = ocf+ -
(1 - oc2)'!f- = {Jg+ - (1 - (32)tg- = g on E}. In a 
similar way,f = g on E2 • Now on E3 we have OC2(f+)2 = 
- (1 - P2)(g-)2 so that E3 = cpo Similarly E4 = cp so 
f = g a.e. (f.l). If the negative sign holds, we obtain 
E1 = E2 = cp andf = -g on E3 U E4 so that/= -g 
a.e. (f.l). We finally obtain [f] = [g) and 1jI is injective. 
To show that "P preserves orthogonality, suppose 
f l.. g. Then rx.j+ - (1 - rx.2)y- 1- (3g+ - (1 - (32)'!g-, 
which implies that C~dVl/dft)! + Cb,dv2/dft)! is a unit 
vector. Via condition (2), it follows that 1,O[f] f-+ 1jI[g). 
Now 1jI[fl =;6 1jI[g] since 1jI is injective and the only 
other way for two atoms to be compatible is that 
1jI[fll. "P[g]. Denote the lattice of finite-dimensional 
subspaces of L 2(S, f.l) by PLlS, f.l). We extend 1jI to 
PL2(S, f.l) as follows: If a E PL2(S, f.l) and {ea} is the 
set of rays in a, define 1,O(a) = Va1jl(ea). To show that 1jI 

preserves suprema, let a, b EPLiS, f.l). Then 

1jI(a V b) = V{1jI(e): e ~ a V b, e an atom} 
~ V{1jI(f):f ~ a,fan atom} V V{1jI(g): 

g ~ b, g an atom} 
= 1jI(a) V "P(b). 

Now suppose e is an atom and e ~ a V b. Then there 
are atomsf, g such thatf~ a, g ~ band e ~fv g. 
By applying condition (2) as above it follows that 
1jI(e) ~ 1jI(f) V 1jI(g) ~ 1,O(a) V 1jI(b) and hence "P(a V b) = 
1jI(a) V 1jI(b). Now it is clear that 1jI preserves ortho
gonality on PL2(S, f.l) and, if a ~ bE PL2(S, f.l), then 
a 1- (b - a) so that 1jI(a) 1- 1jI(b - a) and 1jI(b - a) ~ 
1jI(a)'. Hence 1jI(b) 1\ 1jI(a)' = [1,O(a) V 1jI(b - a)] 1\ 

"P(a)' = 1jI(b - a) 1\ 1jI(a)' = 1jI(b - a). To show 1jI 

preserves infima, Jet a, b E PLz(S, p) and define CO = 
a V b - c for any c E [0, a V b). Since' is an ortho
complementation on the orthomodular lattice of 
closed subspaces of L 2(S, fl), it follows that ° is an 
orthocomplementation which makes [0, a V b] into an 
orthomodular lattice. Hence 

1jI(a 1\ b) = "P«aO V bon = 1jI(a V b) 1\ 1jI(aO V be)' 
= 1jI(a V b) 1\ [1jI(aO) V 1jIW)]' 
= 1jI(a V b) 1\ 1jI(ao)' 1\ 1jI(bo)' 
= [1jI(a V b) A 1jI(ao)'] 1\ [1jI(a V b) A 1jIW)'] 
= 1jI(aOO) A 1jI(bOO) = 1jI(a) 1\ 1jI(b). 
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We finally show that this extended 1p is injective. First, 
if "P(a) = 0, it is clear that a = O. If "P(a) = "P(b), 
a, bE PL2(S, 1'), then 

"P(a - a A b) = "P(a) A ("P(a A b»' 

= "P(a) A ("P(a)' V "P(b)') 

= "P(a) A "P(a)' = O. 

By orthomodularity a = (a A b) V (a - a A b) = a A 

b so a ~ b. Similarly b ~ a so a = b. 
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Modification rules, expressible in terms of the removal of continuous boundary hooks, are derived 
which relate nonstandard irreducible representations (IR's) of the unitary, orthogonal, and symplectic 
groups in n dimensions. to standard IR's. Tensorial methods are used to derive procedures for reducing 
the outer products of IR's of U(n), O(n), and Sp(n), and for reducing general IR's of U(n) specified by 
composite Young tableaux with respect to the subgroups O(n) and Sp(n). In these derivations the con
jugacy relationship between the orthogonal and the symplectic groups is fully exploited. The results 
taken in conjunction with the modification rules are valid for all n. 

1. INTRODUCTION 

The inequivalent, irtandard, irreducible repre
sentations, IR's, of the unitary group in n dimensions, 
U(n) , may be denoted by {v; ,u}~. They are specified 
by means of the composite Young tableaux1 associ-
ated with the partitions (I')a = (1'1,1'2, ... ,1'1,) and 
(vh = (VI' V2"", 1'r ), with 1'1 + fl2 + ... + flp = 
a and VI + V2 + ... + Vr = b, subject to the con
dition p + r ~ n. However, if this condition is 
violated, the composite tableau is said to be inad
missible and to define a nonstandard IR of U(n). It 
has been pointed out2 that there exist equivalence 
relations between inadmissible and admissible tableaux. 
These relations enable nonstandard IR's to be defined 
in terms of standard IR's. In Sec. 2 of this paper the 

modification rules which lead to these equivalence 
relations are derived. They are stated in a manner 
which involves only the removal of continuous bound-, 
ary hooks from the appropriate composite tableau. 

Similarly the inequivalent, standard IR's of the 
orthogonal and symplectic groups in n dimensions, 
O(n) and Sp(n) , may be denoted by [I']a and <I')a 
respectively. They are both specified by the Young 
tableau3- 5 associated with the partition (1')" = 
(1'1,1'2, ... ,I'p), with 1'1 + 1'2 + ... + I'p = a, sub
ject to the condition p ~ k for the groups O(2k), 
O(2k + 1), and Sp(2k). If this condition is violated, 
the tableau specifies a nonstandard IR which is 
defined in terms of a standard IR by means of an 
equivalence relation.4.6 These equivalence relations 
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We finally show that this extended 1p is injective. First, 
if "P(a) = 0, it is clear that a = O. If "P(a) = "P(b), 
a, bE PL2(S, 1'), then 

"P(a - a A b) = "P(a) A ("P(a A b»' 

= "P(a) A ("P(a)' V "P(b)') 

= "P(a) A "P(a)' = O. 
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U(n) , may be denoted by {v; ,u}~. They are specified 
by means of the composite Young tableaux1 associ-
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(vh = (VI' V2"", 1'r ), with 1'1 + fl2 + ... + flp = 
a and VI + V2 + ... + Vr = b, subject to the con
dition p + r ~ n. However, if this condition is 
violated, the composite tableau is said to be inad
missible and to define a nonstandard IR of U(n). It 
has been pointed out2 that there exist equivalence 
relations between inadmissible and admissible tableaux. 
These relations enable nonstandard IR's to be defined 
in terms of standard IR's. In Sec. 2 of this paper the 

modification rules which lead to these equivalence 
relations are derived. They are stated in a manner 
which involves only the removal of continuous bound-, 
ary hooks from the appropriate composite tableau. 

Similarly the inequivalent, standard IR's of the 
orthogonal and symplectic groups in n dimensions, 
O(n) and Sp(n) , may be denoted by [I']a and <I')a 
respectively. They are both specified by the Young 
tableau3- 5 associated with the partition (1')" = 
(1'1,1'2, ... ,I'p), with 1'1 + 1'2 + ... + I'p = a, sub
ject to the condition p ~ k for the groups O(2k), 
O(2k + 1), and Sp(2k). If this condition is violated, 
the tableau specifies a nonstandard IR which is 
defined in terms of a standard IR by means of an 
equivalence relation.4.6 These equivalence relations 
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are themselves defined by three modification rules6 

appropriate to O(2k), O(2k + 1), and Sp(2k), which 
are very easy to use if the portion of the tableau below 
the kth row contains more columns than rows. In 
other cases they have to be used with care.' In Sec. 3 
of this paper the same equivalence relations are 
defined by means of just two modification rules 
appropriate to O(n) and Sp(n). These rules are 
analogous to those appropriate to U(n), and involve 
only the removal of continuous boundary hooks from 
the appropriate Young tableau. 

The introduction of composite tableaux to specify 
IR's of U(n) was motivated in the first instance by the 
desire to mirror the quark-antiquark structure of 
elementary particles in the theory of the represen
tations of the approximate symmetry group of the 
interactions of these particles. The associated problem 
of decomposing the outer product of two standard 
IRs of U(n) specified by composite tableaux was solved 
in terms of a five stage procedure. 1 However, a greatly 
simplified procedure for carrying out such decom
positions was conjectured by Abramsky.8 In Sec. 4 
of this paper this conjecture is proved to be valid when 
taken in conjunction with the modification rules of 
Sec. 2. The tensorial methods used in this derivation 
are then applied to the problem of decomposing the 
outer products of IR's of O(n) and Sp(n). The resulting 
procedural rules associated with these decompositions 
correspond to those derived by Newell6 and Little
wood,9 but are slightly simpler to use. 

Finally, in Sec. 5, procedures are given for de
composing an IR of U(n) specified by a composite 
tableau into IR's of O(n) and Sp(n). In the derivation 
of these procedural rules, 'use is made of the con
jugacyl0.11 of O(n) and Sp(n). 

2. MODIFICATION RULES FOR U(n) 

A finite-dimensional regular IR of U(n) may be 
denoted byl 

where 
- {v' ... v' v'· Il' II' Il'}' - 8 , ,2 , 1'.1,,2,···, rq , (2.1) 

11 a 

2,fli = 2, f-l~ = a, 
1=1 1=1 

and 

f-ll ~ f-l2 ~ ... ~ f-l1l > 0, f-l~ ~ fl~ ~ ... ~ f-l~ > 0. 

VI ~ V2 ~ ••• ~ Vr > 0, v; ~ v; ~ ... ~ v; > 0, 

with P = p.~, q = f-ll, r = v~, and s = VI. This IR is 

defined to be standard if 

p + r ~ n. (2.2) 

The basis of such an IR is a set of traceless mixed 
tensors whose index symmetry is specified by the IR's 
of the symmetric group associated with the partitions 
(f-l)a and (vh. Diagrammatically (2. I) is defined by a 
composite tableau formed by joining back-to-back an 
undotted and a dotted Young tableau, the row lengths 
of these tableaux are determined by the partitions (f-l)a 
and (v h, and the column lengths by the conjugate 
partions (fJ,')a and (v'h, respectively. The corre
sponding tensors take the form 

where each of the indices OCi and Pi may take on the 
values I, 2, ... , n and the brackets ( ... ) indicate 
antisymmetrization. 

Contraction with the fundamental totally anti
symmetric pseudotensor EYlh ••• Yn then gives rise to the 
tensors 

(2.4) 

with r = v~. Just as the tensors (2.3) form the basis of 
the IR (2.1), so the tensors (2.4) form the basis of the 
IR 

{p; A}~ = {PI' P2'··· ; AI' A2,···} 

(2.5) 

with c = a + n - rand d = b - r. For the group 
SU(n), the IR's (2.1) and (2.5) are equivalent, whereas, 
for U(n) , the properties of the pseudotensor EYIY2 ••• Y" 

are such that they are inequivalent but related by the 
equivalence formula 

{v; f-l}: = E{p; A}~, 

where E is the determinant of the matrix in this IR of 
the particular group element being considered. 

Repeated application of this technique of lowering 
indices, and the exactly analogous technique of raising 
indices, then leads to the set of equivalence relations 

{v; f-l}: = {v;, ... , v2, ,,~; f-l~, f-l2, ... , f-l~}' 
- ~J{v' ... ,,' . n - .,' ... n v' 
- 8' 'l+l, I'l , ,- 2, 

, I, '}' n - VI' f-ll , f-l2, ... ,flq 
- -i{ , ... I I I - E "., , v2 , "1' n - f-ll, 

n - fl2, ... , n - fl;; f-l;+I, ... ,f-l~}', (2.6) 

with I = 1,2,··· ,sandj= 1,2,··· ,q. 
For the group SU(n), E = 1, so that the complete 

set of inequivalent standard regular IR's of SU(n) may 
be specified by conventional regular Young tableaux 
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associated with covariant tensOJs. These are obtained 
from (2.6) by taking the special case I = s. More 
generally, for IR's of U(n), 

where 
{v;,u}~ = "s{A}., (2.7) 

{A}. = {AI' A2, ... , An-v,'} = {A{, A~, ... , A;+q}', 

(2.8) 
with c = ns - b + a, 

if g = 1,2, ... ,p, 

=s, if g = P + l,p + 2,'" ,n - r, 

= s - Vn- H1 ' if g = n - r + 1, n - r + 2, ... , 

and 

A~ = n - V;-h+lo if h = 1,2, ... , S, 
, 

= ,uk-s, if h = S + 1, S + 2, ... , S + q. 

It may be seen from (2.1), (2.7), and (2.8) that if the 
constraint (2.2) is relaxed so that p + r > n, the IR 
{v; ,u}~ is equivalent to an IR {A}. that is specified by a 
Young tableau which is irregular in the sense that 
A;+1 > A;. For such values of n, the composite 
tableau corresponding to {v; ,u}: is said to be in
admissible, and it does not specify a standard IR 
either of U(n) or of SU(n). This is essentially because 
thl; traceless ness condition for the indices of the mixed 
tensors (2.2) is such that these tensors vanish identi
cally. 

However, if an inadmissible tableau occurs, for 
example, in the reduction of the outer product of 
standard IR's of U(n) , then it is not sufficient that 
such a tableau be ignored and the corresponding IR 
deleted from the reduction. The procedural rules given 
for analysing outer products makes this clear.l 
Unfortunately, the problem of admissibility made it 
necessary to associate subscripts with the multi
plicities of composite tableau in such reductions. 
These subscripts carried information regarding re
strictions for particular values of n. It has been pointed 
out2 that the necessity of introducing such subscripts 
is obviated if use is made of equivalence relations 
between IR's of U(n). 

It is well knownl 2.13 that if {A}. = {AI' A2,"'} = 
{A~ , A;, .. '}" then 

{A}e = I{A; - i + j}1 
and 

(2.9) 

(2.10) 

These identities, (2.9) and (2.10), express IR's of U(n) 
in terms of products of IR's of U(n) whose bases are 
totally symmetric and totally antisymmetric tensors 

respectively. The identity (2.9) has been used14 to 
attach a meaning to IR's of U(n) defined by irregular 
Young tableaux for which the rule Ai ~ Ai+l is 
violated for some value of i. In the same way (2.10) 
serves to give meaning to those IR's of U(n) defined 
by irregular Young tableaux for which the rule 
A~ ~ A~+1 is violated for some value of j. Simple 
rellrrangements of the rows and columns of the 
determinantal expressions (2.9) and (2.10) lead directly 
to equivalence relations between IR's of U(n) defined 
by irregular and regular Young tableaux. 

Via (2.10), the fundamental identity is given by 

{A~, A2,"', A;, A;+I," '}' 
= -{A{, A~,"', A;+1 - 1, A; + 1," oJ': (2.11) 

From this result it follows immediately that if j 
takes on the largest value for which A~ < ;'~+1' then 

(2.12) 

where the tableaux corresponding to the IR's {A}. and 
{a}. are both obtained from one and the same aug
mented tableau corresponding to {,u}.+h by removing, 
for {A}., a set of h boxes from the jth column and by 
removing, for {a}c, a continuous boundary hook 
containing h boxes. The hook starts from the jth 
column and ends in the (j + x)th column. The 
augmented tableau is defined so that {,u}C+k = 
{,ui,u;, ... , ,u~, ... }' with 

,u~ =AL if k ~ j, 

= A; + h, if k = j, (2.13) 

where h is any integer such that A~ + h ~ A~+1' The 
numbers h and x are called the length and depth, 
respectively, of the hook. If it is not possible to remove 
a hook of the required length in such a way that the 
portion of the tableau corresponding to {a}. to the 
right ofthejth column is regular, then {A}. is identically 
zero. The removal of hooks should be continued until 
either a regular tableau or zero results. This technique 
is illustrated in the examples of Fig. 1 which corre
spond to the equivalences 

{7, 1,5, 4}' = {7, 4, 32
}' = {43

, 2, P}, 

{7, 1,5, 3}' = 0, 

{2, 1,5, 4}' = {2, 4, 32}' = -{34}' = -{43}. 

Via (2.6), (2.11), and (2.12), it is easy to determine 
the equivalence relations associated with inadmissible 
composite tableaux. For IR's of U(n) it follows from 
(2.6) that 

{v;,u}: = (v;,"', v~, r; p,,u~,'" ,,u~}' 

{ " "}' = " v., ... , v2 ; n - r, P,,u2, ... ,,uq . (2.14) 
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I rl-
f-~~ 
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f- f-
l- f-
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L-

FIG. I. Regularization of Young tableaux (see Table J). 

TABLE I. Regularization of tableaux in accordance with the 
formula {A}e = (-I)"{a}e· Continuous boundary hooks of 
length h and depth x are removed from the augmented tableaux 

denoted by {,u L+h . 

{A}e {,u }e+h h {a}. x 

(a) {7, 1, 5, 4}, {7, 6, 5, 4}, 5 {7, 4, 32}' 2 
(b) {7, 1, 5, 3}' {7, 6, 5, 3}' 5 {7, 4, 2, 3}' = 0 1 
(c) {2, 1, 5, 4}' {2, 6, 5, 4}, 5 {2, 4, 32y 2 
(d) {2, 4, 32 y {4",32}' 2 {34}' 1 

Therefore form (2.11) 

{v;,u}!= -E{v~,···,v;;p-l, 

n - r + 1,,u;,'" ,,u~}', (2.15) 

so that (2.6) yields the result published earlier2 : 

{v;,u}~ = -{v;,",, v~, n - p + 1; 

n - r + 1,,u;, ... ,,u~}'. (2.16) 

Clearly, if p + r = n + 1, this identity (2.16) 
indicates that {v; ,u}~ = 0. On the other hand, if 
p + r > n + 1, it follows that 

{v;,u}!= -{p;A}~, (2.17) 

with c = a - p - r + n + 1, d = b - P - r + n + 
1 , P~ = n - r + 1, and A~ = n - p + 1. Thus, if 
{v; ,u}~ corresponds to an inadmissible composite 

tableau for which v~ + ,u~ = p + r > n + I, then 
{p; A}~ corresponds to an admissible composite 
tableau since p~ + A~ = 2n - p - r + 2 S n. This 
tableau may however be irregular and need further 
modification. In fact, the tableaux defined by {AL and 
{P}d are obtained from what might be called the 
augmented tableaux defined by {,u}a and {vh by the 
removal of (p + r - n - I) boxes from the first 
columns of these tableaux. Finally (2.12) leads to the 
modification rule 

{v;,u}~ = (_lyHY+1{T; a}~, (2.18) 

where the tableaux defined by {a}c and {T}d are 
obtained from tho~e defined by {,u}a and {vh, respec
tively, by the removal of continuous boundary hooks 
of length (p + r - n - 1) and depths x and y, 
starting in the first columns of the dotted and un
dotted portions of the inadmissible composite tableau. 
If the resulting tableau is irregular, the corresponding 
IR vanishes identically. Even if this tableau is regular, 
it may still, of course, be inadmissible. In this case the 
hook removal process may be repeated, more than 
once if necessary, until either an admissible composite 
tableau or an irregular composite tableau results. At 
each stage the length of the pair of hooks to be 
removed is determined by n and the lengths of the first 
columns of the dotted and undotted portions of the 
inadmissible composite tableau. 

Illustrative examples are given in Fig. 2 corre
sponding to the equivalences 

{3221; 2214} = -{322; 22J3}, for 

= +{32
; 221}, for 

= +{21; 2}, for 

=0, for 

U(8), 

U(6) , 

U(3), 

U(9), U(7) , U(5), 

U(4) , U(2), and U(l). 

(2.19) 

These results may be checked by making use of the 
dimensionality formula15•16 appropriate to IR's of 
U(n) specified by composite tableaux. This formula is 
valid both for admissible and inadmissible tableaux, 
and gives 

Dn{3221; 2214} = (n + 4)(n + 3)2(n + 2)(n + I)2(n)3 

X (n - 1)2(n - 2)2(n - 4)(n - 5) 

x (n - 7)(n - 9)/7625423323 , 

(2.20) 

which is useful for checking (2.19). 
It is worth noting that (2.15) includes the well

known result {O; ,u}~ = {,u}a = 0, if P > n. 
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(a) (b) 

( e) (r) 

FIG. 2. Standardization of composite tableaux (see Table II). 

TABLE II. Standardization of composite tableaux in accordance 
with the formula {'II; Il}, = (-l)x+v+l{T, a}~. Continuous 
boundary hooks of length h and depths x and yare removed 
from the dotted and un dotted parts of the tableau corresponding 

to the IR of U(n): 

{'II; Il}! = {32, 2,1; 22, 14} = {2, 3, 4; 6, 2}'. 

n h {T, a}~ x y 

(a) 8 I {2, 32; 5, 2}, 0 0 
(b) 7 2 {2, 3, 2; 5, 2}, = 0 0 0 
(c) 6 3 {23 ; 3, 2}, 1 0 
(d) 5 4 {2, 1,2; 22}' = 0 1 0 
(e) 4 5 {P, 2; 1, 2}, = 0 2 0 
(f) 3 6 {I, 2; P}' 2 I 

3. MODIFICATION RULES FOR O(n) AND Sp(n) 

For the groups O(n) and Sp(n), the group elements 
are restricted in such a way that there exist invariant 
metric tensors g).1).2 and h).1).2 which are symmetric and 
anti symmetric, respectively. These metric tensors may 
be used both to reduce IR's of U(n) with respect to 
O(n) and Sp(n) and to raise and lower tensor indices. 

The IR's of O(n) and Sp(n) associated with the 
partition (A)e = (AI, A2 , ••• , At) are specified by the 
symbols [AJe and (.1.)0' respectively. For the groups 
O(2k), O(2k + 1), and Sp(2k), such IR's are said to be 
standard if t ~ k. Newell6 by generalizing a method 
due to Murnaghan,4 has determined three modifi
cation rules appropriate to these groups whereby 
nonstandard IR's, with t> k, are defined in terms of 
standard IR's. However, it is possible to derive two 
modification rules for O(n) and Sp(n) which are 
analogous to the rule (2.18) which is appropriate to 
U(n). To do this, it is first necessary to generalize the 

identitiesl7 

[AJ = I [A; - i + j] + [Ai - i - j + 2] 

- bIi[Ai - i + 1]1, (3.1) 
andI8 

(A> = I(Ai - i + j) + (Ai - i - j + 2) 

- bIi(Ai - i + 1)1. (3.2) 

The required expressions are 

[A] = 1[1 "/+i-i] + [1";'-i-i+2] - bit [1 "/-i+1] I (3.3) 

and 

(A> = 1(1"/+i-i) + (1"/-i-i+2) - c5 iI (I";'-i+1)I. (3.4) 

The identities (3.1) and (3.2) may be used to define 
IR's of O(n) and Sp(n) specified by irregular Young 
tableaux for which the rule Ai;;::: AHI is violated, 
while (3.3) and (3.4) may be used in the cases for 
which the rule A; ;;::: .1.;+1 is violated. The fundamental 
identities which follow from (3.1) and (3.2) are 

[A~, A~,·· " A;, A;+I,"']' 

and 

= -[A~, A~,···, .1.;+1 - 1, A; + 1," ']" 
(3.5) 

(A~ , A~, ... , A;, .1.;+1' .. ')' 

= -(A~, A~, ... , .1.;+1 - 1, A; + 1, .. -)'. (3.6) 

These identities, (3.5) and (3.6), are exactly ana
logous to (2.1 1), and lead in the notation of (2.12) to 
the results 

and 
[A]e = (-l)X[a]e 

(.1.)0 = (-l)X(a)e' 

(3.7) 

(3.8) 

For the groups O(2k) and O(2k + 1) the IR 
[,u]a = [p,,u~, ... , ,u~]' is nonstandard if p > k, and 
the corresponding tableau is inadmissible. However, 
it is possible to contract the p antisymmetrised indices 
associated with the first column of this inadmissible 
tableau with the pseudotensor €Y1Y2"'Y" and to lower 
the resulting upper indices by contractions with the 
metric tensor gya' It then follows that 

(3.9) 
where 

[AJe = [n - p,,u~, ... ,,u~]', (3.10) 

with c = a + n - 2p. The resulting tableau corre
sponding to [A]e is then admissible, but it may not be 
regular. However, the use of (3.7) yields the modifi
cation rule 

(3.11) 

where the tableau corresponding to [aJe is obtained 
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from the inadmissible tableau corresponding to [Il] .. 
by the removal of a continuous boundary hook of 
length 2p - n and the depth x, starting in the first 
column of the inadmissible tableau. 

Repeated application of (3.11) leads either to an 
admissible tableau or to zero if, at any stage, the 
removal of the required hook leaves an irregular 
tableau. Illustrative examples are given in Fig. 3 
corresponding to the equivalences 

[33,1] = E[33], for 0(7), 

= E[32), for 0(4), 

= - [2], for 0(2), 

= 0, for 0(6), 0(5), and 0(3). (3.12) 

These results may be checked by making use of the 
dimensionality formulall appropriate to IR's of O(n). 
This formula is valid both for admissible and in
admissible tableaux, and gives 

Dn[33, 1] = (n + 4)(n + 3)(n + 2)2(n + l)(n) 

x (n - I)(n - 3)(n - 5)(n - 6)/ 

6 . 5 . 42 . 32 • 2, (3.13) 

which is useful for checking (3.12). 
It should be noted that, for the orthogonal group, 

(e) (r) 

FIG. 3. Standardization of IR's of O{n) (see Table III). 

TABLE III. Standardization of IR's of O(n) in accordance with 
the formula 

Continuous boundary hooks of lengths hand / and depths x 
and yare successively removed from the tableaux corresponding 

to [,,1. and [a], , with lit]. = [3',1] = [4,32]'. 

n h 

(a) 7 1 
(b) 6 2 
(c) 5 3 
(d) 4 4 
(e) 3 5 
(f) 2 6 

raj, x 

[33]' 0 
[2,32]' = 0 0 
[2',3]' = 0 1 
[231' 2 
[2', 1]' 2 
[22]' 2 

I 

1 
2 

[1,2, I]' 
[l2]' 

y 

o 
1 

E = ± I, so that E2 = 1. Use has been made of this in 
deriving (3.12). 

An interesting special case of (3.9) arises when 
n = 2k and p = k. In this case 

which implies that, for those group elements for 
which E = -I, the particular characters of O(2k) 
defined by (3.14) vanish. 

For the rotation subgroup SO(n) of O(n) , the 
group elements are restricted by the condition E = 1. 
Under this restriction the IR's of O(n) remain ir
reducible except for n = 2k, in which case the IR's 
of O(n) of the form (3.14), with Ilk > 0, reduce into 
two IR's of SO(n) which are usually denoted19 by 
[Ill' 1l2' .•. , Ilk-l, Ilk] and [Ill' 1l2' ... , ftk-l, -Ilk]' 
These IR's of SO(n) have the same dimensions. 

The use of EYly ..... yn to raise and lower indices of the 
tensors which form the basis of an IR of O(n) is 
confined to a single operation, as in (3.9), in contrast 
to (2.6) which applies to IR's of U(n). This limitation 
arises as the result of the well-known identity 

For the group Sp(n), the pseudotensor EYly ••.• ya may 
itself be written20 in terms of products of the metric 
tensor hap so that it is not clear that the fundamental 
pseudotensor may be used to raise and lower indices. 
However, the results of Newell6 for Sp(n) may be 
obtained by the use of the modification rule 

(3.16) 

where the tableau corresponding to (a)c is obtained 
from the inadmissible tableau corresponding to (Il)a 
by the removal of a continuous boundary hook of 
length 2p - n - 2 and depth x, starting in the first 
column of the inadmissible tableau. Clearly c = a + 
n + 2 - 2p, and use has been made of the fact that 
for the symplectic group E = 1. Repeated application 
of (3.16) leads either to an admissible tableau or to 
zero in the usual way. 

Illustrative examples are given in Fig. 4 corre
sponding to the equivalences 

(42,3,2, 12) = -(4\ 3, 2), for 

= +(42,3), for 

=0, for 

Sp(8), 

Sp(6), (3.17) 

Sp(IO), Sp(4), 

and Sp(2). 

Use of the dimensionality formulall appropriate to 
IR's of Sp(n) which is valid for both admissible and 
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(e) 

FIG. 4. Standardization of IR's of Sp(n) (see Table IV). 

TABLE IV. Standardization of IR's of Sp(n) in accordance with 
the formula 

<It). = (-1)"+1(0'). = (-I)"+o(T)d. 

Continuous boundary hooks of lengths h and I and depths x 
and yare successively removed from the tableaux corresponding 

to (11). and (0'), ,with (11). = (42,3,2, P) = (6,4,3,2),. 

n h (0'), X I (T)d Y 

(a) 10 0 (6.4 3,2)' = 0 0 
(b) 8 2 (42, 3, 2), 0 
(c) 6 4 (33,2)' 1 
(d) 4 6 (3,23), 2 0 (3,23

)' = 0 0 
(e) 2 8 (3,2, 12)' 3 2 (1,2, P)' = 0 0 

inadmissible tableaux gives 

Dn(42, 3, 2, 12) = (n + 7)(n + 5)(n + 4)(n + 3) 

x (n + 2)(n + 1)(n)3(n - 2)(n - 3)(n - 4)(n - 5) 

x (n - 7)(n - 10)/9' 8 . 62 • 5.42 • 32 .22• (3.18) 

This may be used for checking the relations (3.17). 
The IR's of Sp(2k) of the form 

<P)a = <P!, P2, •.• , Pk' Pk+!) (3.19) 

with Pk+! > 0, are such that (3.16) implies 

(3.20) 

since the appropriate hook length and depth are both 
zero. Thus the IR's (3.19) vanish identically. 

Clearly the fact that the hook length associated with 
the modification rule (3.16) is (2p - n - 2), rather 
than (2p - n), requires further study. No explanation 
in terms of operations on tensor indices is currently 
available. 

4. OUTER PRODUCTS OF IRREDUCmLE 
REPRESENTATIONS 

The chief motivation for deriving the equivalence 
relations of Sec. 2 was provided by the desire to 
simplify the procedure! for calculating the multi
plicities m;i·.~ associated with the decomposition of the 
product of two IR's of U(n) given by 

{v;p}:' {p; ;.}~ = 1 m;~::{'T; a}~. (4.1) 
<1.r 

Abramsky8 pointed out that if all traces exist, a 
simplified procedure may be used involving con
tractions and symmetrizations of the indices of the 
mixed tensors forming the bases of the IR's. FolIowing 
the work of Abramsky, to derive the appropriate 
formula for the multiplicities, it is necessary first to 
determine the IR's {p; (X.}~=: and {b; y}~=: whose bases 
are traceless tensors contained in the products! 

{P}a' {p}d = 1 m~:~{p; (X.}:=: (4.2) 

and 
~,(J 

{V}b. {A}c = 1 mI:~{b; y}~=;. (4.3) 
yb 

Then it merely remains to symmetrize uncontracted 
covariant and contravariant indices separately in 
accordance with the rules 

{(X.}a-t· {Y}c-s = 1 may.,,{a}e (4.4) 
" and 

{P}d-t. {b}H = 1 mpIlA'T}" (4.5) 
T 

with e = a + c - s - t and f = b + d - s - t. The 
resulting tensors associated with {'T; a}~are then 
completely traceless and symmetrized. Thus in (4.1) 
Abramsky's procedure yields2•8 

m vp •r - ~ rnP,Pmv,ilm m 
IlA.,,-k Il.~ A,y "Y." PIl.T· 

~P 
yo 

(4.6) 

If n is sufficiently large, it is certainly true that all the 
relevant traces of sets of sand t indices indicated in 
(4.2) and (4.3) may be extracted, and all the tableaux 
defined by the IR's of (4.1 )-(4.5) are admissible. It then 
follows that (4.6) is valid for such values of nand 
remains valid for all n provided that the modification 
rules of Sec. 2 are used to express all nonstandard 
IR's in terms of standard IR's associated with admis
sible tableaux. 

For example, (4.6) leads to the result 

{I; 1}' {1; 3, 1} = {2;4, I} + {2; 3,2} + {2; 3, 12} 

+ {i2; 4, 1} + {i2; 3, 2} + {J2; 3, i2} + {1; 4} 

+ 3{1; 3, 1} + {I; 22} + {1; 2i2} + {o; 3} + {o; 2l}, 

(4.7) 

which is appropriate to IR's of U(n) with n ~ 5. 
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However, in the case n = 3, (2.18) leads to the 
equivalence relations 

{2; 3, I2} = {J2; 4, I} = {P; 3, 2} = {I; 2P} = 0 

and 
{12; 3, 12} = -{l; 3, I}, 

so that for IR's of U(3) 

{I; I} . {I; 31} = {2; 4, I} + {2; 3, 2} + {I; 4} 

+ 2{I; 3, I} + {I; 22} + {O; 3} + {O; 2I}. (4.8) 

Similarly the modification rules of Sec. 3 are of 
great use in analyzing the decompositions of the 
products ofIR's of O(n) and ofIR's of Sp(n), given by 

may be used to show that (4.14) agrees precisely with 
the formulas derived by Newe116 and Littlewood.9 

The following example illustrates the two steps of 
the procedure based on (4.14) to derive decom
positions of the form (4.9). The first step gives for the 
product [3, 1] . [2, 1] the terms 

... aa+ ... aa+b .. aa 

. b b)! .j( 

+ ... att + a . . a 11+ b .. a.ll + a . . aji 

ab .b aj( bl1 (4.16) 

+ a b. afl + a b .flfl. 

.11 ay 

and 

(4.9) The second step gives, for example, from the third 
term in this expression, the IR's 

(4.10) 

To determine the mUltiplicities r po.;', it is first 
convenient to use the metric tensor g1112 to raise all 
the indices of the tensors associated with the IR [vh 
and then to define the corresponding IR by [V]b. 
With this notation, 

[,u]a' [V]b = [,u]a' [V]b. (4.11) 

The covariant and contravariant indices of the tensors 
associated with [,u]a and [V]b are, of course, separately 
traceless. The first step in the reduction of the product 
(4.11) then corresponds to the removal of traces 
defined by contractions between the covariant and 
contravariant indices in accordance with the formula 

{,u}a' {V}b = 2: m;:~{7; a}~=;. (4.12) 
",r 

It is then possible to write 

[,u]a' [V]b = 2: m;:~[7; a]~=!, 
",r 

where (7; a]~=: denotes a representation of O(n) which 
is in general reducible, but for which the corre
sponding tensor basis is completely traceless. The 
contravariant indices may then be lowered by using the 
metric tensor gYIY2' and the resulting representation 
decomposed into IR's of O(n) by carrying out the 
necessary symmetrizations of indices in accordance 
with the relation 

.. aa+ .. a+ .. a+ .. 

.a .a 

a a 

The final result is then seen to be 

[3, 1] . [2, 1] = [5,2] + [5, }2] + [4,3] + 2[4,2, 1] 

+ [4, P] + [32,1] + [3,22] + [3,2, P] + [5] 

+ 3[4,1] + 3[3,2] + 3[3, PJ + 2[22, 1] + [2, PJ 

+ 2[3] + 3[2, 1] + [IB] + [1]. (4.17) 

This result is valid for n ~ 8. For the particular case 
n = 4 it is necessary to apply the modification rule 
(3.11), This leads to the equivalence relations 

[5,12] = €[5], [3,22] = -€[3,2], 

[3,2, 12] = -'-€[3], [3,12] = €[3], [1 3] = €[l], 

and 

[4,2,1] = [4, 13] = [32, 1] = [22, 1] = [2, P] = o. 
Therefore, for 0(4), 

[3,1] . [2, IJ = [5,2] + €[5J + [4, 3J + [5] 

+ 3[4, 1] + 2[3,2] + 2(1 + €)[3] + (1 + €)[l], 

(4.18) 

where use has been made of (3,14) to derive the 
identity 

(3 - €)[3, 2] = 2[3,2]. 

{7h-t' {a}a-t = I mra,).{J.}e' (4.13) An alternative procedure for deriving an expression 
;. 

with c = a + b - 2t. Thus in (4.9) 

r pv ,;' = I m;',~mr",;" 
The identityl 

",r 

(4.14) 

(4.15) 

for the multiplicities rpo ,;' defined by (4.9) involves the 
identities21 

(4.19) 

and 

[,u]a = Lcp,,{a}a = I (-1)"/2my",,.{a}., (4.20) 
a Y" 
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where (b)Q is a partition into even parts only, and, in 
Frobenius notation, (Y)c takes the form 

(Y)c= [C1+ 
1 

c2+1 "'J. (4.21) 
C1 C2 ' •• 

The application of (4.20) to (4.9), followed by the use 
of (4.13) and finally (4.19), yields the result 

r/lV,A. = :2 c/l"cVTm"T.pdpA.' (4.22) 
aTp 

In order to derive a result analogous to (4.22) for the 
multiplicities s/lV,A. defined by (4.10), it is necessary to 
use the identities22 

(4.23) 

and 

(tt)a = :2 a/la{O'}e = 2 (_l)a/2m ""'/l{0'}" (4.24) 
a ,,<1 

where (Ph is the conjugate of a partition into even 
parts only and (et)a is the conjugate of a partition of 
the form (4.21). With this notation 

s/lV,A. = 2 a/laaVTmaT,pbpA.' (4.25) 
aTP 

The well-known identity 

(3.16); this leads to the equivalence relations 

(4, 12) = - (4, 1), (3,2, 12) = - (3,2), 

(2, P) = -(2,1), 

while (3.19) and (3.20) imply that alI IR's of Sp(4) 
specified by tableaux with three rows vanish identically. 
Therefore, for Sp(4) 

(3, 1) .. (2, 1) = (5,2) + (4,3) + (5) + 2(4, 1) 

+ 2(3,2) + 2(3) + 2(2, 1) + (1). 

(4.33) 

It should be noted that, by virtue of (4.30) and the 
analogous result, 

~/l·V"A.' = s/lVA.· (4.34) 

It follows that the products [2, 12] . [2, 1] and 
(2, J2) . (2, 1) may be written down immediately by 
taking the conjugate of the terms in (4.17) and (4.32), 
respectively. These results are valid for O(n) and 
Sp(n) with n;;::: 5. The modification rules (3.11) and 
(3.16) may then be used to derive results appropriate 
to n < 5. It is not valid for n = 4 to take, for example, 
the conjugate of the terms in (4.18) and (4.23). The 
correct results are 

leads to the conjugacy relationsll 

(4.26) [2, 12J. [2, IJ = [4, I] + [3,2] + (I + £)[3] + [2, I] 

+ (1 + £)[1] 
and 

hpA. = dp.A.' and a/la = c}l'a' 

and, from (4.15), to the identity 

(4.27) (2, 12) . (2, 1) = O. 

v' .r' _ V.T 

m/l' ,<1' - m}l,'" 

They may be derived most conveniently by noting 
that for 0(4) [2, J2] = £[2], while, for Sp(4),(2, 12) = 

~~ ~ . 

The comparison of (4.22) and (4.25) then yields, using 
(4.27), 

(4.29) 

while (4.26) and (4.28), when applied to (4.14), give 

'}l·v',A.· = '/lV,A' (4.30) 
Hence 

(4.31) 

so that, in terms of tableaux, the reduction into IR's 
of the outer products of IR's of O(n) and of Sp(n) are 
identical. 

It then follows directly, for example, from (4.17) 
that for IR's of Sp(n) 

(3, 1) . (2, 1) = (5,2)'+ (5, 12) + (4,3) + 2(4,2, I) 

+ (4, 12) + (32, 1) + (3,22) + (3,2, 12) + (5) 

+ 3(4, 1) + 3(3,2) + 2(3, 12) + 2(22
, 1) + (2,13) 

+ 2(3) + 3(2, 1) + (13) + (I). (4.32) 

This result is valid for n ~ 8. For the particular case 
n = 4 it is necessary to apply the modification rule 

5. THE REDUCTION U(n) t O(n) AND U(n) t Sp(n) 

The decomposition formulas (4.19) and (4.23) may 
be derived most directly by noting that the covariant 
tensor basis of an IR of U(n) forms a basis of a 
reducible representation of O(n) and a basis of a 
reducible representation of Sp(n). The reduction 
processes corresponding to U(n) t O(n) and U(n) t 
Sp(n) are carried out by systematically removing 
trace terms arising out of contractions with the metric 
tensors glZP and hlZP , respectively. Clearly m successive 
identical contractions with these metric tensors are 
associated with the symmetric products of m IR's {2} 
and {I2}. Such symmetric products are examples of 
plethysms23 and are denoted by {2} ® {m} and 
{I2} ® {m}, respectively. It has been shown that,24 in 
the notation of Sec. 4, 

{2} ® {m} =! {b}d' (5.1) 
Il 

and 
(5.2) 
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with d = b = 2m. The reduction formulas (4.19) and 
(4.25) then follow immediately. 

This interpretation of the reduction U(n)! O(n) 
and U(n)! Sp(n) in terms of contractions with the 
appropriate metric tensor leads directly to the follow
ing rules, D and B, for evaluating the coefficients dp ;" 

and bp;,. contained in (4.19) and (4.23). 

D: Write down the tableau corresponding to {P}a 
with the d boxes replaced by dots. Superpose 2m! 
letters a, 2m2 letters b, 2m3 letters c, ... , one by one, 
alphabetically, on the dots of the figure in all possible 
ways such that at each stage in this procedure: DO) 
the resulting figure corresponds to a regular tableau 
if each dot not superposed by a letter is interpreted as 
a box, D(ii) the resulting figure contains no two 
identical letters in the same column, D(iii) the series 
of letters obtained from the resulting figure by reading 
the superposed letters from left to right along each 
row taken in turn from bottom to top is a lattice 
permutation of those letters. 

The coefficient dp ;,. is just the number of distinctly 
labeled figures corresponding to {A}. obtained by 
means of this procedure, where c = d - 2m and 
m = (m! + m2 + m3 + ... ). 

B: Similarly the simplest way of defining the 
procedure B is to state that B is identical with D 
except that the ~ules D(ii) and D(iii) are replaced by: 
B(ii) the resulting figure contains no two identical 
letters in the same row, B(iii) the series of letters 
obtained from the resulting figure by reading the 
superposed letters from top to bottom along each 
column taken in turn from right to left is a lattice 
permutation of those letters. 

The coefficient bp ;,. is just the number of distinctly 
labeled figures corresponding to {A}. obtained by 
means of this procedure. 

For example application of the procedures D and B 
to the tableau corresponding to {4, 2, I} give rise to 
the figures 

... a ... a .. aa 

.a .a 

a a 

.. aa .. . b .. bb .baa 

.a ba .a ba 

a a a a 
and 

.. . a ... a .. ba .. . a 

.a .a . a ba 

a a b b. 

Hence, for U(n) ! O(n) 

{4, 2, I} = [4,2, I] + [4, 1] + [3,2] + [3, 12] 

+ [22,1] + [3] + 2[2,1] + [1], (5.3) 

and for U(n) ! Sp(n) 

{4, 2, I} = (4,2, 1) + (4, I) + (3,2) + (3, J2) 

+ (3) + (2, 1). (5.4) 

Application of (4.27) then indicates that 

{3, 2, 12} = [3,2, J2] + [3,12] + [22, 1] + [2, P] 

+ [2, 1] + [P] (5.5) 
and 

{3, 2, J2} = (3,2, J2) + (3,2) + (3, J2) + (22, 1) 

+ (2, J3) + 2(2, I) + (J3) + (I). (5.6) 

The decomposition formulas (4.19) and (4.23) are, 
of course, well known; however, the procedures D and 
B for carrying out these decompositions are new. 
Their particular merit lies in the fact that they fully 
exploit both the step-by-step nature of the trace 
removal process and the conjugacy of IR's of O(n) and 
Sp(n). 

To solve completely the reduction problem, it is 
necessary to consider the IR of U(n) denoted by 
{v; ,u}~ and specified by a regular composite tableau. 
Since the tensors (2.3) forming the basis of such an 
IR of U(n) are traceless, it is merely necessary to 
remove trace terms arising out of contractions of the 
metric tensors either with covariant indices or with 
contravariant indices. This step is followed by the 
lowering of the uncontracted contravariant indices 
using the metric tensor, and the subsequent sym
metrization of these lowered indices with the un
contracted covariant indices. It follows that for the 
reduction U(n) ! O(n) 

{v; ,u}~ = L dvadIlTmaT.ApJ.. (5.7) 
a,p 

while for the reduction U(n) ! Sp(n) 

{v; ,u}~ = L bvabIlTmUT.p(p)e' (5.8) 
a,p 

In practice it is often more convenient to use (5.7) 
and (5.8), which are valid for all n, when taken in 
conjunction with the modification rules of Sec. 3, 
rather than to use (2.7) for a particular value of n 
followed by either (4.19) or (4.23). This latter method 
would lead to the results 

{v; ,u}~ = L €sd;,.ApJ .. (5.9) 

and 
p 

{v; ,u}~ = L b;,.p(p) .. (5.10) 
p 
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where, of course, for the particular value of n under 
consideration, the modification rules of Sec. 3 must 
be used. 

An alternative procedure for deriving expressions 
equivalent to (5.7) and (5.8) which are valid for all n 
involves using the identitt 

{v;.u} ~ = ~ ( -l)tm~:~'{ a }a-t . {T }b-t, (5.11) 

followed by (4.19) or (4.23) and then (4.9) or (4.10). 
This method is very tedious in general but, by virtue 
of the conjugacy relations (4.26) and (4.27), provides a 
method of deriving (5.8) from (5.7). 

For the IR {3, I; 2, I} of U(n) , the first steps 
appropriate to (5.7) and (5.8) give rise, using the 
procedures D and B, to the figures 

.. a . aa, .a 

a a 
and 

.. a, . a, 

a a 

respectively. Taking the products of the appropriate 
terms in accordance with (4.4) then gives 

{3, 1; 21} = [5,2] + [5, 12] + [4,3] + 2[4,2, 1] 

and 

+ [4, P] + [32,1] + [3,22] + [3,2,12] 

+ 2[4,1] + 3[3,2] + 3[3,12] + 2[22, I] 
+ [2,14] + [3] + 2[2,1] + [13] 

{3, 1; 2, I} = (5,2) + (5,12) + (4,3) + 2(4,2, 1) 

+ (4, 13) + (32, 1) + (3,22) + (3,2, 12) 

+ 2(4,1) + 2(3,2) + 2(3, 12) 

+ (22,1) + (3) + (2,1). 
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~he matr!x ele~ents ~o( finite group transformations of the most degenerate continuous principal 
senes of umtary meduclble representations of SO(p, 1) are calculated. They are shown to agree with 
special cases already known. 

INTRODUCTION 

Representation theory for the noncom pact rotation 
groups SO(p, 1) has been described at length in the 
literature. For the special cases p = 2, 3, there is the 
now famous work of Bargmann,l Gel'fand, Minlos, 
Shapiro,2 and Naimark.3 For the case p = 4, the 
de Sitter group SO(4, 1), there is most notably the 
work of Thomas, Newton, and Dixmier.4 More 
generally, representations of SO(p, I) of the most 
degenerate type have been discussed by ViIenkin,5 
Bander and Itzykson,6 and for SO(p, q) by Raczka, 
Limic, and Niederle. 7 

In the present work, we give an expression for the 
matrix elements of finite group transformations for 
the most degenerate representations of the continuous 
principal series of the groupS SO(p, 1). The method 
used is the integral method used by Strom9 for the 
case of SO(3, 1). For certain special cases, we show 
that our expression reduces to those already known. 

1. REVIEW OF REPRESENTATION THEORY 

The Lie algebra of the groups SO(p, 1) falls into the 
Cart an classification B!p if P is even and D!(P+I) if pis 
odd; hence, for p even (odd), the number of Casimir 
invariants [= rank of Lie algebra] is tp[t(P + 1)], 
respectively. However, if one represents a group G 
on a Hilbert space of functions whose domain is a 
homogeneous space S of rank 1, all the Casimir 
operators except one must vanish. 10 The nonvanishing 
Casimir operator is just the Laplace-Beltrami operator 
on S. Such representations are called most degenerate. 

If we let G = SO(p) and take the homogeneous 
space S to be the (p - 1 )-dimensional sphere, S = 
S(P-I) isomorphic to the coset space SO(p)/SO(p - 1), 
we can construct the so-called quasiregular repre
sentation of SO(P). This is a most degenerate repre
sentation since S(p-l) is a symmetric space of rank 1. 
We construct the representation as follows: Let 
1:2(S(p-I» denote the Hilbert space of square-integrable 
functions over S(p-l), i.e., 

with the inner product 

(/1' f2) == 1(0-1) df!p!I(f!p)f2(f!p), 

where df!p is the invariant measure on S(P-I); and let 
L(g) be an operator on the space L2(S(P-I» such that 
for each g E SO(p) and every f E L2(S(p-I» we have 

L(g)f(f!) = f(g-IQ). (1.2) 

It is easily verified that L(g) is a representation of 
SO(p), and it follows from the invariance of the 
measure under SO(p) rotations that L(g) is unitary. 

However, we can go further if we introduce 
multiplier or projective representations; we can 
construct representations of SO(p, 1) on SIp-t)o The 
Cartesian coordinates of S(p-l) are denoted by z~, 

where oc = 1, ... ,po The representations of SO(p, 1) 
are given by 

Tap(g)f(z"') 

= [(g-I)OZP + (g_I)On(Cg-
1
)pZP + Cg-l)~) (1.3) 

fJ ° (g-I)~ZfJ + (g-l)g , 

where g E SO(p, 1) and f E L2(S(p-I». The represen
tation (1.3) can be arrived at formallyll by con
structing a quasi regular representation on the upper 
sheet of the p-dimensional cone ,;~ _ ,;~ _ ... ,;2 = 

• • P 

0, WIth homogeneous functIOns of degree a, the 
coordinates z'" being the homogeneous coordinates 
,;"'/ ';0. In fact, what this procedure does is just pick out 
the irreducible subspaces, i.e., yaP(g) is an irreducible 
representation of SO(p, 1). These representations are 
unitary in L2(S(P-I» if and only if 

a = -tcp - 1) + ip, p real. (1.4) 

We can, however, restrict p to be nonnegative since 
T-P and TP are unitarily equivalent. If g is a member 
of the compact subgroup SO(p), the representation 
(1.3) reduces to (1.2) as it should. 

The canonical basis for SO(p, 1) is given by the 
decomposition according to maximal compact sub
groups, 

SO(p, 1) :::> SO(P) :::> SO(p - 1) :::> ••• ::::> SO(2). 
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As a prelude to this decomposition, one introduces 
coordinates in which the Laplace-Beltrami operators 
of the compact subgroups separate. Such coordinates 
are the spherical coordinates 

ZI = sin ()p-l ... sin ()1' 

Z2 = sin ()p-l ... sin ()2 cos ()1' 

Zp-l = sin ()p-l cos ()p-2, 

zP = cos ()p-l, (1.5) 

with 0 S ()1 < 27TandO S ()i S 7T, i = 2,'" ,p - 1. 
In this coordinate system, the Laplace-Beltrami 
operator is 

~(S(p-l) = 1 _0_ sinp - 2 () _0_ + ... 
. 1'-2 () ~() 1'-1 ~() 

sm p-l u 1'-1 U p-l 

1 02 

+ (1.6) 
sin2 ()P-l ... sin2 

()2 o()i 
or perhaps in the more convenient form 

~(S(p-l» = ~ + (p _ 2) cot ()P-l _0_ 
O()P_l O()p-l 

+ . / ~(Sll-2). (1.7) 
sm ()1l-1 

The polynomial solutions of the eigenvalue equation 
of (1.6) are given by the generalized spherical har
monics12 

(1.8) 

where the subscript N denotes (np _ 1, ... , nl) and the 
normalization Nll is given by 

1 11-2 

N1J = -- II r(n j + tj)2n;+i(}-1) 

(~27T)j=1 

x (n jH + V)r(ni+1 - nj + 1»)i. (1.9) 
7Tr(n i H + nj + j) 

The orthonormality and completeness properties being 
well known,6 we now have a discrete basis in which we 
can calculate matrix elements of SO(p, 1) group 
transformations by the inner product( YN" T"p(g) YN). 

2. CALCULATION OF THE MATRIX ELEMENTS 

We begin with the parametrization of an arbitrary 
SO(p, 1) group element 

(2.l) 

where h, h' E SO(p) and gop is a "boost" in the pth 
direction. Typically, gop is given by 

cosh IX 0 ... 0 sinh IX 

gop = (I I) (2.2) 

sinh IX o ... 0 cosh IX 

The decomposition (2.1) gives for the operators in the 
representation space 

T"p(g) = U(h)T"1'(go1')U(h'). (2.3) 

Now the operators U(h) are not irreducible in SO(p), 
but their decomposition into irreducible parts is well 
known. 5 The matrix elements for an irreducible 
representation of SO(p) have been given2.13 for p S 5. 
It is interesting to note that due to the representation 
(\.3) the matrix elements for an SO(p, 1) "boost" in 
the pth direction are much easier to calculate than the 
corresponding rotation for SO(p + 1). 

The calculation of the matrix elements for a boost 
in the pth direction follows Strom's9 work closely. 
Using Eqs. (1.3), (1.5), and (2.2), we find 

T"p(IX)YN«()ll-l, ... , ()1) 

= (cosh IX - sinh IX cos ()p-l)"YN«()~I' ()p-2,"', (Jl), 

(2.4) 
where 

(J ' cosh IX cos ()p-l - sinh IX 
cos 1'-1 = 

cosh IX - sinh IX cos ()p-l 

The relevant matrix elements are given by the inner 
product 

(Y N«(Jp-l, ... , (Jl), T"1'(IX) yN,«(J1'_l, ... , (Jl» 

== TNN,(IX). (2.5) 

The integrations over ()1"", ()p-2 are trivial, 
yielding 

TiJ'N' oc i5n 'b n l ••• i5n , p-2,np-2 • (2.6) 

The remaining integral is 
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By letting x = cos (Jp_l and x' = cos 0~-1 and noting that 

sin 0~_1 = sin (J1J-l/(cosh Ct - sinh Ct cos 01J-l), 
the above integral becomes 

il dx(l - x2)n.-2+!<1J-3Jcno-Z+!(1J-2J(x)cnr-2+!(p-2)(x') (cosh IX - x sinh IX)". 
np-J.-np-2 n p-l-n"-2 

-1 

To perform this integral, we write the Gegenbauer polynomials as Jacobi polynomials14 

C~)(x) = r(Ct + 1)r(2Ct + n) p~-!'Il-!)(X), 
r(21X)r(1X + n + 1) 

and, using the expansion for Jacobi polynomials12 

p<:,/lJ(x) = 2-n i (n + IX) (n + fJ) ex _ l)n-m(x + 1)m, 
m=O m n-m 

we find 

C"H+!(P-2)(X) = r(np_l + np_2 + P - 2)r(np_2 + l(p - l))r(np_l + !(p - 1» 
np_l-np_2 r(2n1J-2 + p _ 2)2nl1-1-n.-2 

1601 

(2.8) 

n"-1-n.-2 (_1)n,,-1-nl1-2-k(1 + x)k(1 _ x )n,,-1-n"-2-k 

x k~O k! r(np_1 + !(p - 1) - k)r(np- 2 + l(p - 1) + k)r(n:r>-l - np- 2 + 1 - k)' 

(2.9) 
Using 

1 _ x' = e
ll
(1 - x) 

cosh IX - x sinh IX ' 
1 

' ___ e~~(1_+~x~) __ 
+x= 

cosh IX - x sinh Ct 

and putting Eq. (2.9) into Eq. (2.8), we obtain 

r(n1J-l + n1J-2 + p - 2)[r(np_l + l(p - 1»]2r(n;'-'1 + np_2 + p - 2)[r(n;'-'1 + !(p _,1»]2 
2n,,-1+n'.-1-2np-2[r(2np_2 + p _ 2)]2 

n"-1-nO-1 n'''-1-n''-2 (_I)n'''-I+n,,-1-2n,,_2-k-ke,,(n' 0-1-n,,-2-2k') 

X k~ kto k/! k! r(n1J-l + l(p - 1) - k)r(n~_l + l(p - 1) - k') 

(2.10) 

1 
x=-------------------------------~---------------------------------

r(np_2 + l(p - 1) + k)r(n1J-2 + l(p - 1) + k')r(np _ 1 - np_2 + 1 - k)r(n;_l - np_2 + 1 - k') 

x [1dx(1 _x)n'p-1+np-l-n,,-.+!<P-3J-k-k'(1 + x)np-2+!(1J-3 )+k+k'(coshlX - x sinh Ct),,-n'''-l. (2.11) 
1-1 

By changing variables from x to t = i(1 + x), the above integral becomes 

2n'.-1+n,,-1+p-3el%(a-n'''_1) ildttnp-2+!(P-3)+k+k'(1 _ tt'o-1+n"-1-n,,-2+!(p-3)-k-k'(1 _ (1 _ e-2~)t)"-n'''-1. 

Using Euler's integral representation of the hypergeometric function15 

F (a b' c· z) = r( c) (ltb- I(1 _ t)C-b-l(l _ tz)-a dt 
2 I , " r(b)r(c _ b) Jo ' 

we finally arrive at 
1I"_1-n"_2 ",'''_1-110_0 (_I)k+k'e,,(,,-n"-2-2k') 

TNN,(IX) = Nl z I -~.........:.-~----
k=O k'=O k'! k! r(np _ l + !(p - 1) - k) 

x r(np_2 + t(p - 1) + k + k')r(n~ 1 + np 1 - np-2 +!(p - 1) - k - k') 

r(n;'-'l + t(p - 1) - k')r(n1J-2 + t(p - 1) + k) 

X 2Fl(n~_1 - (1, nv- 2 + Hp - 1) + k + k'; n~-l + np 1 + p - 1; 1 - e-2,,) 

r(np_2 + !(p - 1) + k')r(np_l - np-a + 1 - k)r(n;'-'l - nv-2 + 1 - k')' 

(2.12) 

(2.13) 
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where 

Nl = bnl •nl,· •• bn"_2.n'p_.[(np-l - np_2)! (n;_l - np _ 2)! (np_l + np_2 + p - 3)! (n;_1 + np_2 + P - 3)!]! 

x (_It'p-l+np- 1 x [f(np-l + t(p - l»r(n;_1 + !(p - 1»]{[np_l + Hp - 2)][n;_1 + t(p - 2)])! 
(n p_l + n;_1 + p - 2)! 

As in Ref. 9, one of the sums in Eq. (2.13) can be eliminated by changing the sums over k and k' to sums 
over k' and j = k + k' and summing over k', yielding 

where 

T"P ( ) _ N -,,(n._I-") '" (-I)ir(n;_1 + np_1 - np_2 + t(p - 1) - j) 
NN' ex - 2e k ., . , 

j j.(np_l- np_2-j)· 

2Fl(n;_1 - a, np _2 + !(p - 1) + j; n;_1 + n~_1 + p - 1; 1 - e-2") 
x~~~----~~~~--~~~~~--~--~--~----~ 

r(np _ 1 + t(p - 1) - j) 

x F [-j, ".-n;_1 - Hp - 3), -np_2 - !(p - 3) - j, -n;_1 + np_2. 
4 3 np _l + !(p _ 1) - j, np_2 + !(p - 1), np_1 - np_2 + 1 - j , 

N2 = N 1[r(n;_1 + !(p - 1»r(np_2 + !(p - 1»r(n;_1 - np_2 + 1)]-1 

and pFQ is the generalized hypergeometric function defined in Ref. IS. 

-2"J e , (2.14) 

H is easily seen that T'fIk(ex) agrees for p = 3 with the expression given in Ref. 9. Moreover, for the special 
case N = (0,0, ... ,0) and N' = (n~-I' 0, ... ,0) Vilenkin5 has expressed T(fN'(ex) in terms of Legendre 
functions. By using the expression derived in the Appendix 

etJlJ. i (-l)ke-2"kF(n - G, t(p - 1) + k; n + p - 1; 1 - e-2") 

k=O k! (n - k)! 
2n +!tP-'1 

(-It' (p - 1 + G)nr(n + ip) p!(2-p)-n( h) 
t ,,+!<:p-2) cos ex, 

n! (n + p - 1)isinh ex) (p-2) 
(2.15) 

where (a)n = rea + n)jr(a) is Pockhammer's symbol, it is seen that Eq. (2.13) reduces to Vilenkin's 
result, 

TON(ex) = 2!(p-4) ro(p - 2» (p _ 1 + G)n(2n + p - 2)r(n + p - 2)r(p - I»)! p!~fr~~~(cosh ex). (2.16) 
rep - 2) n! (sinh ex)!(P-2) 

APPENDIX 

We derive the expression (2.15). By expanding the 
hypergeometric function in (2. I 5) in a power series and 
making use of 

1 O(p - 1) + i)k 
(!(p - 1) + k)i = ("2(p - l»i O(p _ l»k ' 

the equation becomes 

I n (l)k 
(Z-")lf 1 ---'----'--

k=O k! (n - k)! 

X zkF(n - a,!(p - 1) + k; n + p - 1; 1 - z) 

= i (n - a)i(Hp - 1»);(1 - Z)i 

i=O i! (n - p - l)i 

x F(-n, t(p - 1) + i; t(p - 1); z), (AI) 

but F( -n, Hp - 1) + i; t(p - 1); z) is a polynomial 

in z of degree n given by15 

F(-n, i(n - 1) + i;!(p - 1); z) 

(1 )n-i -t(p-3) dn 
- - z z [zn+t(p-3)(1 _ Z)i]. (A2) 

O(p - I»n dzn 
' 

thus the right-hand side of (AI) becomes 

-!(p-3) dn 
z (1 _ z)n-

(i(p - l»n dz n 

x [zn+!(p-3)F(n - a, t(p - 1); n + p - 1; 1 - z)]. 

(A3) 

Via the differentiation formula15 for hypergeometric 
functions, 

dn 

dzn [(1 - z)a+n-1F(a, b; c; z)] 

(_l)n(a)n(c - b)n(l - zt-1 

(c)n 

X F(a + n, b; c + n; z), (A4) 
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Eq. (AI) becomes 

n (_1)ke-2ak 
eaa ! -'----'---

k=O k! (n - k)! 
x F(n - G, t(p - 1) + k; n + p - 1; 1 - e-2a) 

= (-It(p - 1 + G)n eua(1 _ e-2a)n 

n! (n + p - 1)n 

x F(n - G, n + t(p - 1); 2n + p - 1; 1 - e-2a
). 

(AS) 

It is now a simple task to arrive at Eq. (2.15), by 
noticing that the hypergeometric function in (AS) is 
expressible in terms of Legendre functions. 
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A nonlinear thermodynamical theory of directed curves is obtained by postulating an energy balance, 
an entropy production inequality, and invariance requirements under superposed rigid body motions. 
Constitutive equations for a class of simple materials without memory are presented. 

1. INTRODUCTION 
A directed curve is defined as a curve at each point 

of which is associated ~ triad of deformable vectors, 
called directors. The application of this one-dimen
sional continuum to rod theory was first investigated 
by E. and F. Cosserat1 and later by Ericksen and 
Truesdell,2 who developed nonlinear theories of strain 
for both rods and shells. The latter work is incomplete 
in the sense that constitutive equations were not 
considered. 

Several investigations into complete theories of 
directed curves have recently been made. Based on 
principles of virtual work and material frame in
difference, Cohen3 developed a statical nonlinear 
theory of elastic directed curves. A dynamical theory 
of elastic directed curves was obtained by Whitman 
and DeSilva4 from a Hamilton's principle and 
invariance of the action density function under rigid 
body variations. An explicit form of the director 
inertia terms was determined by making a constitutive 
postulate on the form of the action density function. 

In addition, the general nonlinear theory was reduced 
for the case of a Cosserat curve, i.e., a directed curve 
whose directors are constrained to be a rigid triad 
(but with three rotational degrees of freedom). Further 
results were obtained by Whitman and DeSilva,5 who 
considered plane motions and dynamical stability of 
elastic Cosserat curves. In particular, it was shown 
that the nonlinear theory yields a generalization of the 
classical elastica theory while the linear theory 
generalizes Timoshenko beam theory. 

A thermodynamical theory of rods was obtained by 
Green and Laws,6 who defined a rod to be a curve 
with two, rather than three, directors defined at each 
point. These authors postulated an entropy production 
inequality and an energy balance and employed the 
methods of Green and Rivlin7•8 to obtain the governing 
equations. Working from the theory of Ref. 6, Green, 
Laws, and Naghdi9 presented a linear theory of 
straight elastic rods, and Green, Knops, and Laws10 

considered small deformations superposed on finite 
deformations and stability of elastic rods. 
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In the present paper, the authors develop a non
linear thermodynamical theory of directed curves 
which generalizes the theory of Ref. 4. The kinematics 
of directed curves are briefly reviewed in Sec. 2. We 
obtain the governing equations in Sec. 3 by postu
lating an energy balance, an entropy production 
inequality, and invariance requirements under super
imposed rigid body motions, but with a definition for 
director momentum density different than that 
adopted in Ref. 6. In Sec. 4 we develop constitutive 
equations for a class of simple materials without 
memory. Finally, in Sec. 5 we discuss a separate but 
equivalent set of balance postulates and the relation
ship of the assumed form of the director momentum 
density to that employed in Ref. 6. 

2. KINEMATICS 

In this section we summarize the essential kine
matics of a directed curve. A deformed configuration 
of the directed curve at time t is defined by the 
functions 

r = res, t), da = d,.(s, t), rj. = 1,2,3, (2.1) 

where r is the position vector of points on the curve c, 
da are the deformed directors (assumed noncoplanar), 
and s is the arc length along the curve. We define a 
fixed reference configuration at t = 0 such that 

R(S) = rlt=o, Da(S) = d .. lt=o, (2.2) 

where R, Da , and S denote respectively the position 
vector, directors, and arc length in the reference 
configuration. A family of deformations is then defined 
by a smooth function 

s = s(S, t). (2.3) 

The stretch A = as/os is assumed to be bounded and 
positive, implying that (2.3) can be inverted to yield 
S = S(s, t). 

Introducing a single fixed curvilinear coordinate 
system Xi with metric g, we define a set of reciprocal 
directors d" such that 

didP - {)p did" - {)i (2.4) 
II i-a' It j - i' 

where 8 is the Kronecker delta and diagonally 
repeated indices are summed over the range 1, 2, 3. 
With the definitions (2.4), it is possible to define 
components of tensors with respect to either the base 
vectors gi or the directors d". For a second-order 
tensor U, the tensor components Uii , Uii (with 
respect to gi) are related to the anholonomic com
ponents U"p, u"P (with respect to d,,) by identities of 
the form 

Differentiation with respect to arc lengths sand S will 
be denoted by 

C)=~, C)=~. 
aS oS 

For a vector u with tensor components ui = u . gi, the 
component form of the arc derivative Ii is defined by 

Vi oui + mri Oxn 
U =- U -as mn os ' 

where the Christoffel symbol r!"n is evaluated along 
the curve. Consistent with this notation we define 

Va au" u =-os ' 
-a OUa 
U =-. oS 

We define the Ericksen-Truesdell deformation meas
ures for a directed curve in the form: 

y" = da • f, Cap = da • dp, Fap = da • tip. (2.5) 

These quantities completely describe the strain of a 
directed curve, as shown in Ref. 2. From the above 
definitions, it is easy to show that 

Cap = F(aP) , (2.6) 

where F(ap) = HFap + Fpa) is the symmetric part of 
F"p' We note that Ya' CaP' Fap are simply anholonomic 
components of the vectors f, dp , dp • 

The velocity vector v of a point on c and the 
director velocities Wa are defined by 

(2.7) 

where (") = o( )/otls is the usual material derivative. 
As kinematical measures of the director motions, we 
introduce the anholonomic components of the 
director velocities W<x such that 

J¥"p = Wa • dp, Wa = J¥"pdP. (2.8) 

The tensor components associated with Wap are 
defined by 

Wmn = J¥"pd~d~ = d~wan' (2.9) 

By the definitions of Cap and Wap it follows that 

(2.10) 

Since the quantities CaP are instantaneous measures of 
the lengths of the directors and the angles between 
them, (2.10) implies that W(aP) is a measure of the 
deformation rates of the directors. In particular, 
W(ap) = 0 when the directors form a rigid triad. 
Defining a rotational velocity n of the director triad 

2n = da x Wa , 

then we can show that 

(2.11) 
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where W[aP] = H W<xP - W pa) is the skew-symmetric 
part of W ap , and the anholonomic components of the 
alternating tensor £ are given by 

EaP3 = Eijkd!d;d~ = da • dp X d3 . 

From (2.11) we see that W[aP] is a measure of the rate 
of rotation of the director triad. The above interpre
tations were given in terms of the tensor components 
W mn by Allen and DeSilva.l1 Finally, from (2.5) and 
(2.8) F(aM and W(.P) are related by the equation 

F(aP) = W(aP)' (2.12) 

3. GENERAL THEORY OF A DIRECTED CURVE 

In this section we develop the field equations 
governing a thermodynamical motion of a directed 
curve by generalizing the energy balance obtained by 
Whitman and DeSilva4 for the isothermal theory and 
by postulating invariance requirements on certain 
kinematic and thermodynamic quantities under super
imposed rigid body motions. 

Let an arbitrary deforming segment of the directed 
curve be defined by the interval Sl ~ S ~ S2' At each 
point of this interval we define a body force vector f 
and a body force ha associated with each director da • 

At the ends of the curve segment we define a stress 
vector 't" and a set of director stress vectors /La. We 
now postulate that the energy balance for the curve 
segment is given by 

d i8s 

- pE ds 
dt 81 

= [8
2
p(Q + PVi + haiwa;) ds + [TiVi + ",aiWai _ q]:~, 

)81 
(3.1) 

where the energy density E is defined as 

E = e + 1vi v. + l.AaPw Wi (3.2) 2 • 2 a. p. 

In the above equations p is the mass density, e is the 
internal energy density, Q is the heat supply density 
per unit time, and q is the heat flux per unit time from 
the curve segment to the surroundings. The quantity 
AaP in (3.2) expresses the kinetic energy associated 
with the directors in a general form and can be taken 
as symmetric without loss of generality. We assume 
that AaP is a positive-definite matrix, which implies 
that an arbitrary director motion gives rise to a 
positive contribution to the total kinetic energy. 
Finally, we allow AIIP to be time dependent. 

Using (3.2), we can write (3.1) in the form 

f2p[e - Q - (P - li)vi - (hai - Wlli)Wai 

81 _ tAaPWaiW~] ds +182
Ep ds 

81 

= [TiV; + flaiWlli - q]!:, (3.3) 

where the director momentum density w a is defined as 

wa = AIIPWp . (3.4) 

This definition is consistent with that adopted in 
Ref. 4. 

We now superimpose an arbitrary translational 
velocity aCt) upon the motion of the curve at time 
t* = t + b such that 

v* = v + a, w: = Wa' 

Under this combined motion we require p, e, Q, q, 
't", /La, AaP, (f - v), and (ha - wa) to be invariant, i.e., 
p* = p, etc. The energy balance (3.3) is now applied 
to the combined motion. Then, by the usual argu
ments, we can show that 

p + piix; = 0, 

Ti + pji = pvi. 

(3.5) 

(3.6) 

Equations (3.5) and (3.6) express the local conser
vation of mass and the local balance of linear momen
tum, respectively. 

We now superimpose an arbitrary rigid body 
rotation 0ii(t) at time t* = t + b such that 

vi = Vi + OijXi
, w:i = wai + 0iid!, 0ii = -Oii' 

By requiring the invariance of the quantities given 
previously under the above superimposed motion, we 
obtain from (3.3) [as modified by (3.5) and (3.6)] 

-Oii(l:2[Ti Xi + p(h·i - dJai)d~ 

+ pAaPw;d/J ds + [",a;d~]!~) 

(3.7) 

where "P ij are the tensor components of Aap: 

"Pi} = AaPd~d; = "Pii. (3.8) 

Since Q is an arbitrary skew-symmetric tensor and 
noting that Om;Omn is symmetric, Eq. (3.7) is satisfied 
if and only if 

"Pliil = 0, (3.9) 

(d~i.uai]) - T[iXi] + pd~;hai] = pd~%ail. (3.10) 

Equation (3.9) implies "Pij must vanish, since by 
definition (3.8) "P[ii] vanishes identically. But "Pij 

vanishes if and only if 

Aap = O. (3.11) 

If one interprets the directed curve as representing a 
one-dimensional continuum with substructure, then 
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(3.II) implies a balance law for substructure mass 
distribution. Indeed, one could make the separate 
postulate 

d 18

• - pAaP ds = 0, 
dt 8, (3.12) 

w~ich is obviously equivalent to (3.11) provided 

p ds = O. In terms of the tensor components of Aa/J, 
i.e., 

Aii - AaPdidi - Aii - a P - , 

it can be shown that "Pii = 0 implies the following set 
of differential equations for Aif: 

Aii = 2A( imW mil. (3.13) 

If we define the components of a double force 
tensor m such that 

mii = (d~/lLi) _ Tiii + pd~hai - pd~dfi, (3.14) 

then, by (3.10), mil is symmetric and an alternate form 
of (3.10) is 

(3.15) 

In order to recover the form of the director momen
tum balance as recorded in Ref. 4, we define a tensor 
cp such that 

(3.16) 

Applying (3.14) to (3.16), we obtain 

(3.17) 

Defining a set of vectors cpa such that q;ii = d;q;~, we 
can write (3.17) in the form 

(3.18) 

which is the director momentum equation as given by 
Whitman and DeSilva.4 If we apply the condition 
(3.15) to (3.16), we obtain 

(3.19) 

This equation can be interpreted as the local balance 
of moment of momentum and arose in Ref. 4 by 
requiring the action density function to be invariant 
under rigid body rotations. 

It can now be shown that by making suitable 
definitions of tensor and anholonomic components, 
all the forms of the field equations presented in Ref. 4 
can be obtained. For example, if we set 

then (3.10) yields the couple stress equation of motion 
[see (4.7) in Ref. 4]: 

(3.20) 

Alternatively, if we define m, I, ex to be the axial 
vectors 

then (3.20) becomes 

(3.21) 

The double stress equation of motion follows directly 
from (3.18): 

#,(;j) - d~ip,aj) _ q;tiil + ph(iJ) = pw(iJ) _ Amnw miW/ 

(3.22) 

Hence, the field equations consist of (3.7), (3.8), 
(3.20) or (J.21) and (3.22). 

The anholonomic forms of the equations of motion 
follow by defining anholonomic components To: = 
do:· 't', p,ltP = Voa• dP, etc. Then equations (3.6), (3.21), 
and (3.22) can be put into the forms 

fo: - WP~Tp + Pia = PVa - pW Ivp , 

rna + wapmP _ EaPJTptlj + pia = p~a + pW/rxP, 

paP) + p,(aJwP) /J _ q;(IXP) + ph(IXP) = pw(aP) + pw(dW,r, 

(3.23) 
where 

wap = (I/A)Fap and ta = (l/A)Ya. 

Finally, by using (3.11) an4 (3.18) in (3.3) as 
modified previously, we can show that the local 
balance of energy reduces to the form 

pe - (pQ - q) = TiVi + cpaiwlXi + paiwai . (3.24) 

When Q = q = 0 and e is identified with the strain 
energy function 10, then (3.24) reduces to the form 
obtained in Ref. 4. An alternate form of (3.24) can be 
obtained by applying (3.16) and the inverse to (2.9), 
i.e., Wan = d;'Wmn' Hence, 

pe - (pQ - q) 

= Ti(O; + iiWij) + milW(ij) + p,iiWii . (3.25) 

To complete the general theory, we postulate the 
Clausius-Duhem inequality in the form 

d 182 1'2 pQ [q] 8. - p'YJ ds - - ds + - ~ 0, (3.26) 
dt " 'I {} {} 81 

where 'YJ is the entropy density and {} > 0 is the 
temperature. Making the usual smoothness assump
tions and applying the conservation of mass (3.5), we 
obtain from (3.26) 

p{}ij - pQ + q - qiJ/{} ~ O. (3.27) 
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If we define the Helmholtz free energy function 
"P = e - 1h], then the energy equation (3.24) becomes 

p{}ij - pQ + if 
= TiVi + cpaiwai + p,aiwai - p(1j; + fJ'f}). (3.28) 

Using this equation in (3.27), we obtain an alternate 
form of the entropy production inequality 

TiVi + cpaiwai + p,aiwai - p(1j; + fJ'f}) - (q{}/1J) ~ O. 

(3.29) 

4. CONSTITUTIVE EQUATIONS 

We consider here constitutive equations, appropri
ate for directed curves, for a class of simple materials 
without memory. By applying the arguments of 
Coleman and Mizel,12 as adapted to simple directed 
media by Kline,13 we obtain restrictions on the 
constitutive equations imposed by the Clasius-Duhem 
inequality. Further restrictions are then obtained by 
applying the principle of material frame indifference. 
This principle, also called the principle of objectivity, 
is discussed in the treatise by Truesdell and Noll.14 

For a directed curve we define a simple material 
without memory as one for which "P, 'f}, q, 'r, cpa, and 
ILa are sufficiently smooth functions of the following 
set of kinematical and thermodynamical measures: 

where So is the subset of S defined by 

So = {x\ d~ , d~ , {}}. (4.7) 

Equations (4.6), (4.4), and (4.5) are respectively the 
caloric equation of state, the entropy-temperature 
relation, and the reduced form of the entropy-pro
duction inequality. 

Following Ref. 12, we assume that the stressesI6 'r, 
cpa, IL a can be written in the form 

'reS) = 'r(O)(So) + 'r(D)(S), 

cpa(s) = cp~O)(So) + Cp~D)(S), (4.8) 

ILa(s) = ILfo)(So) + ILfD)(S), 

where 'r(0) , ILlo) , ILio) denote the stresses in thermal and 
mechanical equilibrium, i.e., that state defined by the 

vanishing ory, Wa, \Va' and J.. Thus, 

'reo) = 'r(xt, d;, d;, {}, 0, 0, 0, 0) = 'r(O)(So)' 

The functions 'r(D) , cp(D) , ILcD) are extra or dissipative 
stresses which vanish in the equilibrium state. Then 
from (4.5) and (4.8) we obtain the following results: 

a"P 
T . = pA-

(0), axi ' 

(4.9) 

(4.1) 'r(D)' v + AcpfD) , Wa + IL~D) , \Va - q{}/1J' ~ O. (4.10) 

That is, we postulate a complete set of constitutive 
equations in the form 

"P = "P(S), 'f} = 'f}(S), q = q(S), 

'r = 'reS), cpa = cpa(s), ILa = ILa(s). (4.2) 

Guided by the arguments in Refs. 12 and 13, we can 
show that, under the assumptions (4.2), the entropy 
production inequality (3.29) is satisfied for arbitrary 
thermodynamical processesI5 if and only if 

(4.3) 

(4.4) 

(
1 a"P)"i (a a"P) i 
~ T; - P ax; v + CPi - P ad~ Wa 

(
1 a a"P) i qa. + ~P,i - p ad: Wa - A{} ~ O. (4.5) 

From (4.3) we see that 

(4.6) 

Thus the equilibrium stresses are specified when the 
equation of state (4.6) is known. We call (4.10) the 
general dissipation inequality. The constitutive equa
tions (4.2) now take the form 

"P = "P(So), 'f} = 'f}(So), q = q(S), 

'r = 'r(O)(So) + 'r(D)(S), cpa = cp'(O)(So) + Cp~D)(S), 
ILa 

= ILfo)(So) + ILfD)(S). (4.11) 

Using (4.4), (4.6), (4.8), and (4.9) in the energy 
equation (3.28), we obtain 

p{}~ - pQ + if = 'r(D)' of + cpfD)' Wa + ILfD)' wa' 

(4.12) 

For the special case when the dissipative stresses and 
heat flux are independent of V, Wa , Wa , (4.10) implies 

T~D)(SO' {}) = Cp~D)(So ,1)) = IL~D)(So, {}) = 0, (4.13) 

a.q(So,a.) ~ o. (4.14) 

Then, from (4.8), (4.9), and (4.13), the stresses depend 
only on the equation of state (4.6) and are given by 

(4.15) 
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where 1p = 1p(So)' These constitutive equations (4.15) 
can be regarded as defining the thermoelastic response 
of a directed curve and generalize those given by 
Whitman and DeSilva4 for the isothermal theory. In 
addition to (4.15), a constitutive equation for the heat 
flux must be specified such that (4.14) is satisfied. 

In addition to the entropy production inequality, we 
postulate that the constitutive equations (4.11) must 
satisfy the principle of material frame indifference. 
For convenience we shall employ Cartesian tensor 
notation. Then a change in frame is defined by the 
equations 

xt = Qjj( t)x i + ci ( t), d:i = Qil t)dai , (4.16) 

where e(t) is an arbitrary vector, and Q(t) is an 
arbitrary orthogonal tensor: 

(4.17) 

Under the change in frame (4.16), the quantities 1p, 
r;, q, 't", cp"', ~'" are required to be frame indifferent, i.e., 

1p* = 1p, r;* = r;, q* = q, 

(4.18) 

Applying the change in frame (4.16) to the quantities 

in S, we find that Xi' d"'i' dai , fJ, lJ are all frame 
indifferent, whereas Vi' Wai , Wai are not. Guided by 
the local energy balance in the mixed component form 
(3.24) and the tensor form (3.25), we define the 

argument set S such that 

s = {So, Vi' Wlij), Wii , ~}, 
where the vector V is defined as 

(4.19) 

(4.20) 

!t can easily be seen that all the arguments of the set 

S are frame indifferent. Hence, if't', cp"', ~a, q are taken 

as functions of S with 1p, r; functions of So, then Eqs. 
(4.18) imply that these quantities are isotropic tensor 
functions of their arguments. 14 

We now seek forms of the constitutive equations 
which are sufficient to satisfy (4.18). To this end we 

define the argument sets So and S such that 

So = {Ya, Cap, F",p, fJ}, 

S = {So,Y"" Cap, Pap, ~}, 

(4.21) 

(4.22) 

where y"" C",p, F",p are defined by (2.5). It can be shown 
that under a change of frame all the arguments of the 

sets So and S transform as scalars, i.e., st = So, 
S* = S. Hence, to satisfy (4.18) we rewrite (4.11) in 

the form 

1p = 1p(So), r; = 1](So), q = q(S), 

't' = d",[T(OJ(SO) + T(D)(S)], 

cp '" = dp[ rp(~(so) + rp(~)(S)], 
~'" = dp[,u~g)(So) + ,u~~)(S)]. 

(4.23) 

These forms of the constitutive equations imply that 
conditions (4.18) are identically satisified. We remark 

that the argument set S in (4.23) can be replaced by 
the set 

(4.24) 

where Va = d", • V. This set of arguments also trans
forms as scalars under change of frame, and hence 

(4.23) with S replaced by (4.24) will satisfy (4.18). 
The equilibrium stresses (4.9) take an alternate form 

in terms of the set So. Using (2.5), (4.9) and (4.23)1' 
we obtain 

01p a 01p 
't'(0) = pA-d"" ~(O) = pA--dp , 

oy", oFPa 

cp(O) = P - r + - dp + - dp , (4.25) '" (01p A 2 01p 01p A) 
OY'" ac",p aF",p 

where 1p = 1p(Y'" , C"'P' F",p, fJ). Recalling that equations 
(4.9) and (4.15) are identical in form, it is clear that 
(4.25) also apply to the case of thermoelasticity. 

In summary, the constitutive equations for a simple 
directed curve without memory are given by (4.23), 
where the dissipative stresses must satisfy the general 
dissipation inequality (4.10) and the equilibrium 
stresses are given by (4.25). 

5. DISCUSSION 

By the use of the energy balance equation, in
variance under a rigid body translation yields (i) the 
mass balance equation for a material point rand (ii) 
the linear momentum balance equation for a material 
point r. Invariance under a rigid body rotation yields 
(i) a mass balance equation for the directors d", at r 
and (ii) an angular momentum balance equation. The 
director mass balance or continuity equation is 1pij = 
A"'P = O. It is interesting to note that the complete set 
of field equations as given in Sec. 3 are obtainable 
from the separate postulates: 

(i) mass balance: 

d i 82 

- pds = 0; 
dt 81 

(5.1) 

(ii) director mass balance: 

diS, - pAaP ds = 0; 
dt 81 

(5.2) 
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(iii) linear momentum balance: 

d f.'2 f.'2 - pv ds = pC ds + ['t']!;; 
dt 81 81 

(5.3) 

(iv) linear director momentum balance: 

d f.82 fSS - pw« ds = (ph" - cp") ds + [(J.«]~~; (5.4) 
dt 'I 81 

(v) momentum of momentum balance: 

d f.
S2 

- per x v + d" x w"') ds 
dt 81 

= {2p(r x f + d« x h«) ds + [r X't' + d« x (J."J:~. 
(5.5) 

It is of interest to point out that Green and Laws6 

developed a theory for rods, using a one-dimensional 
continuum with two directors, in which they had 
Aa:P :;1= O. In their notation, y"P is equivalent to our 
A«P. When these authors treated invariance under a 
rigid body rotation, they were able to obtain only the 
angular momentum equation. We can recover the 
result of Green and Laws if we modify our Eq. (3.4) 
to read 

w" = A"Pwp - ! f A«Pwp dt. (5.6) 

We emphasize that (3.4) is a more natural form than 
the above; moreover, as derived in Ref. 4, there is 
no restriction placed on A«P, i.e., A"P :;1= 0 in (3.4). 

In a subsequent paper, Green, Laws, and Naghdj17 
developed theories of rods and shells using the three
dimensional theory of classical continuum mechanics 
as a starting point. The (three-dimensional) energy 
equation is reduced to a one-dimensional form which 
is a generalization of that postulated by Green and 
Laws. In this one-dimensional energy equation they 
derive coefficients k"l '''an ; PCPm which generalize the 
y"P (our A"P) of the earlier work of Green and Laws. 
These coefficients k are all independent of time: See 
Eq. (6.14), p. 907, of Ref. 17. 

This result bears out our conclusion that yaP = 0 is 
a result which can be proved. Green and Laws very 
naturally defined in their Eqs. (3.12), p. 149, 

If they had defined instead qa = I" - y'1.pw P and 
modified the integrand on the right side of their Eq. 
(3.11) to read 

then, using the argument of invariance under a 
superposed rigid body rotation, they would have 
obtained, in addition to their Eq. (3.14), p. 149, the 
result y"P = O. Hence, they would have anticipated the 
result on the coefficients k of Green, Laws, and 
Naghdi, obtained by expanding the displacement in an 
infinite series about a curve c. 

In the energy approach, the question of the unique
ness of the expression for qa arises naturally: Why our 
suggested form given above and not that of Green and 
Laws? We can answer only by repeating that (3.4) 
seems more reasonable than (5.6) for the director 
momentum density; moreover, in Ref. 4, (3.4) followed 
from a derived constitutive equation. 

* ~h!s wO.rk was supported by National Aeronautics and Space 
AdmlDlstration Grant NGR-23-006-047-1 and National Science 
Foundation Grant GK 4856. 
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We consider scattering by nonsingular, energy-independent, central potentials V(r) which are analytic 
in r in a sector of half-angle (j about the real positive axis. Simple considerations show that at high 
energies all Regge trajectories leave the sector of the angular momentum plane given by larg II :5: (j. 
One finds in general, however, that Regge trajectories remain in the right half I plane at sufficiently 
high energies for potentials of the above type. The Wood-Saxon potential is analyzed numerically. 
It is found that Regge trajectories which represent bound states remain in the right half I plane at high 
energies. 

1. INTRODUCTION 

It is well understood that in scattering from central 
potentials VCr) of Yukawa type (i.e., analytic in the 
right half r plane) the corresponding Regge trajec
tories I(k) at high energies either (1) approach 1= -11, 

where /1 is a positive integer, or (2) approach the point 
at infinity along such a path that Re 1-- - 00. The 
fact that Regge trajectories alI leave the right half I 
plane is intim~tely connected with the fact that the 
scattering amplitude here satisfies the Mandelstam 
representation with a finite number of subtractions in 
momentum transfer. 

Here we will consider scattering from central 
potentials VCr) which, while not of Yakawa type in 
general, are analytic in r (and vanish at infinity) in 
some sector of the real r axis of half angle e. A simple 
example is the Gaussian potential 

VCr) = g exp (-r 2), 

which is analytic and asymptotically decreasing in a 
sector of half-angle 7T/4 - E. We are interested in the 
behavior of the Regge trajectories at large energies for 
this type of potential. The Mandelstam representation 
is not expected to hold for this class of potentials 
because of singularities at complex momentum 
transfer or at infinity. The scattering amplitude will, 
however, be analytic in the "large Lehmann ellipse" 
if the potential is of finite range. 

It is straightforward to show directly from the 
Schrodinger equation that, for potentials analytic and 
asymptotically decreasing in a sector of half-angle e, 
there can be no Regge trajectories at sufficiently high 
energies in the complex 1 plane in a sector of half-angle 
e about the real I axis.! In addition, Barut and Dilley 
have used Langer's theory of asymptotic behavior of 
differential equations to obtain the following asymp
totic form of the scattering amplitude valid in the 
limit IAI -- 00 away from the negative real axis for 

fixed2 k: 

Ai (A) k ,-..,i--V-fi ) .)2 k2 k' A = I + t. (Ll) 

It is not clear from the context to what extent this 
result is asymptotically correct in the limit as IAI -- 00 

and k -- 00, although simple examples suggest that it 
may well be valid there. (In particular, see Sec. 4 
here.) Indeed, the asymptotic result (1.1) applied to a 
sector-analytic potential is certainly consistent with 
the above-mentioned fact that all Regge trajectories 
leave the region larg 1/ :s e at high energies. 

Our approach is to examine the Fredholm deter
minant ~(A, k) of the Lippman-Schwinger equation,3 
the Jost function. From the asymptotic form of ~ at 
large energies we will calculate the asymptotic position 
of its zeros in a representati~e case. In this way we 
locate the Regge trajectories asymptotically; we find 
that in general they remain in the right half I plane. 

In addition, we have written a search program to 
determine the location of Regge trajectories by 
numerical integration of the Schrodinger equation. 
The program was used for the Wood-Saxon potential 
familiar in nuclear physics.4 The results are in general 
agreement with Eq. (1.1) above. 

2. FORMALISM; THE CLASS OF POTENTIALS 

We consider scattering by energy independent 
central potentials for which H'drr / V(r)1 is a con
vergent integral. Froissart5 has shown that for such 
potentials the scattering amplitude f (A, k), considered 
for complex angular momentum A and positive real 
momentum k, is meromorphic in A at finite A except 
possibly at the points 

A = -/1 + (m/2)(s - 2)'; 

m and 11 are positive integers and s is an element of the 
set of singularities of the integral6 

u(a) = farv(r)ro--1. 

1610 
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We restrict considerations to the class of potentials 
for which Jl( 0') is analytic in 0' for Re 0' ~ 2. This 
condition is not very stringent-it can easily be in
sured by reasonable assumptions about VCr) for real 
r. For this class of potentials the scattering amplitude 
will consequently be meromorphic for finite A ,in the 
right half A plane.7 

Under the above conditions we can represent rVer) 
for real positive r by the Fourier integral 

rVer) = V+(r) + V-Cr) 

= LX> ds[f(s)e-iSr + f*(s)eiSr]. (2.1) 

We impose analyticity upon V by requiring thatf(s) 
be analytic in the wedge-shaped region Re s > 0, 
larg sl < e, 0< e S 7T/2. Let us also require that 
sf (s) - ° as s - 00 within this region. Then we can 
distort the contours of integration to write 

V+(r) = 1'" dpg+(p) exp [- prei(1T/2-8)], (2.2a) 

L(r) = 1'" dpg_(p) exp [- pre-i (1TI2-8)], (2.2b) 

where g+(p) = e-i8f(pe- i8 ) and g_(p) = [g+(p)]*. We 
will place some constraints on the moments of g ± (p) 
in this work. These constraints will be sufficient to 
guarantee that V(r) is analytic and asymptotically 
decreasing in a wedge of half-angle e. 

Let us give an example of a potential which is of the 
above type but which is not analytic and asymp
totically decreasing in the entire right half r plane: 

VCr) = t-t/(r4 + b4
), (2.3) 

for which 

f(s) = (t-t/4b2){e-bSV-i - e-bSVi }, (2.4) 

where we make the convention .J ±i = e±i1T/4. In this 
casef(s) is suitably analytic and decreasing in s in a 
sector of half angle e < 7T/4 about the real saxis. 

We now review construction of the Fredholm 
determinant and the scattering amplitude at real 
energies and complex angular momentum. The 
Froissart-Gribov analytic continuation of the Fred
holm determinant 6..;.(k) is given by 

00 

6..;..(k) = 1 + I dN(il., k), (2.5) 
N~l 

with the kernel K;. expressed through the integral 
representationS 

K;.(r, r') = roo ,2 k'd:' . J;.(k'r)J;.(k'r'). (2.7) Jo k - k - IE 

In this context the partial wave S matrix is given by 

and the scattering amplitude is defined by 

f;.(k) = [S;.(k) - 1]/2ik. (2.9) 

We now discuss the lbcation of Regge trajectories at 
asymptotic energies for potentials of the above type. 

3. ASYMPTOTIC TRAJECTORIES 

We wish to study the asymptotic behavior of Regge 
trajectories corresponding to potentials which are 
analytic in a sector about the real r axis. We can 
locate Regge trajectories by finding the curve A(k) 
along which 6..;.(k) = 0, where ~;.(k) is defined in (2.5). 

In Appendix A we will use the representation (2.2) 
to obtain a useful representation of 6..1 , the contri
bution to the Fredholm determinant which is first 
order in potential strength. This first-order contri
bution separates naturally into two types of terms. 
One type of term is expressed as an integral over p 
of g±(p) multiplied by a Legendre function Ql of 
complex order and argument. The second type of 
term, while not evaluated explicitly, is shown for 
reasonable weight functions g±(p) to be small in the 
limit as the momentum k approaches infinity through 
real values uniformly in any region of angular mo
mentum A, not including the integers. As a result one 
obtains the asymptotic Iimit9 

1 + 6..1(A, k) 

In general the detailed behavior of 6..1 depends upon 
the specific weight functions g ±. However, one 
certainly cannot conclude from the asymptotic 
properties of Ql alone that, for example, 6..1 becomes 
small as k - 00 for Re A> 0, 1m A> o. 

Let us consider the behavior of the first-order 
expression for the Fredholm determinant for the 
special case of the potential 

VCr) = !f (e-l're i8 + e-I're-i\ (3.2) 
r 



                                                                                                                                    

1612 PORTER W. JOHNSON 

For this potential the weight functions g+ and g_ are 
delta functions. In Appendix B we will obtain the 
asymptotic location of the solutions of the equation 

1 + LlI(A, k) = 0 (3.3) 

in the limit of large real momentum k. 
One finds an infinite number of solutions in this 

limit which lie at IAI large. These trajectories all 
individually approach the line arg A = 1T - (). How
ever, at any finite, though large, momentum k an 
infinite number of these trajectories lie asymptotically 
close to the line arg A = 1T/2 - (). 

The solutions of (3.3) would be the asymptotic 
locations of Regge trajectories if the terms in the 
Fredholm determinant which are of higher order in 
the potential strength are in some sense negligible. 
It is shown in Appendix C that the contribution to the 
Fredholm determinant of second order in potential 
strength may be neglected in determining the asymp
totic zeros of the Fredholm determinant. Reasons are 
also given ther~ for neglecting all the terms Lln for 
n>2 

Consequently we have shown that if one has a 
potential VCr) which is analytic and asymptotically 
decreasing only in a wedge-shaped region of half-angle 
() < 1T/2, one in general cannot expect that all Regge 
trajectories leav~ the right half A plane at some large, 
though finite, energy. This conclusion is, of course, 
consistent with the analysis of Barut and Dilley.2 

4. THE SEARCH PROGRAM 

We will now describe a search program for finding 
Regge trajectories corresponding to any central 
potential V(r).IO The corresponding radial SchrOdinger 
equation is 

'02"P .1.2 
- t 2 - - + --"P + V"P = k "P. (4.1) 

or2 r2 

First we pick a trail value of complex angular momen
tum A as an estimate of the location of a Regge pole 
at a given momentum k. We integrate the SchrOdinger 
equation numerically from r = 0, generating a 
function "Pout(r) such that 

(4.2) 

for small r.n Next we integrate the equation inward 
from large r to generate "Pin(r), which at large r has 
the formI2 

"Pin(r) ,..." (1T~r)i ei,r(HilHill(kr). (4.3) 

The next step is to compute the logarithmic deriv-

atives of a in and aout at an intermediate point ro: 

'O 
ain (ro) = - log "Pin (ro)/.=.o' (4.4) 

out 'Or out 

We then calculate the quantity 

P(A, k) = 1 ain - aout 1
2

• (4.5) 
ain + aout 

One then searches for the value of A for which the 
corresponding function P is equal to zero. This value 
of A gives the location of a Regge pole at momentum 
k. One can trace out Regge trajectories by increasing 
k somewhat and finding the location of the corre
sponding Regge pole. 

This search program was applied to the Wood
Saxon potential 

U 
VCr) - ---=--- 1 + e(T-'ol/a . 

We used the parameters 

U = -2.40, a = 0.58, r = 3.30. 

(4.6) 

The locations of the leading and second Regge 
trajectory are listed in Table I. Note that each tra
jectory does rise roughly linearly in momentum k; 
both the real and imaginary parts of angular momen
tum have this property. The leading trajectory at 
larger values of k makes an angle of 24° with the real 
A axis when the trajectory is plotted in the A plane 
parametrically in k. The corresponding angle for the 
second trajectory is 43°. 

Let us compare the above results of numerical 
calculations at intermediate energies with the pre
dictions obtained by application of expression (1.1) 
to the Wood-Saxon potential. The Wood-Saxon 
potential has poles at the following complex values 
of r: 

r(n) = ro + i(2n + l)1Ta, 

where n is any integer. One is thus led by (1.1) to 

TABLE I 

Leading Trajectory Second Trajectory 

k Re 1m k Re 1m 
0.3 2.98 0.01 0.3 1.24 0.25 
0.6 3.44 0.13 0.6 1.50 0.66 
0.9 4.08 0.40 0.9 1.84 1.10 
1.2 4.80 0.78 1.2 2.26 1.55 
1.5 5.57 1.22 1.5 2.76 2.00 
1.8 6.38 1.71 1.8 3.30 2.50 
2.1 7.21 2.23 2.1 3.99 3.06 
2.4 8.07 2.75 
2.7 8.89 3.33 
3.0 9.85 3.76 
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predict that Regge trajectories should asymptotically 
obey the relation 

A(n) = kro + i(2n + l)kmT. (4.7) 

Expression (4.7), by way of comparison, predicts that 
the leading (n = 0) trajectory should approach the 
asymptotic line arg A = 29°, whereas the second 
trajectory should approach arg A = 59°. One can see 
that (4.7) is in rough qualitative agreement with the 
results of the numerical calculation of Regge tra
jectories. 

Finally we note that numerical calculations indicate 
that these infinitely rising trajectories for the Wood
Saxon potential also contain bound state poles at 
positive integer angular momenta when analytically 
continued to negative en'ergies. 

The leading trajectory corresponds to / = 0, I, and 
2 bound states; the second trajectory has only an 
/ = ° bound state. We know of no explanation as to 
why the bound state trajectories happen to be infinitely 
rising here. In the case of the pure Yukawa potential 
it is found in numerical calculations that the bound 
state trajectories approach negative integer angular 
momenta at high energies.13 
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APPENDIX A 

Here we will calculate the high energy limit of the 
function LlI (A, k): 

LlI(A, k) = LX> drrV(r)K;.(r, r). (AI) 

We are interested in this function for the class of 
potentials VCr) which are analytic in a sector of half
angle () about the real r axis, and which can be 
represented in this sector by the following absolutely 
convergent integral representation: 

The function ~ may be expressed as the sum of ~+ 
and Ll_, 

Ll± = LX> dpg±(p) 50'" dre-pre±iOKlr, r). (A3) 

One can write the kernel K;. explicitly in terms of 

Bessel functions: 

K;.(r, r) 

= .TT [J;.(kr)J_;,(kr) _ e-i1T).J;,(kr)J;,(kr»), 
2 sm TTA 

as a result one obtains for Ll. (€ = ± I) the expression 

~. = 50'" dpg.(p)[Il(€' p, k, A) + 12(€, p, k, A)] 

= ~El + Ll.2 , (A4) 

where14 

I e 1 p 2i.0 -i1T). ( 2 ) 

1 = - 2k sin TTA Qz + 2k2 e (AS) 

and 

We are interested in the limit of Ll± for large, real 
momenta k, where A is bounded away from the real 
axis but not necessarily finite. We will show that in 
this limit 12 is uniformly small compared to unity. In 
fact, /2 may be transformed into the form14 

12 = 1 ("/2 dw cos 2AW . (A7) 
2 sin TTA Jo [k2 cos2 W + (p2j4)e2i'O]t 

Integration by parts yields 

One can easily see that both terms in (A8) are 
uniformly small for p > 0, so that simple restrictions 
upon g.(p) will guarantee that the term ~'2 will 
make a negligible contribution to (A4) in the above 
large k limit. 

The quantities ~E1' being the contribution to (A4) 
by integration over the term containing II, are, of 
course, not negligible in general for Re A > ° because 
the Legendre function Qz(z) has highly nonuniform 
dependence upon its arguments as /-- 00 and z -+ 1. 

APPENDIX B 

Here we will calculate the "weak coupling" limit of 
the Fredholm determinant for the potential given in 
Eq. (3.2). Substitution of this form into the high 
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energy limiting form Eq. (3.1) yields the equation 

1 + Ll (A k) = 1 + ~{ _e-
i1T

). ){Q (1 + L /i9) 
11k 2i sin l7A I 2k2 

+ Ql(1 + ;~2 e-
2i9

)). (Bl) 

One can easily show that in scattering from non
singular, energy-independent potentials, Regge tra
jectories either leave the right half A plane at high 
energies or go to infinity there in such a way that 
1m A --+ + 00. We are interested in the latter case, in 
which the factor _e-i1T )./2i sin l7A approaches unity. 
In order to find the zeros of the expression (BI), we 
need some knowledge of the behavior of the Legendre 
function Ql(Z) in the limit 1--+ 00 and Z --+ l. The 
Legendre function is in fact nonuniform in this limit, 
so that one must treat the limiting process carefully in 
searching for the zeros of (BI). 

Let us represent the Legendre function by a standard 
expression: 

Ql(Z) = ! i: dcp/[z + (Z2 - 1)t cosh cp]I+1. (B2) 

One can carry out a stationary phase approximation 
to obtain an asymptotic limit valid for complex I and 
z. If one imposes the constraint z finite, II· (z - 1)1 « 
I, one obtains the asymptotic result 

Ql(Z) f""Oo,J (17/2/)t(z2 - Irt[z + (Z2 - I)-t]l+t. (B3) 

Let us use (B3) to determine the asymptotic location 
of the zeros of (BI). It is convenient to express the 
angular momentum through its magnitude and phase: 

I = loeiq>. 

The Legendre functions in braces in (B I) may be 
replaced by their asymptotic forms, which, as k --+ 00, 

are 

Qz(1 + (ti/2k2)e±2i9) = (l7k/2fl1ie-i(q>±9/2) 
X e-Clllo/k)[cosC9±q»+i sin(8±q»1. (B4) 

We are interested in the regime of parameters 0 < (J < 
17/2 and 0 < cp < l7-the upper half I plane. In this 
regime it is clear that the factor -cos (0 + q;) is 
larger than -cos «(J - cp), so that the second Legendre 
function in (Bl) may be dropped. 

It is straightforward to insert (B3) in (BI) and 
determine the asymptotic zeros of (BI). One 
obtains the result that at large k the zeros of (Bl) 
are expressed by the equations 

10 = (-I/cos (0 + q;»(k In k/fl)[l + 0(1)], (B5a) 

217n = -1712 - (0 + q;)/2 - (fl1olk) sin (0 + cp), 
(B5b) 

where n is an integer. Note that the factor cos «(J + q;) 
must be negative, so that 17/2 - (J < cp < 317/2 - (J. 

One can also conclude from (B5) that the ratio lo/k 
becomes infinite at large k. 

One can parametrize each trajectory by the integer 
n. If one fixes attention upon a particular trajectory 
and considers the limit k --+ 00, one obtains its 
asymptote15 

I f"'"J (k/fl)eiC1T- 9)[ln k + ! In In k 

+ 217in + In (2/17)t(1/g)]. (B6) 

On the other hand, if one fixes k at a large value and 
allows the trajectory number n to approach infinity, 
one obtains 

I f""Oo,J (217nk/fl)eiC1T12-0) - (k/2fl)e- i9 In n. (B7) 

In summary, one can say that for 0 < (J < 17/2 the 
solutions of (BI) asymptotically approach the line 
arg 1= 17 - (J in the second quadrant of the I plane, 
but that at any finite energy an infinite number of them 
lie near an angle arg 1= 17/2 - (J in the first quadrant. 

The special limiting case of the potential (3.2) for V(r) 
is the simple Yukawa potential. It is informative to 
carry through the determination of the asymptotic 
zeros of (3.3) for this special case. One obtains an 
analogous result: There are an infinite number of 
trajectories which approach infinity at asymptotic 
energies. These trajectories individually approach the 
asymptotic curve 

Re I ~ -k In k/fl, 
(BS) 

1m I '""" C(n)k, 

where C(n) is a constant depending upon the tra
jectory number but not on k. On the other hand, if 
one remains at large, fixed k and allows the trajectory 
number n to approach infinity, one obtains the 
asymptotic trajectory 

Rei '"""-(k/2fl)lnn, 

1m I ~ (217/fl)nk. 
(B9) 

One can see therefore that at any large, though finite, 
energy there are an infinite number of Regge tra
jectories which lie asymptotically near an angle 
arg I = 17/2. It is a well known result in scattering 
from Yukawa potentials at sufficiently high energies 
that the scattering amplitude SeA, k) is analytic in A 
and asymptotically equal to unity in the region of the 
complex angular momentum plane given by Re A > 
-n, provided that one excludes a small sector about 
the negative real A axis,16 It has, however, never been 
shown that the scattering amplitude at high energies is 
analytic in the sector of the angular momentum plane 
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given by larg AI ~ 7T/2 + E for any number E > O. The 
above "first-order" calculation with a simple Yukawa 
potential is in accord with the former result, and at the 
same time it implies that one cannot enlarge the sector 
of analyticity in the above way. 

One can view the generalization (3.2) of the Yukawa 
potential as an analytic continuation such that the 
range of the potential becomes complex, while the 
potential itself remains a real analytic function of r. 
In this analytic continuation to e ¥= 0 some zeros of 
the Jost function, which at e = 0 lie asymptotically 
near the line arg A = 7T/2 at high energies, move into 
the first quadrant of the A plane to lie near the line 
arg A = 7T/2 - 0 at large, though finite, energies. This 
"weak coupling" result is in qualitative agreement 
with the asymptotic form (1.1) obtained by Barut and 
Dilley. 

APPENDIX C 

Here we will study the second-order Fredholm term 
in the limit k -+ w while 1m A > O. One can explicitly 
calculate the kernel KA given by (2.7) to obtain 

Kir, r') = Kl + K2 

= (7T/2 sin 7TA)[J;.(kr <)J_ikr» - e-i"AJikr)J;.(kr')], 

(el) 

where r < is the smaller of rand r' and r> is the larger. 
In this case one can write ~2 as follows: 

~2 = t I'" drrV(r) 100 

dr'r' 

x V(r')[Kir, r)Kk', r') - KA(r, r')K;.(r, r')]. 

(e2) 

The term ~2 may thus be expressed through (2.6) as 
the sum 

where 

A±(A, k) = (7T2 /8 sin2 7TA) 100 

drr VCr) 

x LXJdr'r'V(r')H±(r, r'), 

with 

H +(r, r') = J ;.(kr)J _ikr)J ikr')J _ikr') 

and 
- 2e-i" A Jl( kr)J i kr')J -A( kr') 

H-Cr, r') = [J;.(kr <)J_lkr»]2 

(e3) 

(C4) 

- 2e-ilTAJA(kr)JA(kr')[Jikr <)J_ikr»]. 

(C5) 

It 1S crucial to note that the contributions to ~2 in 

(e2) involving four Bessel functions each of order A 
identically vanish. 

Notice also that one can calculate A+(A, k) explicitly 
because the kernel H+ is relatively simple. One can 
express the answer in terms of ~€l and ~E2' which are 
defined in Eq. (A4). The result is 

A+(A, k) 

= (~+2 + ~-2)[(~+1 + ~-l) + t(~+2 + ~-2)]' (C6) 

We have seen in Appendix A that ~+2 and ~-2 are 
asymptotically small at large k. The Regge poles 
obtained by solving Eq. (3.3) occur in a region in 
which ~+l + ~-l is of order unity; therefore, in the 
vicinity of these poles the second-order term A+(}., k) 
is small compared with unity. 

The term A_(A, k) is more difficult to handle than 
A+(A, k) because the kernel H_ is more complicated 
than H+. We have analyzed A_ for the case of the 
"generalized Yukawa potential" given in (3.2). In 
that case we have been able to show that A_(A, k) is 
negligible in comparison to unity when ~+l + ~-l is 
comparable to unity. The procedure for showing this 
involves a stationary phase integration of (C3). The 
dominant contribution comes from r,....., r'. The result 
follows from the fact that17 Jix)J_ix)/sin 7TA, when 
analytically continued to A away from the real axis 
with IAI"""'" Ixl large, is small in comparison with 
J;.(x) . J).(x). 

We have written the kernel K;. in (CI) as the sum 
of Kl and K2 , where K2 is separable. Because of the 
separability of K2 , the contribution to 6.2 of second 
order in K2 vanishes identically. 

In Eg. (2.6) we write 6.,,(A, k), the contribution to 
the Fredholm determinant of nth order in the potential, 
as the integral over an nth-order determinant in
volving the K A • Since K2 is a separable kernel, the 
contributions to ~n of second or higher order in K2 
vanish identically. Thus one can represent ~n by 
expressions which are generalizations of (C3). One 
expects in analogy to the above that it should be 
straightforward to show that L;;'~3 ~n(A, k) is negligible 
for calculating the asymptotic Regge trajectories for 
the cases considered here. 

I R. G. Newton, The Complex J Plane (Benjamin, New York, 
1964), pp. 53ff. Actually, no trajectories can be in the fourth quadrant 
of the I plane for positive energy. 

2 A. 0, Barut and J. Dilley, J. Math. Phys. 4, 1401 (\963). See 
also J. Math. Phys. 7,64 (1966). 

3 For reference see R. G. Newton, Scatterihg Theory of Waves 
and Particles (McGraw-Hill, New York, 1966), pp. 346ff. 

4 R. Santa and C. S. Shastry [phys. Rev. 176, 1254 (1968)J have 
interpolated Regge trajectories between compound nuclear re
~onances and compared the resultant cross sections with experiment 
In oc nucleon scattering. Their Regge trajectories also rise. 

S M. Froissart, J. Math. Phys. 3,922 (1962). Froissart obtains a 
domain of meromorphy in k under the restriction that V(r) decreases 



                                                                                                                                    

1616 PORTER W. JOHNSON 

at least exponentially in r for r real, positive, and large. Since we 
are restricted to real k,)t is not necessary for us to impose this large 
r behavior upon V. 

6 The upper limit of the integral may be replaced by any positive 
number. 
. 7 For. example~ if VCr) is analytic in the domain Ir/ < 1, u(a) 
~s analytic for fimte a except perhaps for simple poles at negative 
Integers. 

8 J ;.(x) is the Bessel function of real argument x ani! complex 
order it. Our convention for this and other special functions is the 
same as that of the Higher Transcendental Functions, edited by A. 
Erdelyi et al. (McGraw-Hili, New York, 1953). 

• Qz is the Legendre function of the second kind. 
10 A program to calculate Regge trajectories has previously been 

constructed by Lovelace and Masson [Nuovo Cimento 26. 472 
(1962)]. This program requires less computation than ours. How
e~r, their method is applicable only if r VCr) is an entire function of 

JOURNAL OF MATHEMATICAL PHYSICS 

r. We have checked our numbers against theirs for a simple Yukawa 
potential. 

11 Since for complex A the factor r). +! has a rapidly changing phase 
at small r, it is desirable to factor out this phase in numerical 
integration of (4.1). 

12 This procedure is subject to numerical instabilities unless the 
potential VCr) is of finite range. Hil) is a Hankel function. 

13 The Wood-Saxon potential has trajectories which approach 
every negative integer except I = -1. See Bethe and Kinoshita, 
Phys. Rev.·12S, 1418 (1962). 

14 G. N. Watson, Theory of Bessel Functions (Cambridge 
U.P., Cambridge, 1966), p. 390. 

15 Note that .(B3) is a valid asymptotic expression for Qz(z) in 
this domain. 

I. S. Mandelstam, Ann. Phys. 19. 254 (1962). 
17 Another manifeStation of this relation between J ,.(x) and '-;,.(x) 

is the fact that their Wronksian is sin l7A for all complex A. 
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The geometric structure equations of a manifold satisfying the vacuum Einstein equations are expressed 
in terms of a complexification of the space of 2-forms adapted to the Petrov classification. The Petrov 
type III problem is invariantly reduced to the solution of one partial differential equation. Examples of 
solutions containing one arbitrary function are given, corresponding to spaces with groups of motions 
of dimensions 0, 1, and 2. 

INTRODUCTION 

This paper makes use of the techniques of a complex 
2-form representation of the geometry of a Lorentz 
manifold, providing a natural formalism in which to 
analyze the Einstein equations.1- s An extensive 
introduction and survey of this approach may be 
found in a paper by Israel. 4 Here this formalism is 
used to obtain the complete reduction of the Petro v 
type III problem to the solution of one equation in 
one real function of three real independent variables, 
r(x,y, u), 

(1) 

where "\72 == c)2jox2 + o2joy2. Given the most general 
solution to (1), the most general type III metric may 
be computed by algebraic quadratures. Further, 
different solutions for r that are not related to each 
other by a certain equivalence relationship (46) 
produce essentially different metrics, i.e., metrics 
that are not coordinate transforms of each other. 
The most general solution to (1) has not been explicitly 
obtained, but a class of solutions depending on one 
arbitrary function is stated, Eq. (48). Finally, the 

criterion for the metric to possess a symmetry group 
is given and particular solutions for r are stated 
corresponding to symmetry groups of dimensions 
0, 1, 2, respectively. When applied to algebraically 
special metrics, as in this paper. this formalism is, of 
course. related to widely used techniques which express 
the metric in terms of the principal null directions.5 

FORMALISM 

The formalism involves the expression of the 
metric in terms of a Lorentz-orthonormal frame of 
I-forms wa

, 

ds2 = 'fJabWaWb, a, b = 0, ... ,3. (2) 

where 'fJab = diag (-1, +1, +1, +1). The geo
metric content of this metric is then expressed in the 
structure equations 

dwa = wb A w~, wab + wba = 0, 

dwg + w~ A wg = tR~CdWC A wd
• (3) 

The first of these defines the connection forms w:, 
and the second gives the components of the Riemann 
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INTRODUCTION 

This paper makes use of the techniques of a complex 
2-form representation of the geometry of a Lorentz 
manifold, providing a natural formalism in which to 
analyze the Einstein equations.1- s An extensive 
introduction and survey of this approach may be 
found in a paper by Israel. 4 Here this formalism is 
used to obtain the complete reduction of the Petro v 
type III problem to the solution of one equation in 
one real function of three real independent variables, 
r(x,y, u), 

(1) 

where "\72 == c)2jox2 + o2joy2. Given the most general 
solution to (1), the most general type III metric may 
be computed by algebraic quadratures. Further, 
different solutions for r that are not related to each 
other by a certain equivalence relationship (46) 
produce essentially different metrics, i.e., metrics 
that are not coordinate transforms of each other. 
The most general solution to (1) has not been explicitly 
obtained, but a class of solutions depending on one 
arbitrary function is stated, Eq. (48). Finally, the 

criterion for the metric to possess a symmetry group 
is given and particular solutions for r are stated 
corresponding to symmetry groups of dimensions 
0, 1, 2, respectively. When applied to algebraically 
special metrics, as in this paper. this formalism is, of 
course. related to widely used techniques which express 
the metric in terms of the principal null directions.5 

FORMALISM 

The formalism involves the expression of the 
metric in terms of a Lorentz-orthonormal frame of 
I-forms wa

, 

ds2 = 'fJabWaWb, a, b = 0, ... ,3. (2) 

where 'fJab = diag (-1, +1, +1, +1). The geo
metric content of this metric is then expressed in the 
structure equations 

dwa = wb A w~, wab + wba = 0, 

dwg + w~ A wg = tR~CdWC A wd
• (3) 

The first of these defines the connection forms w:, 
and the second gives the components of the Riemann 
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curvature tensor. The expression of the metric (2) 
determines the frame wa only up to homogeneous 
Lorentz transformations; so in order to get a one-to
one correspondence between a geometry and the 
frame wa

, it is necessary to find out just how strongly 
the geometry can be made to determine the wa

• This 
is, of course, just the problem of determining the 
invariants of the geometry and can be shown to 
reduce to the problem of finding the algebraic invari
ants of the components of the curvature tensor and 
its covariant derivatives. Petrov solved this problem 
for the Riemann tensor itself for those geometries 
satisfying the Einstein empty space equations.6 •7 

In attacking this algebraic problem it soon be
comes apparent that the most natural formalism to 
use is one involving a complexification of the space of 
2-forms (antisymmetric tensors of rank two). It is 
apparent, then, that it might be helpful to express 
the entire structure equations in terms of these 2-
forms. Thus, define the three complex forms ei

, 

i = 1,2,3, by 

ei = Iwo A Wi + wi A wk , i,j, k = cyclic, 

12 == -1, (4) 

and their complex conjugates ei , noting that the wa 

are real. Lorentz transformations of the wa result in 
complex orthogonal transformations of the ei

, so that 
the ei may be modified by such transformations without 
changing the metric (2). The connection forms may 
be translated in similar manner: 

r~ = Iw~ + w~. (5) 

In this case there is no degeneracy so that the ei are 
uniquely determined by the condition (9). 

Thus we have the result that a metric described by 
the wa as in (2) and satisfying the Einstein equations 
for Petro v type III produces a complex basis ei

, which 
satisfy (6), (7), and (9). The converse question is now 
important since we wish to concentrate on solving 
these differential equations and then reconstruct the 
metric from the wa gotten from the inverse to (4). 
Clearly, if (4) is satisfied, then 

ei A ei = lijiiD, ei A ei = 0, (10) 

where 0. is a nonzero real 4-form (volume element). 
On the other hand, it can be shown that if (10) is 
satisfied, then either ei or lei can be written in the form 
(4) with the wa real and independent I-forms. Further, 
these are then determined up to the inversion, 
wa -- -wa. Thus, a set of complex 2-forms satisfying 
(6), (7), (9), and (10) is equivalent (up to the inversion) 
to the family of Petro v type III metrics. The fact that 
it may be necessary to replace ei by lei in determining 
the wa from ei corresponds to the fact that the structure 
equations are invariant under ei 

-- Cei
, Qii -- Qii/C, 

where C is an arbitrary nonzero complex constant. The 
corresponding change in Qij is from a matrix of a 
given Petrov type to another of the same type but 
with relabeled symbols, and is thus of no significance. 
An equivalent statement is that the wa may be ob
tained from the ei either from (4) or (11): 

ei = -wo A Wi + Iw i A Wk. (11) 

ANALYSIS OF TYPE III 
The structure equations then become 

dei = -r:;. A em, r; + r{ = 0, 

dq + r:,. A r J" = Qkmem + Ekmem. 

Now we will use this formalism to analyze the 
(6) type III problem. For convenience, define 

(7) 

Here Qkm and Ekm are complex 3 x 3 matrices, 
with Qkm being linear combinations of the components 
of the Weyl tensor and the curvature scalar, and Ekm 
of the Einstein tensor Rab - (t)'lJabR. Thus the 
Einstein equations Rab = ° become 

(8) 

The Petrov problem is that of establishing a canonical 
form for Qil by means of complex-orthogonal trans
formations on the ei

• As is well known, there results a 
division into three discrete types. This paper will deal 
only with type III, which in this notation means 

x = r; + Ir~, Y = (r; - Irn/2, Z = IrL 

Equations (6), (7), and (9) become 

dX+ZAX=O, 

dY - Z A Y =f2, 

dZ- XA Y=P, 
dfl = -Z Afl - X Aj2, 

dj2 = -(t)X Af3 + Y Af1, 

df3 = Z Af3 + 2Y Af2. 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

Q12 = Q21 = 1, Q23 = Q32 = I, The algebraic conditions (10) become 

other Qil = 0, Eij = O. (9) f1 Af3 = -2f2 Af2 = -210., other zero. (19) 
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To these we add their integrability conditions 

X Aj1 = 0, 

4Y Afl - X Afs - 2Z AJ2 = 0, 

Z Afl + 2X Af2 = O. 

(20) 

(21) 

(22) 

The relative simplicity of these equations indicates 
the usefulness of the approach, and similar equations 
may be obtained for the other Petrov types. The 
procedure for solving these equations is outlined in 
the Appendix. The result is that coordinates, 
(z, z, u, v), z complex and u, v, real, may be defined 
so that 

f1 = (ek/v) dz A du, (23) 

f2 = (v2e-k/2) dz A dF + v(eg 
- k) dz A du 

+ dv A du, (24) 

fS = 4v3eY- k dg A du - v4e-2k dk A dF 

+ 2v3e-2k dv A dF + 2v2eY- k dv A du 

- 2kv2e-k dv A du + v2e-k dh A dz 

- v4eY- 2k dz A dF + v3e-k(2keY - 2k + F 

- 3e2Y) dz A duo (25) 

Here k is a complex function of z and u, with k == 
ak/az, and F and h are arbitrary complex functions. 
Finally, the imposition of the purely algebraic 
conditions of (19) results in the following equations, 
which, considering the apparent complexity of f3 
are surprisingly simple: 

aF = 0, 
av 

_k aF ± s e -= e, 
az 

(26) 

r = real, (27) 

(28) 

eY = - E e-k aF + G (29) 
4 au ' 

G = (~?)/2(a~), (30) 
azaz az 

F + 4aG _ 4G2 + 4Gk - k2 - 2k = O. (31) 
az 

Finally, decomposing the complex coordinate z into 
the real x and y, z = x + Iy, and noting that 

we can see that Eqs. (26)-(31) are equivalent to the 
condition that r be a real function of x, y, u, which 
solves (1), and that F is related to it by 

(32) 

Finally, in order to reconstruct the metric, it is neces
sary to decompose the complex 2-forms into the real 
I-forms. In this case, (11) and (12) can be translated 
into more convenient form 

f1 = a1 A a3, f3 = a2 A as, 

J2 = t(a2 A a1 + a3 A ( 3), (33) 

where a1 and a2 are real null I-forms and as is com
plex isotropic. Thus, 

(34) 

For p as given in (23)-(32), the a's must be of the 
form 

a1 = b du, b = real, (35) 

a2 = oc dz + {3 du + y dz + b dv, (36) 

as = A dz + B du, (37) 

where the coefficients are determined from the com
ponents of fi by 

AA = 2f.2., (38) 

1 / -b = -f.u A = b, (39) 

b = 2/b, (40) 

oc = f;./A, (41) 

B = fz~J-a. (42) 

y = -AB/b, (43) 

3 / -{3 =fu. A + yB. (44) 

The coordinates (z, z, u, v), used in the expression 
for the fi, and thus the metric, are not unique but 
subject to the following transformations, leaving the 
form of the fi invariant: 

z --+ ljJ(z), U --+ '/feu) (45) 

r --+ r(ljJ(z), ljJ(z), 1f(U»'ljJ2/rp;j. (46) 

It is easy to check that (1) is invariant under this 
transformation. Thus all Petro v type III metrics may 
be obtained by algebraic quadratures described in 
(23)-(44) from r's solving (1). Different r's not related 
by a transformation as in (46) then result in truly 
distinct metrics. 
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Via the complex notation, it is easy to show that 
(l) is equivalent to 

e-ra2r --
-- = E(z, u) + E(z, u), (47) azaz 

where E(z, u) is an arbitrary (differentiable) complex 
function of z and u. The most general solution to (47) 
has not yet been explicitly obtained, but a particular 
solution may be written in terms of this arbitrary E as 

r = -3 In (E + E) + In E + In E + In 3. (48) 

Thus (48) gives a class of solutions to (1) depending 
on one arbitrary function E. 

MOTIONS: EXAMPLES OF SOLUTIONS 

Since the type III curvature tensor is nondegenerate 
and uniquely determines the p, the only possible 
motions are essentially translations. If the Killing 
vector for a motion has components M", then the 
invariance of p under the group implies the vanishing 
of the Lie derivatives of these forms: 

l;p,IlMIL + l~pMIl,,, + 1!IlMIl,p = O. (49) 

These equations can then be shown to imply that the 
motion in this case must essentially be a translation: 

M Z = MZ(z), M Z = MZ(z), 

M U = MU(u), M V = vMu.!t' (50) 

Since the metric is fully determined by r and its 
derivatives, it can be shown that the remaining con
dition is the invariance of r (r is not a scalar) which 
becomes 

r,zMz + r,zM" + r,,,M u + J:r + MZ 
- 2Mu = o. 

(51) 

Thus, as is known, the group must have dimension 
0, 1, or 2. 

In order to produce solutions with motions, use 
may be made of the coordinate freedom in z and u to 
require that the components M" be constants, and 
(51) becomes 

r.Za + rji + r,ub = 0, a, b = const, b = real. 

(52) 

For example, if E which gives r from (48) is chosen to 
be zecu , with c = const =;e 0, then the only Killing 
vectors will be of the form 

M" = (1, -1,0,0). (53) 

However, if c = 0, the group is two dimensional, 
generated by 

M" = (I, -1,0,0) and Mtx = (0,0, 1,0). (54) 

On the other hand, in order to produce solutions 
having no motions, it is sufficient to choose E so that 
it is not of the form 

E = E( rex) + 1p(U»tiJ2¢, (55) 

for some complex function r and real 1p, As an 
example, if 

E = eZu
, (56) 

so that (55) is not satisfied and 

r = -3 In (e Zu + eU) + zu + zu + 21n u + In 3, 

(57) 

then the corresponding metric will permit no motions 
and will have no symmetry group. 

APPENDIX 

From (13) and (20), it is clear that 

x = e" dz, 

Z = -dlX + eU dz, 

11 = dz II w, 

(Al) 

(A2) 

(A3) 

where z, IX, and g are complex functions, w is a 1-
'form not containing dz and z, z may be chosen as 
complex coordinates. Next, (15) gives 

Y = _eu-" dg - e-txw + ell dz, (A4) 

where f-t is arbitrary. From the exterior derivative of 
(I5), it follows that 

dz II (dw - (i) dlX II w) = 0, (A5) 

from which it may be shown that the real coordinates 
U, v may be chosen so that 

w = (ekjv) du, e" = ek jv2
, k = k(z, u). (A6) 

Next, (14) determines f2: 

f2 = mv2e-k dz II dF + veU dz II du 

- v dk II du + dv II du, (A 7) 
where 

(A8) 

FinaUy, Eqs. (17), (I8), and (21) givef3, as described 
in (25), with the introduction of the new function h. 
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Considering the standard form (illp/at = H'IjJ [with'IjJ transforming according to D(O, s) (fJ D(s, 0)] 
of wave equations for free particles of arbitrary spin, we determined in a recent paper the admissible forms 
of H consistent with invariance of the equation under the Poincare group and under T, C, and P. Here 
we show that even if T and C invariance is not imposed, the admissible Hamiltonians are the same 
(apart from one extra possibility H = E). Expressed differently, except for the trivial case H = E, 
invariance of free-particle equations under the connected Poincare group and P implies T and C also. 

1. INTRODUCTION 

In a recent paperl we observed that the SchrOdinger 
form 

a1p 
i- =H1p at (1) 

of the equation of motion for free relativistic particles 
of any given spin s and nonzero mass m is a standard 
form to which the familiar manifestly covariant 
equations2 can be reduced, though (1) is not mani
festly covariant. We emphasized that this reduced 
form is most convenient for analyzing the restrictions 
on .the equation of motion imposed by the various 
invariance conditions, and then proceeded to deter
mine the most general forms of H consistent with 
invariance of (1) under the connected Poincare 
group and under T, C, and P. Here we show that 
only these same Hamiltonians are admissible (apart 
from the trivial one H = E) even if we drop the 
requirement of T and C invariance. The proof is on 
the same lines as in Ref. 1, though the starting point, 
the most general form of H permitted by translational, 
rotational and space-inversion invariance,3 is more 
complicated than before: 

H = L bvBv + .L evCv + PI L b~Bv + PI L c~Cv· (2) 
v v v 

Here Bv = Av + A_v and Cv = Av - A_v, where 
Av is the projection operator to the eigenvalue v, 
v = s, s - 1, ... , -s, of 

Ap == A • pIp == PaS· pIp, 

S being the spin matrix. The summation in (2) is 
over nonnegative values of v. Further, Pi' i = 1,2, 3, 
are the Pauli matrices, and e is defined by sinh e = 
plm and cosh e = Elm. (For further details of nota
tion, Ref. 1 or Ref. 3 may be consulted.) It is known 
that if C and T invariance is required, then the 
coefficients bv and either the b~ or the c~ in (2) must 

vanish. a What we now show is that even without 
imposing such invariance, the same result follows 
from the requirement of boost invariance on (1), 
namely 

[H, K] = iP, (3) 

where K and P are the boost and translation genera
tors. The nonvanishing coefficients in (2) must then 
necessarily have the same values as determined in 
Ref. 1. In other words, Poincare and P invariance 
implies also T and C invariance.4 

2. DETERMINATION OF THE HAMILTONIAN 

Since the approach to be employed closely follows 
that of Ref. 1, we shall not present any calculational 
details here. We shall merely quote the basic results 
we need, and outline the salient points of the proof. 

The require~ents which remain to be satisfied by 
the Hamiltonian (2) are the mass condition 

(4) 

and the boost-invariance condition (3). Equation (4) 
demands that either 

or 

bv = E, cv = b~ = c~ = 0 for all v. (6) 

The latter leads to the trivial Hamiltonian H = E, 
which will not be considered further. To determine 
the cv ' b~, c~ in the former case, Eq. (5), we employ 
the boost invariance condition (3), re-expressed in the 
form i 

HVpH= [H,A] + p. (7) 

To solve this equation following the procedure of 
Ref. 1, both sides of (7) are reduced to linear combi
nations of the linearly independent6 quantities CvA, 
PaBv(A x p), Bvp, PIBvA, P2Cv(A x p), and plCvp, 
whose coefficients on the two sides are then equated. 

1620 
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In the present case the resulting equations are 

E'l. - C.C._I - b;b~_1 + C;C~_I = p(C. - C.-I), (8a) 

C.b~_1 - b;c._1 = p(b~ + b~_I)' (8b) 

C.C~_I - c;c._1 = p( c; + C~_I)~ (8c) 

C;b~_1 - b;C~_1 = 0, (8d) 

I dc. db; I 

b.- - c. - = 2yb., (8e) 
dp dp 

I dc. dc; I 

C - - c - = 2yc 
• dp • dp .' 

(8f) 

for all l' > Yo, where Yo =1 or ° according as the spin 
is half-integral or integral. The solution of these 
coupled equations is fairly straightforward. Multi
plying (8b) by (c. - p) and (8c) by c~ and subtracting, 
we get 

(c. - p)(b;b~_1 - C;C~_I) = (C._I + p)(E2 - C;), (9) 

where Eqs. (8b) and (5) have been used to simplify 
the right-hand side. Next, multiplying (8a) by 
(cv - p) and then introducing (9), we find after some 
algebra that 

E 

(c._I / E) + tanh 2() 

1 + (c._I / E) tanh 2() , 
(10) 

with () as defined below Eq. (2). From (l0) it follows 
that either 

Cv = E tanh 2y() (lIa) 
or 

Cv = Ecoth 2y(), l' = s, S - 1,"', Yo. (lIb) 

At this point we have to consider the equations for 
l' = Yo. Taking for instance the half-integral spin 
case (Yo = i), we observe that the relevant equations 
are obtained from Eqs. (8) by merely interpreting the 
symbols C!, c~!, and b~! as -c!, -Ct, and bt, 
respectively, as explained in Ref. 1. Equation (8a) 
then becomes 

(C!)2 _ (bt)2 - (CP2 = 2pc! - E2, (12) 

which, together with (5), shows that 

bi = E sech () and ci = 0, (13a) 

if (Ila) is adopted for cv , and 

bi = ° and ci = E csch e, (13b) 

if the alternative possibility (11 b) is taken for Cv ' It is 
easily seen from Eqs. (8) that if a b' (or c') is zero for 
one value of 1', then all the b' (or all the c' ) are zero. 
Thus we find that there are only two possible solu-

tions, leading to the alternative expressions 

H = E ~ tanh 2y(}C. + EpI ~ sech 2y(}Bv (14a) 

or 
H = E! coth 2y(}Cv + EpI! csch 2y(}Cv (14b) 

v v 

for the Hamiltonian. A similar calculation for the 
integer spin case shows that again there are only two 
solutions for H and they are identical with (14). 

3. DISCUSSION 

A word of explanation may be in order as to why 
P invariance was imposed rather than T or C. The 
reason is simply that the form (2) of the Hamiltonian 
to which the consideration of Ref. 1 could be directly 
applied would not be the most general one if P were 
violated. 

As already noted, the solutions (14) coincide with 
those obtained in Ref. 1, where the additional condi
tion of T and C invariance was invoked. This pro
vides a demonstration of the power of the boost 
invariance requirement which extends so far as to 
imply even some invariance properties under discrete 
transformations. No explicit and general demonstra
tion of this kind seems to have been given before, 
though one would perhaps suspect some such thing 
from the well-known particular cases like the Dirac 
equation where T, C, and P invariance holds without 
being demanded in the first place. On the other hand, 
it may well be that in such examples this property is 
a consequence not so much of Lorentz invariance 
per se but rather of the extra constraints on the form 
of the equation, especially that of manifest covariance. 
In fact, it is known that such constraints (which may 
be desirable but not essential) on the form of the wave 
equation can bring in in variance properties which 
were not explicitly demanded. A discussion of this 
point may be found in a recent paper by one of us.S 

By not demanding manifest covariance, locality, etc., 
in our work we have tried to minimize such unin
tended side effects. Incidentally, it appears from 
further investigations by two of us (P. M. M. and 
M. S.) that invariance under the Poincare group and 
the combined operation TCP quite generally implies 
separate T, C, P invariance in the case of free field 
equations. Though the treatment is similar in spirit 
to the present one, differences in the general form 
of the Hamiltonian, referred to earlier in this section, 
make the details quite different, and the work will 
therefore be reported separately. 
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The lattice Green's functions of the rectangular and the square lattices 

1 f"f cos mx cos ny dx dy 
Irect(a; m, n; ()(, fJ) == ... R' 

7r 0 a - IE - ()( cos x - f> cos y 

Isq(a; m, n) == Irect(a; m, n; 1, 1) 

are considered. The integral/rect(a, m, n; ()(, fJ) for a> ()( + fJ is evaluated and expressed in terms of the 
generalized hypergeometric function F •. Expressions of Isq(a; m, n) for a > 2, a < 2, and a ~ 2, and 
Ifect(a; m, m; ()(, fJ) in terms of .F._1 are presented by the method of the analytic continuation using the 
MelJin-Barnes type integral. They are useful for the understanding of the nature of the singularity and 
for numerical calculation. The behaviors of Isq(a; m, /I) are shown in figures. 

1. INTRODUCTION 

We consider the lattice Green's functions for the 
rectangular lattice 

I rect(a; m, n; ~, (J) 

" 
- - (1.1) 1 If cos mx cos ny dx dy 
- 7T

2 a - i€ - ~ cos x - {J cos y 
o 

and for the square lattice 

(1.2) 

at an arbitrary lattice point (m, n). In the function 
(1.1) ~ and {J are force constants in the x and y 
directions in the rectangular lattice. The real part of 
Irect(a; m, n; ~,(J) is an odd or even function of a 
and the imaginary part is an even or odd function of 
a, according as m + n is even or odd. We assume 
o ~ {J ~ (X. and 0 ~ a without loss of generality. 
Though 1m Irect(a < IX + {J; 0, 0; IX, (J) have been 
obtained by Montroll,l general calculations for an 
arbitrary m, n, (X. , and (J are not found. 2 In this 

paper Jrect(a; m, n; iX, (J) is calculated in terms of F4 , 

and Isq(a; m, n) for a > 2, a < 2, and a,......- 2 is 
studied by the method of the analytic continuation3.4 
using the Mellin-Barnes type integral. 

It is to be noted that Eq. (1.1) can be regarded as a 
two-body lattice Green's functionS for the isotropic 
square lattice, where oc = cos K",/2, {J = cos Ky /2 (K", 
and Ky are the x and y components of the total 
momentum of the two-body system). 

2. Irect(a; m, n; ()(, fJ) 

Equation (Ll) is transformed into 

Irect(a > oc + (J; m, n; oc, (J) 

= im+n+1 100 

e-i(a-iE)tJ m(oct)J nC{Jt) dt (2.1) 

= im+n+l(t7Ta)V 1<X> tV J m(at)J n({Jt) 

X [J_!(at) - iJv(at)] dt. (2.2) 

They can be expressed in terms of Appell's double 
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Though 1m Irect(a < IX + {J; 0, 0; IX, (J) have been 
obtained by Montroll,l general calculations for an 
arbitrary m, n, (X. , and (J are not found. 2 In this 

paper Jrect(a; m, n; iX, (J) is calculated in terms of F4 , 

and Isq(a; m, n) for a > 2, a < 2, and a,......- 2 is 
studied by the method of the analytic continuation3.4 
using the Mellin-Barnes type integral. 

It is to be noted that Eq. (1.1) can be regarded as a 
two-body lattice Green's functionS for the isotropic 
square lattice, where oc = cos K",/2, {J = cos Ky /2 (K", 
and Ky are the x and y components of the total 
momentum of the two-body system). 

2. Irect(a; m, n; ()(, fJ) 

Equation (Ll) is transformed into 

Irect(a > oc + (J; m, n; oc, (J) 

= im+n+1 100 

e-i(a-iE)tJ m(oct)J nC{Jt) dt (2.1) 

= im+n+l(t7Ta)V 1<X> tV J m(at)J n({Jt) 

X [J_!(at) - iJv(at)] dt. (2.2) 

They can be expressed in terms of Appell's double 
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hypergeometric function F4 : 

(2.2) = _1_ (m + n)! !(~)m(~)n F
4
[tcm + n + 1), 

2m+n m! n! a a a 
oc 2 P 2 

tern + n) + 1; m + 1; n + 1; (~), (~)l (2.3) 

Equation (2.3) is convergent for a > IX + (3. Here we 
used the formula6 

tA.-IJiat)Jlbt)Jict) dt = A. a 1
00 2A.-l !lbV 

o c~~ 

X ____ r..::..:[t:...:.(A-:.+--.!fl-.-.:.+_V-:.+--'p~)..:....] __ _ 

r(fl + l)r(v + 1)r[1 - teA + fl + v - p)] 

Isq(a > 2; m, n) 

where 

Re (A + ,U + v + p) > 0, Re (A) < f, 
c> a + b, a, b, c > O. 

3. /Sq{a > 2; m, n) 

In the case of equal arguments the function F4 is 
reduced to 4F3: 

F4(IX, (3; y, y'; z, z) 

= 4F3 [oc, (3,!(y + ;') - t" !(Yl+ y'); 4ZJ. (3.1) 
y, y, y + y -

Though the formula is not found in the literature, 
we omit the proof which can be given straightfor
wardly. Hence IBia > 2; m, n) can be expressed in 
terms of 4F3: 

= _1 ___ 1_ (m + n)! 4F3[t(m + n + 1), tern + n + 1), t(m + n) + 1, Hm + n) + 1; (2/a)2J (3.2) 
2m+n am+n+1 m! n! m + 1, n + 1, m + n + 1 . 

Equation (3.2) is simplified in the following cases: 

I (a>2'm m)= (2m)! 
sq " 22ma2m+1(m !)2 

X 2Fl (m + t, m + t; 2m + 1; (~)} (3.3) 

Isq(a > 2;m,m -1) 

(2m - 1)! 
22m-la2mm!(m -I)! 

X 3F2[m, m + t, m + t; (2/a)2
J
. (3.4) 

m + 1, 2m 

For a > 2, Eqs. (3.2)-(3.4) can be used directly 
for the numerical calculation. The analytic continu
ation to the regions a '"" 0 and a '"" 2 will be given in 
next sections. 

When we use the functional relation7•2 

IXlrectCa; m + 1, n; oc, (3) + IXlrectCa; m - 1, n; IX, (3) 

+ f3Irect(a; m, n + I; IX, p) + f3Irect(a; m, n - I; IX, (3) 

- 2alrect(a; m, n; oc, (3) = -2omoono (3.5) 
and 

Isq(a; m, n) = Isq(a; n, m), (3.6) 

lrect(a; m, n; oc, (3) = lrectCa; m, -n; IX, (3), 

lrectCa; m, n; iX, (3) = lrectCa; -m, n; iX, (3), (3.7) 

alllSqCa; m, n) can be obtained fromlsia; m, m) succes
sively. That is, 

I -!:! I 1 
10 - 00 - 2' 

2 
(3.8a) 

n = 1,2,'··, 
(3.8b) 

Ipo = 2alp_1 •0 - Ip- 2.o - 2Ip_1.1, P = 2,3, ... , 
(3.8c) 

In+p.n = 2aln+p_l. n - In+p- 2 ,n 

- In+p-l.n+l - In+p-l.n-l, n = 1, 2, .... 

(3.8d) 

Since Eq. (3.6) does not hold for the rectangular 
lattice, all Irect(a; m, n; iX, (3) cannot be obtained only 
from the diagonal element Irect(a; m, m; iX, (3). Morita8 

pointed out that all Irect(a; m, n; IX, (3) can be obtained 
from the element on the axis Irect(a; m, 0; IX, (3) and 
the relations (3.5) and (3.6) and that IrectCa; m, 0; iX, (3) 
can, in principle, be expressed as a linear combination 
of elliptic integrals. 

4. /Sq(a < 2; m, n) 

For ° < a < 2, the analytic continuation of 4F3 
gives the useful expansion. Transforming the gener
alized hypergeometric function in Eq. (3.2) into a 
Mellin-Barnes integraJ,9 we have 

Isq(a; m, n) = ..!..(~)m+n+l ~ f-<+iOO ds r( -s){f[t(m + n + 1) + sW{f[Hm + n) + 1 + s]y( _4/a2)S , 

217 a 2m -£-;00 rem + n + 1 + s)r(m + 1 + s)r(n + 1 + s) 
(4.1) 
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where E is a small positive number. Now the inte- and simple poles appear at finite number of integer 
gration is carried out by collecting the contribution sites 
from the poles in the left half s plane. We assume 
rn ;;:: n without loss of generality. s = -t(rn + n) - 1 - p, 

When rn + n is even, double poles appear at an p = 0, 1, 2, ... , t(rn - n) - 1. 
infinite number of negative half-odd-integer sites, 

s = -!(rn + n + 1) - p, p = 0, 1,2, ... , Then the sum of these residues leads to 

Isq(a < 2; rn, n) 

= _i i ra + p + t(rn + n)]r[t + p - t(rn + n)]r[t + p + t(rn - n)]r[t - p + !(rn - n)] (~)21' 
27T2

1'=0 (p!)2[r(t + p)]2 2 

X {21p(1 + p) + 21p(t + p) - lp[t + p + t(rn + n)] - lp[t + p - t(rn + n)] 

- lp[t + p + t(rn - n)] - lp[t + p - !(rn - n)] - i7T - 2 log ta} 

+ (_l)m+1!7T!(mI H r[!(rn + n) + 1 + p]r(!(rn - n) + 1 + p)(ta)2P+I 

1'=0 (p!)2[r(t + p)]2r[!(rn + n) - p]r[i(rn - n) - p] 
C4.2) 

for rn + n even. 
When rn + n is odd, double poles appear at an infinite number of negative half-odd integer sites, 

s = -tern + n) - 1 - p, P = 0, 1,2, ... , 

and simple poles appear at finite number of negative integer sites, 

s = -t(rn + n + 1) - p, p = 0, 1,2, ... , tern - n - 1). 

Collecting the contribution from these poles, we obtain 

Isq(a< 2; rn, n) 

= _i_ ~ r[p + 1 + t(rn + n)]r[p + 1 - t(rn + n)]r[p + 1 + t(rn - n)]r[p + 1 - t(rn - n)] (1 )21'+1 
27T2 1''':0 (p!)2[rCj + p)]2 "2

a 

X {21p(p + 1) + 21p(t + p) - lp[p + 1 + tCrn + n)] - lp[p + 1 - i(rn + n)] 

- lp[p + 1 + t(rn - n)] - lp[p + 1 - i(rn - n)] - i7T - 2 log ta} 

!(m-n-l) r[.l(rn + n + 1) + p]r[l(rn - n + 1) + p] 2 + (_ )"'t7T ! 2 "2 (ta) l' 

1'=0 (p!)2[r(t + p)]2r[i(rn + n + 1) - p]r[i(rn - n + 1) - p] 
(4.3) 

for rn + n odd. 
In treating the case - 2 < a < 2, the expression - i7T - 2 log ta in Eqs. (4.2) and C 4.3) is replaced by 

-i7T sgn (a) - 2 log Ital. 
Now we define the function 1'F1'-I(a1 , a2, ... , a1' ; bl , b2, ... , b1'_1 ; z) for nonintegral values of ai and bi and 

real value of z: 

P-
[aI' a2, ... , a1' ; z] _.! ~ (a lMa2)r'" (a1')r r 

l' 1'-1 - £.. Z 
bl , b2, ... , b1'- l 7T r= r! (b lMb2)r ... (b1'- 1)r 

X [11'(1 + r) + lp(b l + r) + ... + 1p(b1'- 1 + r) - lp(a l + r) -.1p(a2 + r) - ... - lp(a1' + r) - log Izl]. 
(4.4) 

One of the useful formulas in terms of 1'F1'-l is 

(4.5) 

for half-integral values of ai and bi , and for real positive value of z such that ° ~ z ~ 1. 
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The real part and the imaginary part of Isq(a; m, n) are expressed in terms of ,F3 and i.'3 functions: 

Re Isq(a; rn,n) 

= (- )ffl F [t + t(rn + n), t + t(rn + n), t + t(rn - n), t - t(rn - n); (ta)2

1 
+ t[( _ )ffl+1(rn2 _ n2)]1a 

2 '3 111 2 
, 2, 2 

[
1 + t(rn + n), 1 - t(rn - n), 1 - t(rn + n), 1 - t(rn - n); (ta)2] ) (46 ) 

x 4F3 1 3 3 ' • a 
'2'2 

I I (
. ) = 1(_)ffl F- [t + t(rn + n), t - tern + n), t + t(rn - n), t - t(rn - n); (ta)2] (4.6b) 

m sq a, rn, n 2 , 3 1 1 
1,"2' "2 

for even m + n, and 

Re Isp(a; rn, n) 

= t[( _ )ffl+1(rn2 _ n2)Jta 4Fa[1 + t(rn + n), 1 - t(rn + n), 1 + t(rn - n), 1 - t(m - n); (ta)1 
1, t, t J 

l(_)ffl F [tern + n + 1), tern - n + 1), t(1 - rn - n), t(1 - rn + n); (ta)2J (4.7a) 
+2 43 111 ' 

, 2, ""f 

1m Isq(a; rn,n) = U(_)ffl+1(rn2 _ n2)]ta i .'3[1 + tern + n), 1 - tern + n), 1 ~ :(rn + n), 1 - t(rn - n); (ta)1 
1, 2' 2 J 

for odd rn + n. (4.7b) 

For n = m - 1 and n = m, ,F3, and ,F3 are reduced to 3F2 and 2F1' respectively. In particular 

Re Isq(a; m, m) = t( - )m2F10 + m, t - m; 1; (ta)2), 

1m Isia; rn, m) = t( - )m2F1(t + m, t - m; 1; (ta)2). 

Equation (4.8) can also be obtained directly from Eq. (3.3). 

(4.8a) 

(4.8b) 

We can obtain the expression of Irect(a < I~ - .81; m, n; ~, .8) in terms of F4 from Eq. (2.3). The real part 
of Irect(a < I~ - .8/; m, n; ~, .8) is proved to vanish irrespective of the parity of rn + n. 

5. /Sq(a ,..",2; m, n) 

Now a generalized hypergeometric function nFn-1 is expanded in terms of a hypergeometric function of a 
lower order10 n-1Fn-2: 

Re an > 0, (5.1) 

Applying the formula repeatedly, we expand the hypergeometric function ,F3 in Eq. (3.2) in terms of 2F1: 

4F3[t(rn + n + 1), t(rn + n + 1), t(rn + n) + 1, t(rn + it) + 1; 4/a
2J 

m + n + 1, rn + 1, n + 1 

rn! n! (rn + n)! !(i-n)i [t(rn - nn,[-t(rn - nnH(rn + n)Jip)q 

{r[t(rn + n) + lW p=o q=O p! q! r(rn + n + 1 + p + q) 

x 2F1(t(m + n + 1), t(rn + n + 1); m + n + 1 + p + q; :2)' rn + n even, (S.2a) 

rn! n! (rn + n)! !(min- 1) i [tern - n + 1)]A -t(rn + n + 1)]p[tCrn + n + 1)]i1 + p)q 

{r[t(rn + n + l)W p=o q=O p! q! r(rn + n + 2 + p + q) 

x 2F1(Hm + n) + 1, t(rn + n) + 1; m + n + 2 + p + q; :2)' rn + n odd. (5.2b) 
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These expansion formulas are valid for large values of a, i.e., for Ja2J > 4. The hypergeometric function 2F1 is 
analytically continued according to the formula 

1 
---- 2Fla, b; a + b + 1; z) 
rea + b + 1) 

r(1) 11 (a)lb)r (1 _ zr + (-1)lr(a + b + I) (1 _ z/ I (a + 1Mb + I)r (1 - zy 
rea + l)r(b + I)r~o(1 - I)rr ! r(a)r(b) r~O r! (r + I)! 

X [1p(r + 1) + 1p(r + 1 + 1) - 1p(a + .I + r) - 1p(b + 1 + r) - log (1 - z)], (5.3) 

where I is a positive integer or zero. (When I is zero, the first term in the right-hand side is omitted.) 
Equation (5.3) is a useful formula to continue the value from z,....., 0 to z :( 1. Another formula which is 

useful to continue from z '"" 0 to z ;.. 1 is 

F (b · b 1.) _ rea + b + l)r(l) _al~(aMl - 1 - b)r(1 _ !)r 
2 1 a, ,a + +, z - z £., 

rea + l)r(b + 1) r~O r! (1 - 1)r z 

+ rea + b + 1) z-a(1 _ !)l i (a + IMI - b)r(1 _ !)r 
r(a)r(b) z r~O r! (r + I)! z 

X [1p(1 + r) + 1p(1 + r + 1) - 1p(1 - b + r) - 1p(a + 1 + r) 
+ TT ctn TTb - log (Z-l - 1)], -TT < arg z < 1J'. (5.4) 

Equation (5.4), which is not found in the literature, can be proved by taking the limit to the corresponding 
formula for non logarithmic case. 

Substitution ofEq. (5.4) into Eq. (5.2) leads to a type of expansion of ISq around a = 2. When m + n is even, 

I (a· m n) = -.l !(~-n) ~ [t(m - nn,[ -t(m - n)]p[t(m + n)]a(P)a He(m n" P + q. 1a2 _ 1) (5.5a) 
sq " 2 £., £., , , '" 4" , 

TT p~O q~O p.q. 
where 

He(m, n; p + q; z) 

rep + q) P+f1 [t(m + n + 1)]r[t(1 - m - n) - p - q]r (-zy 

{[t(m + n + 1)]p+a}2 r~o r! (1 - p - q) .. 

+ i[t(m + n + 1) + p + q]r[-t(m + n - 1)]r(_zy+a+r 
r~O r! (p + q + r)! 

X {1p(1 + r) + 1p(1 + p + q + r) - 1p[t(m + n + 1) + p + q + r] - 1p[t(1 - m - n) + r] - log z}, 
(5.6a) 

and, when m + n is odd, 

I (
. ) _ ~!(m~-l) ~[t(m - n + 1)]p[t(l- m + n)]p[t(m + n + 1)]aC1 + P)QHO( + 01 2 _ 1) 

sq a,m,n - £., £., m,n,p q,4"a , 
4TT p~O q~O p! q! 

(S.5b) 
where 

HO(m, n; P + q; z) 

rep + q) PI-1 [t(m + n) + l]r[ -t(m + n) - p - q]r (-zr 
([t(m + n) + l]p+q}2 r~O r! (1 - p - q)r 

+ i [-t(m + n)]r[tcm + n) + p + q + 1lr (_zy+q+r 
r~O r! (p + q + r)! 

x {1p(1 + r) + 1p(l + p + q + r) - 1p[t(m + n) + 1 + p + q + r] - 1p[ -tem + n) + r] - log z}. 
(S.6b) 
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Equations (S.Sa) and (S.Sb) are transformed into 

Isq(a;m,n) 

= ~ i [t(m + n + 1)]'(1 _ la2y 
27T.=0 r! 

x (i 'f [t(m - n)]p[ -!(m - n)]p[!(m + n)]ipM -!(m + n - l)]. __ p_q 
1>=Oq=O p! [!(m + n + l)]pq! [!(m + n + 1) + pMr - p - q)! 

X {-log(i-az - 1) - 1p[!(m + n + 1) + r] - 1p[!(1 - m - n) + r - p - q] + 1p(l + r) + 1p(l + r - p - q)} 

!(m1l2:1 i [t(m - n)]p[ -!(m - n)]p[!(m + n)]ip)oI'(p + q - r) ) (S.7a) 

+ p=1 02:0 p! [!(m + n + l)]pq! [!(m + n + 1) + p]o[!(m + n + l)]p+o-r 
02:.+1-p 

for m + n even, and 

Isia;m,n) 

= .E... f [!(m + n) + 1]r(1 -i-az)' 
47T.=0 r! 

X (i 'f [!(m - n + l)]p[!(l - m + n)]il + p)o[t(m + n + 1)M -t(m + n)], __ p_q 

p""Oq=O p! [!(m + n) + l]pq! [!(m + n) + 1 + p]ir - p - q)! 

X {-log(i-az - 1) -1p[!(m + n) + 1 + r]-1p[ -!(m + n) + r - p - q] + 1p(1 + r) + 1p(1 + r - p - q)} 

+ !(m1-1l f [!(m - n + l)]p[t(l - m + n)]p(l + p>a[t(m + n + l)]qI'(p + q - r») 

p=O 020 p! [!(m + n) + l]pq! [!(m + n) + 1 + p]q[!(m + n) + 1]1>+0-. 
q2:r+1-p 

(S.7b) 

for m + n odd. Equation (S.7) converges for 0 < a < 2.../2. It is real for 2 < a < 2.../2 and complex for 
0< a < 2, since -log (!aZ - 1) = i7T - log (1 - i-a2) for that region. 

The lowest- and the second lowest-order terms are given by 

1 
Isq(a; m, n),-...;- {-log (!a Z 

- 1) + 21p(1) - 21p[!(m + n + I)]} 
27T 

+ ~!(m~l2:1 [t(m - n)]p[-!(m - n)]p F [ tem + n), p, p; 1 J 
£. =-'----=-=-=---"-'---'-= 3 2 , (S. Sa) 

27T p=1 p{[Hm + n + l)]p}Z Hm + n + 1) + p, Hm + n + 1) + p 

for m + n even, and 

1 
Isq(a; m, n),-...; - {-log (i-az - 1) + 21p(1) - 21p[!(m + n) + In 

27T 

+ ~ 2(m + n + 1) 3Fz[ !(m + n + 1) + 1,1,1; 1 ] 
27T (m + n + 2)Z !(m + n) + 2, Hm + n) + 2 

+ ~!(m-!1l2:1 [!(m - n + l)]p[!(l - m + n)]p 3F2[ !(m + n + 1), p + 1, p; 1 ], 

27T 1>=1 p{[Hm + n) + 1]p}2 !(m + n) + 1 + p, !(m + n) + 1 + P 

for m + n odd. 
For m = n, only terms of p = q = 0 in Eq. (S.7a) 

remain, and we have 

Re Isq(a; m, m) =lzF1(l + m, ! - m; 1; 1 - ta2), 

o < a < 2.../2, (S.9a) 

1m Isq(a; m, m) = ! zF1(! + m, ! - m; 1; 1 - ta2), 

o < a < 2. (5.9b) 

(S.Sb) 

Equation (S.9) can also be obtained from Eq. (3.3). 
When we start from Eq. (S.3), similar expansions 

to Eqs. (5.7) and (5.8) with independent variable 
1 - 4/az are obtained, and the leading terms of the 
expansion are shown to be in agreement with Eqs. 
(5.Sa) and (5.Sb) after replacing log (1 - 4/a2) by 
log Cia2 

- 1). 
The expansion for arbitrary m and n are omitted 

here and only the case m = n where the expansion 
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takes a closed form is shown in the following: 

Re Isq(a; m, m) 

1 (2)2m+l _ ( 4) = 2" ~ 2Fl! + m, ! + m; 1; 1 - a2' , 

.J2 < a < 00, (S.10a) 
1m Isq(a; m, m) 

= H~ym+\Fl( 1 + m,! + m; 1; 1 - ~), 
.)2 < a < 2. (S.10b) 

6. Ircct(a; m, m; 0(, fJ) 

In the case m = n, [reet can be expressed in terms 
of the hypergeometric function 2Fl. From Eq. (2.3), 

(2m)! 
Ireet(a; m, m; oc, fJ) = 22ma2m+1(m!)2 

X F4( m + t, m + 1; m + 1, m + 1; (~r (~)l 
(6.1) 

Since9 

F4 a, b; b, b; - , -(
X y) 

(1 - x)(1 - y) (1 - x)(1 - y) 

= (1 - x)a(1 - y)a2F1(a, 1 + a - b; b; xy), (6.2) 

Equation (6.7) is valid for arbitrary a by considering 
the analytic continuation of 2Fl. The expressions of 
the real arguments such that 0 ~ z ~ I, however, are 
more convenient. By the transformations of the 
hypergeometric functions, we have 

Ireet(a; m, m; oc, fJ) 

= [( - )mj2(exfJr+l] 

x [2Fl(! + m,! - m; 1; k;) 

+ i 2Fl(! + m, ! - m; 1; k;)], (6.8a) 
= [2( ocfJr+l]-1 

X [2FtC!+m,!-m;l;k;) 

+ i 2Fl(! + m, 1 - m; 1; k;)], (6.8b) 

for oc - fJ < a < ex + fJ, where 

k~ = [a 2 - (oc - fJ)2]j4ocfJ, k; = [(oc + fJ)2 - a21/4ocfJ, 

and 

Ireet(a; m, m; oc, fJ) 

.( )m2m ( 1 )m+l 
= I - (oc + fJ)2 _ a2 

x 2Fl(m + t, m + i; 1; k~) (6.9a) 

• m (2m)! ( 1 )m+l 
= 1(-) 22m(m !)2 (oc + fJ)2 _ a2 

we put 
(oc/a)2 = -x/(I - x)(1 - y), 

(fJ/a)2 = -y/(1 - x)(1 - y). 

X 2Fl(m + !, m + i; 2m + 1; k:) (6.9b) 

(6.3) for 0 < a < oc - fJ, where 

Then we have 

(6.4) k! = [(oc - fJ)2 - a2]/[(oc + fJ)2 _ a2], 

k: = 4ocfJj[(oc + fJ)2 - a2]. 
x = oc2C, Y = fJ2C, 

oc2 + fJ2 - a2 ± [(oc2 + fJ2 _ a2)2 _ 4oc2fJ2]l 
C = 2oc2fJ2 

(

OC2 + fJ2 _ a2 ± [(oc2 + fJ2 _ a2)2 _ 4oc2fJ2]l)2 
~= . 

20cfJ 

(6.5) 
Further we usell 

2Fl(a,b;a - b + l;z) =(I-.)zr2a 

X 2Fl(a,a - b + 1;2a - 2b + 1; (1 ~.):Z)2)· 
(6.6) 

Then we obtain 

Irect(a; m, m; oc, fJ) 
= [(2m) !/22m(m !)2][a2 - (oc - fJ)2r(m+11 

X 2Fl(m + 1, m + 1; 2m + 1; k~), (6.7) 
where 

(6.7') 

In the case m = n = 0, 2Fl and 2Fl in Eqs. (6.7)-(6.9) 
reduce to K(k) and K'(k), respectively. In deriving Eq. 
(6.9) we used 

2Fl(a, a + l;e;z) 

r(e) (1)a 
= r( a + l)r( e - a) 1 - z 

X !,(aMe - a - l)rr(l - r)(_1_)r 
r=O r! z - 1 

+(-)' --r(e) (1 )a+1 
r(a)r(e - a - 1) 1 - z 

X ! (a + IMe - a)r(_1_'\ 
r=O r!(l+r)! l-z! 

x (tp(1 + r) + tp(l + 1 + r) - tp(c - a + r) 

- tp(a + 1 + r) -log _1_), 
1 - z 

-7T < arg (1 - z) < 7T, (6.10) 
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which can be proved by taking the limit in the corre
sponding formula in the nonlogarithmic case. 

The imaginary parts of Eqs. (6.8) and (6.9) for the 
case of m = 0 reproduce the result by Montroll.1 

Equation (6.7) for the cases m = 0 and m = 1 reduce 
to the result by Wortis.12 Equations (6.7)-(6.9) for 
the case m = 0 are given by Morita and HoriguchiP 
Morita8 pointed out that Irect(a; m, m; ()(., (J) can be 
expressed in terms of elliptic integrals K(k) and E(k) 
using Eq. (6.7) and the contiguous relation of the 
hypergeometric function. Wortis' result include 

Irect(a; 1, 1; ()(., (J) 

~ [(2 - k~)K(kl) - 2E(k1)], (6.11) 
kl7T «()(.{J) 

-0.5 

0.5 

-0.5 -0.5 

Irecla; 1,0; ()(., (J) 

J [«()(. + (J)K(kl) 
()(.7T «()(.{J) 

- (a + ()(. + {J)n( -2()(./[a2 - «()(. - (J)2], k1)], 

(6.12) 

where n(v, k) is the complete elliptic integral of the 
third kind and kl is given by Eq. (6.7'). 

7. CONCLUSION 

The integral of the lattice Green's function of the 
rectangular lattice Irect(a; m, n; ()(., (J) for a> ()(. + f1 
is evaluated and is given by Eq. (2.3). For ()(. = (J, it 
reduces to that of the square lattice Isia, m, n) given 

-0.5 

FIG. 1. Isq(a; m, n). R: Real part, I: Imaginary part. The curve for a > 2 is a real part. 
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by Eq. (3.2) for a > 2. By the mt::thod of the analytical 
continuation Eqs. (4.6) and (4.7) for 0 < a < 2, Eq. 
(5.7) for a,....., 2, are derived. Irect(a; m, m; 0(, fJ) is given 
by Eq. (6.7). These equations are useful to analyze the 
nature of the singularities and to calculate numerical 
values. 

The singularities of the Green's function of the 
square lattice arise from two critical points x = 0, 
y = TT and x = TT, Y = ° for a = ° and from a critical 
point x = 0, y = ° for a = 2 in the integrand of 
Eq. (1.1), respectively. When m = n = 0, the imagi
nary part which is proportional to the state density has 
a logarithmic divergence at a = ° and a discontinuity 
at a = 2, as discussed by van Hove.14 For the 
Green's function with arbitrary indices m and n, 
singular behaviors analogous to the case m = n = ° 
are generally expected. It is, however, to be noted 
that when m + n is odd, the contributions from x = 
0, y = TT and x = TT, Y = ° cancel with each other 
because of the sign of the numerator and the leading 
term of the imaginary part is a log a with no infinities 
at a = 0. 

As a result, we obtained Imlsq(a;m,n),.....,loga 
(m + n even) and ,.....,a log a (m + n odd) at a,......, 0, 
and Re Isq(a; m, n),......, log la - 21 (m + n even and 
odd) at a,....., 2 and 1m Isq(a; m, n),....., t + (zm2 + 
2n2 - I)(a - 2)/8 at a ,......, 2. 

Numerical calculations were carried out using Eqs. 
(3.3), (4.8), (5.9), and (5.10) for m = nand Eqs. 
(3.2), (4.6), and (4.7) for m -,= n. Values of Re Isq(a; 
m, n) and 1m Isq(a; m, n) are shown in Fig. 1. 

The method in the present paper can be applied to 
the lattice Green's function for the body-centered 
cubic lattice at an arbitrary point Ibcc(a; I, m, n). 
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APPENDIX: LATTICE GREEN'S FUNCTION FOR 
THE LINEAR LATTICE 

The real and the imaginary parts of the lattice 
Green's function of the linear lattice can be obtained 

by the method of the analytic continuation. It is 
known that 

llinearCa; m) == - dx 1 50" cos mx 

Then 

TT 0 a - cos x 

= (a 2 
- 1)-![a - (a 2 

- 1)!]m, a > 1. 

(AI) 

llinear(a - i€; m) = i(1 - a2)-![a + i(l - a2)!]m, 

0< a < I. (A2) 
Hence 

1m llinear(a - i€; m) = (I - a2)-!Tm(a) 

= (I - a2)-!2F1(-m, m; t; t(I - a», (A3) 

Re llinear(a - i€; m) = (I - a2)-!UmCa) 

= m 2F1 ( - m + I, m + I; t; HI - a», 

0< a < I, (A4) 

where T mea) and U mea) are the Tschebyscheff poly
nomial of the first and the second order. The results 
(A3) and (A4) can be obtained as a special case of 
Eq. (2.3) (n = 0, 0( = I, fJ = 0). 
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With the pair Hamiltonian model as the starting point, perturbation theory calculations are per
formed for the average energy and the momentum distribution through second order in the two-body 
interaction potential. A phenomenological theory of helium II is propose,d. The chief underlying feature 
of this phenomenological theory, which is shown to have a firm basis in the microscopic theory, is the 
presence of a double quasiparticle spectrum. Phenomenological expressions for the average energy and 
other quantities of interest are also proposed. Simple prescriptions are obtained for calculating the quasi
particle energies and the chemical potential from the average energy. Via these prescriptions, the 
quasiparticle energies and the chemical potential are calculated through second order in the interaction 
potential at T ~ 0 oK, and the results are compared with earlier work in the literature. 

1. INTRODUCTION 

This work concerns itself with the perturbation 
theoretical studies of a weakly interacting many
boson system at temperatures below the Bose-Einstein 
transition temperature. The properties of such a 
system have been investigated extensively in the 
literature. Our aim in the present study is threefold: 
(i) to obtain explicit expressions at T ¥= 0 oK for the 
average energy and other quantities of interest 
through second order in the two-body interaction 
potential V; these results may then constitute a useful 
check on any detailed realistic microscopic calcula
tions of the equilibrium properties of He II; (ii) to 
motivate a phenomenological theory of He II; (iii) to 
supplement the understanding given by the earlier 
studies. Thus for a dilute hard sphere Bose gas we 
extend and generalize the T = 0 oK results of Wu1 to 
T ¥= 0 oK. 

We use the pair Hamiltonian mode12 as the starting 
point in our calculations. We, therefore, briefly 
review this model in Sec. 2 in order to establish a 
double-quasiparticle notation which proves to be 
quite useful throughout this paper. The average energy 
(E) is then calculated through second order in V (see 
end of Sec. 2). Basing it on the results for the average 
energy (E), we propose a phenomenological model 
for He II in Sec. 3. Via the prescriptions (3.15) of the 
phenomenological theory of Sec. 3, the quasiparticle 
energies and the chemical potential are calculated in 
Sec. 4 and compared with earlier work in the litera
ture. Agreement with the earlier results then provides 
further justification for our phenomenological model. 
The momentum distribution is calculated in Sec. 5, 
and an expression for the fraction ~ of particles in the 
zero-momentum state is derived. 

Although our calculations are performed assuming 
the interactions to be weak, the results can easily. be 
specialized to the case of a dilute hard-sphere Bose 
gas (DHSBG), as is shown in Appendix F. It is found 
(see end of Sec. 5) that the explicit expression for ~ 
at T = 0 oK, for the model system of a dilute Bose gas 
of hard spheres, disagrees with an earlier result of 
Wu.1 

2. AVERAGE ENERGY 

We begin by writing the many-boson Hamiltonian 
in Fock space as 

H = I w(k)a:ak + ! I (klk21 V(S) Ikak4) atatzakh., 
k kllrl 

k.k4 

(2.1) 
where w(k) is the kinetic energy Ji2k2/2m and 

(klk21 V(s) Ikak4) = (klk21 V Ikak4) + (klk21 V Ik4ka) 

(2.2) 

is a symmetrized matrix element of the two-body 
interaction. We shall not specify the nature of the 
two-body interaction except to say that it is weak. 
The operators a1 and ak are the creation and anni
hilation operators, respectively, of free bosons and 
these operators obey Bose commutation relations. 
We assume that the phenomenon of Bose-Einstein 
condensation occurs in the interacting system, as was 
first suggested by London.a This assumption implies, 
for a system at rest, that the zero-momentum free 
particle state will be macroscopically occupied below 
the Bose-Einstein transition temperature T;.. Follow
ing Bogoliubov,4 we treat the zero-momentum state 
separately. One assumes in the first approximation that 
the operators ao, a~ /"oJ Nt, where No is the number of 
particles in the zero-momentum state, and that, in 
the limit N --+ 00, n --+ 00, NolO. = ~n is finite (n is the 

1631 
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density and 0 is the volume). With this prescription 
one can rewrite the Hamiltonian (2.1) as 

H=Hp+H' , (2.3) 

where, using the notation k = P when k y!:. 0, we have 

Hp = Ho + i I (PIP21 VIs) IPIP2) a~,a~.ap,ap. 
P,P. 

+ ! I (PI, - PII VIs) Ip2' - P2) a;la~p1ap.a_p., 
P,P. 

(2.4) 
with 

Ho = I w(p)a;ap + tN~ (001 VIs) 100) 
p 

+ No 2 a;ap (pOI VIs) IpO) 
p 

+ tNo I [a!a~p (p, -pi VIs) 100) 
p 

and 

H' = tNt I a~2 (Op21 VIs) IPaP4) a~3ap, 
P21'3P4 

+ tNt I a~,a;2 (PIP2/ VIs) IPaO) ap3 
P1P2P3 

+t 
P,P2P3P, 

(P,.P.);" (P3. P,) 
(2.6) 

where the inequality (P1> P2 y!:. Pa, P4) in the last term 
of (2.6) means that the diagonal terms and also the 
pair terms corresponding to PI + P2 = 0 = Pa + P4, 
should be excluded. From Eqs. (2.4)-(2.6) we notice 
immediately that the Hamiltonian does not conserve 
particle number, i.e., it no longer commutes with the 
particle-number operator 

(2.7) 
P 

We can circumvent this difficulty by adding a term 

-g Ia;a p 

P 

to the Hamiltonian (2.3). The introduction of g, the 
chemical potential, enables us to treat No as a param
eter, which is eventually determined by the condition 

n = (No)/O + (1/0) I (n(p», (2.8) 
P 

where (n(p» is the momentum distribution. The 
detailed calculation of (No)jO in perturbation theory 
will be outlined in Sec. 5. The chemical potential g 
is given by the thermodynamic relation 

g _ o(E) I 
- o(N) s.n.g· 

(2.9) 

In accordance with the remark following Eq. (2.7), 

we next define the Hamiltonian 

H(g) == Hp(g) + H', (2.10) 
where 

Hp(g) == Hp - g I a~ap. (2.11) 
P 

Similarly, we define 

Ho(g) = Ho - g I a~ap. (2.12) 
P 

It is well known that the Hamiltonian Ho(g) of (2.12) 
can be diagonalized by means of a Bogoliubov trans
formation. As was first shown by Wentzel,S the pair
Hamiltonian H peg) of (2.11) can also be diagonalized, 
by first reducing it to a form similar to that of Ho(g) 
and then applying a Bogoliubov transformation. The 
diagonalization procedure is summarized briefly in 
Appendix B. After diagonalization, Hp takes the 
form, in which a two-component notation is used, 

Hp(g) = Up + I I i}";(ip)o€;(ip)ofz;(ip), (2.13) 
P i~± 

where Up is obtained by substituting Eqs. (BI2) into 
(B6): 

Up = (tNO)2 (001 VIs) 100) 

- t I (n(PI»O(n(P2»O (PIP21 VIs) IPIP2) 

- t I (PI, -PII VIs) Ip2, -P2) 
PIP! 

t t 
X (a p,a_p,) (a p2a-P2 )' (2.14) 

The operators fzlip) in (2.13) are given by 

fzi(p) = i;-i(P)Mp), (2.15) 
with 

Up) = ;P' for i = +, 
= $~, for i = -, (2.16) 

and the quasiparticle operators ; P' $~ have been 
defined by the transformation equations (B13). The 
rest of the quantities in Eq. (2.13) are given by the 
following set of equations: 

€;(jp)o = €1(P)O + oc_;(jp)ob.2(p)o 

= i{€i(p)o - b.~(p)o}!, (2.17) 

€ip)o = w(p) - g + b.l(p)o 

= w(p) - g + No (pOI VIs) IpO) 
_ i (ppi V(s) Ipp) 

+ I (PPII VIs) IpPI) (n(PI»O, (2.18) 
P, 

b.lp)o = -iNo (001 VIs) Ip, - p) 

- t I (a!.a~p2)O (P2, - P21 VIs) IPI, - PI), 
P. (2.19) 

oc-ijp)o = -b.2(p>o[€ijp)o + €1(P)O]-1 

= [oc;(jp)or\ (2.20) 
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where the fourth term in Eq. (2.18) vanishes in the 
infinite volume limit. Finally, the quantities /t,(ip)o in 
(2.13) are deduced from the diagonalization condition 
to be 

f+(p)o = [1 - Ot':(p)ort. 

f-(p)o = Ot':(pM1 - Ot':(p)or\ 

f+(p)o - f-(p)o = 1, (2.21) 

where Ot_(p)o is given by (2.20). 
Returning to (2.13), we see that the operator Hp(g) 

describes a gas of noninteracting quasiparticles whose 
energy-momentum relations are given by (2.17). The 
thermodynamics of a nonideal Bose gas in the pair 
Hamiltonian model has been studied extensively by 
Luban,2 and therefore we shall not discuss these 
details here. 

We next consider the eigenstates of Hp(g) , for which 
the operators Filip) can be replaced by their eigenvalues 
which are the (approximate) occupation numbers of 
the quasiparticles. Since -n_( -p) = [I + n+(p)], 
we conclude that the eigenstates of Hp(g) can be 
labeled by the occupation numbers n+(Pl), n+(P2) , .... 
For convenience, we shall use the following notation 
for the normalized eigenstates I'Y 0): 

I 'Yo) = I n+(Pl), n+( - PI), ... n+(p~), ... ) 

= II x v)n+(p~), n+( - p~)][~~)n+(+v~) 
~ 

(2.22) 

~here X v« is a normalization constant and 10v«) is the 

quasiparticle vacuum defined by 

(2.23) 

We can now define a single-quasiparticle state in 
which there is excitation or de-excitation of one 
quasiparticle relative to l'Yo). We label this state by 
In+(p) - i), where i = + I corresponds to de
excitation and i = -I corresponds to excitation of 
one quasiparticle. It is given by 

In+(ip) - i) = [ini(ip)]-!~i(ip) l'Yo), (2.24) 

where I'Y 0) is the rhs of (2.22). Similarly, we can 
define states in which more than one quasiparticle is 
excited or de-excited relative to I'Y 0)' 

Second-Order Calculation of the Average Energy 

We turn now to the calculation of the av:erage 
energy in perturbation theory through second order 
in the perturbation H' of (2.6). The average energy Eo 
is given by Eq. (B20). The first- and second-order 
corrections to Eo and l'Yo) through second order in 
H' of (2.6), using Rayleigh-Schrodinger perturbation 

theory,6 are given by 

where 

E10 = ('Yo I H' I 'Yo) , 

E20 = ('Yo I H'(ljb)H' l'Yo), 

1'Y1) = (ljb)H' l'Yo), 

1'Y2) = (ljb)(H' - E10)(ljb)H ' I'Yo), 

(lIb) = (1 - Po)[Eo - Hp(g)rl; 

(1 - Po) is a projection operator defined by 

(1 - Po) l'Yo) = O. 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

The perturbed wavefunction I'Y) is not normalized 
to unity and its norm is given by 

('Y I 'Y) = I + ('Y1 I 'Y1 ) + o(va). (2.31) 

For perturbation theory calculations it is necessary 
to rewrite the perturbation H' of (2.6) in terms of the 
quasiparticle operators ~i(P)' This is easily done by 
using the important relation, which follows from 
(B13), 

t t 
aVlaV2aV.aV. 

= ! ijlmf:(ipl)of~(jP2)od(lPa)of~(mp4)0 
iilm~± 

X Li(iPl)~-,(jP2)~/(lPa)~m(mP4)' (2.32) 

Upon using this and a similar relation involving three 
a and at operators, and after a few manipulations 
involving properties satisfied by J;.(p)o and Ot_i(ip)o 
[see Eqs. (2.20) and (2.21)], we can rewrite H' as 

H' = H~ + H~, (2.33) 

H~ = tN~ ! L ijlf:(ip2)of~(jPa)ofhlP4)0 
V2V.V. iii 

x [(Op21 v(s) IPaP4) 

- Ot-,(jPa)o (P2, -Pal v(s) Ip(0)] 

x ~_;(ip2)~-;(jPa)UlP4)' (2.34) 

H~ =! L L ijlmf:(ipl)of~(jP2)of~(lPa)0 
V11J2PaIJ4 if 1m 

(V1Pa*lJa.V.) 

X f~(mp4)0 (PIP21 v(s) IPaP4) 

X ~-i(iPl)~-ljp2)~/(lP3)~m(mp4)' (2.35) 

One can see from these equations the great simplifica
tion which is achieved by the introduction of the two
component notation. 

We now turn to the explicit calculation of E10 and 
E20 ' Since H' of (2.33) dqes not have any diagonal 
part, it is easy to see from (2.25) that 

E10 = O. (2.36) 

All diagonal terms in the Hamiltonian have, of 
course, already been included in the pair Hamiltonian 
(2.4). 
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The second-order correction to Eo, i.e., E20 is 
derived from (2.26). From the form of H', as presented 
in Eqs. (2.33)-(2.35), it is clear that the relevant 
intermediate states for the calculation of the matrix 
element on the rhs of (2.26) are three- and four-quasi
particle states of the type (2.24). Thus we can write 
E20 as 

(2.37) 

where 

and where Sm and Smm are the orthogonal projectors 
defined by (CI) and (C2) in Appendix C. Some useful 
identities needed in the evaluation of (E20)ijl and 
(E20);;zm are listed in Appendix C. The calculation of 
E20 is then straightforward, and the final results are 

(E20)ijl = (No/3!) L [!h(ipl)On;(ipl)] 

(E20);ilm 

X [j!jU P2)On jU P2)][ lft(l Pa )on l(l Pa) ] 

X [t";(iPl)O + €j(jP2)0 + €llp3)ot1 

X A~fz)(PIP2P3)AiilpIP2P3)' (2.40) 

= (1/4!) L [if;(ipl)On;(ipl)][j!;UP2)On j(jP2)] 

X [lft(lP3)onllp3)][m!m(mp4)on m(mp4)] 

X [€i(ipl)O + €j(jP2)0 + €llp3)0 + €m(mp4)ot1 

X A!Tz~(PIP2P3P4)Aiilm(PIP2P3P4)' (2.41) 

where the quantities Aii/(PtP2Pa) and Amm(PIP2PaP4) 
are given by (C8) and (Cll) and it is understood that 
principal values of the energy denominators should be 
taken. 

Equations (B20), (2.37), (2.40), and (2.41) taken 
together give the complete second-order expression 
for E. The T ~ 0 oK expressions are obtained by 
replacing ni(ip) in (2.40) and (2.41) by (3.19), with the 
justification for this procedure being given in Appendix 
A and also at the end of Appendix B. 

A detailed discussion of the various terms in the 
average energy (E) obtained above will be presented 
in the next section. To our knowledge, no previous 
microscopic second-order calculation of (E) has been 
reported in the literature. Hence the above expression 
for (E) forms a useful consistency check on any 
future, more general, microscopic calculations of 
(E). The dilute-hard-sphere-Bose-gas limit of our 
expression for (E) can be deduced by substituting 
(F9) and (F12) into (2.40) and (2.41). An examination 
of the DHSBG expression for (E) and comparison 
with the result obtained by Wu at T = 0 oK will be 

given in Appendix F. At the present time, we have 
not investigated (see Ref. 1) how the "complications 
arising in the calculation of E20 at T = 0 oK due to the 
three-body problem" change with temperature. It is 
also easy to verify from (F21), as T - r;: where T;. is 
the transition temperature, that the DHSBG limit of 
our expression is in agreement with that of Sikora 
and Mohling.7 In the temperature region T - r;:, the 
part of (E) given by (2.39) is expected to play an 
important role and the reasons for this are discussed 
at the end of Sec. 4. 

3. PHENOMENOLOGICAL THEORY OF A 
BOSE FLUID 

In this section we develop a phenomenological 
theory of the highly degenerate Bose fluid. The starting 
point of this theory is an energy expression [see Eq. 
(3.13)] which has a firm basis in microscopic theory. 
This development is a generalization of the Landau 
theory of a Fermi liquid,S and therefore we first give 
a brief review9•1o of the phenomenological model of a 
normal Bose liquid, which mOdel is a straightforward 
generalization of the Fermi liquid case. We then 
present a corresponding model for the degenerate 
Bose fluid and outline in detail the consequences of 
such a model. 

A. Phenomenological Model of a Normal 
Bose Fluid 

The phenomenological model of a normal Bose 
fluid is based on the representation of all many-body 
microscopic degrees of freedom by a set of single
particle states, which are called quasiparticle states in 
direct analogy with the particle states to which they 
correspond when the interactions are gradually 
turned off. Particular attention is devoted to the de
pendence of the thermodynamic quantities upon the 
quasiparticle distribution functions labeled n' (k). 
The quantum numbers k which characterize the quasi
particle states can be identified, for an infinite system, 
with allowed momentum-state and spin-state degrees 
of freedom. Thus the energy expression for He I can 
be written, quite generally, in the form9•1o 

E = E[n'(k)] = L n'(k)w(k) 
k 

+ t ~ n'(k1)n'(k2)U(k1 , k2), (3.1) 
kIk2 

where w(k) is the free particle energy Ji 2k 2/2m. The sec
ond term in (3.1) represents the interaction energy of 
the system and it exhibits explicitly the fact that at least 
two quasi particles must interact in order for there to be 
an interaction energy. It is important to emphasize 
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that U(kl' k 2) can in turn depend functionally on 
n'Ck). This dependence arises because more than two 
particles or quasi particles can interact simultane
ously; it may also occur if there are many-body 
interaction energies. 

Quasiparticles in the system are characterized by 
their quantum numbers k and a distribution function 
n'Ck) which, for an interacting system, does not equal 
(n(k» even though 

Z n'Ck) = I (n(k» = N, 
Ie k 

where N is the total number of particles in the system. 
Here (n(k» is the momentum distribution of the 
interacting system. Quasiparticles are also character
ized by their energies w'Ck). We consider the most 
general functional variation of the energy E with 
respect to the distribution functions n'Ck). The 
energy w'Ck) is then defined by 

bE == Z w'(k)bn'(k) 
k 

= .L [w'(k) - g]bn'(k) + gbN, (3.2) 
k 

since, if bn/(k) = o(k, ko), then the corresponding 
change in E must be the quasiparticle energy of the 
state ko . The quantity g in the second line of Eq. (3.2) 
is the chemical potential. Upon solving this equation 
for w'Ck) and substituting Eq. (3.1), one finds the 
general result 

w'(k) - ~l 
1 - bn'(kl ) N 

= w(kl ) + 2: n'(k2)U(kl , k2) 

k. 

+ i.L n'(ka)n'(k4) bU(ka, k4), (3.3) 
leak' bn' (k1) 

where, for finite systems, the derivatives are ordinary 
partial derivatives. The last term in Eq. (3.3) results 
from a functional dependence of U(kl' k2) on n'(k), 
as discussed above, and this term is called the re
arrangement energy. The interaction energy U(kl , k2) 

depends, in general, on w'Ck), which in turn depends 
on n'(k). Hence U(kl' k 2) has an implicit dependence 
on n' via w' (k). 

The popular belief is that the Landau theory of a 
normal Fermi liquid is valid only at low temperatures. 
With this view one would question the above develop
ment for He I, which exists only at temperatures 
T> 2 oK, but we believe that the above development 
is valid for the high-temperature domain of He I. The 
reason for the earlier belief that the Landau theory is 
valid only around T,-, 0 OK arises, in our opinion, 
due to a confusion existing in the literature as to what 
"quasiparticles" mean. We assert that a quasiparticle 

picture is the one that arises naturally in a microscopic 
theory from the study of the self-energy problem 
associated with a (statistically averaged) real system, 
which is characterized by a real Hermitian Hamil
tonian. Such quasi particles are real by definition. 
From this point of view, it is obvious that the Landau 
theory can be extended to finite temperatures. Thermal 
excitation produces a distribution of the quasi
particle energies 

n'(p) = {eP[w'(p)-aJ - Itt. (3.4) 

in the same manner as it does for particle energies in 
a dilute gas. These quasi particles are not to be con
fused with the collective modes which one observes 
experimentally when one excites the liquid by means 
of an external probe. These latter collective modes 
decay, even when, as in He II, they may be identified 
with the quasi particles , for an experimental excitation 
always represents a fluctuation away from the 
equilibrium state with a corresponding lifetime. 

B. Double-Quasiparticle Model 

It is now appropriate to consider the phenomeno
logical description of He II. Our model will be a gener
alization of the description of He I presented above. 
The generalization is not a trivial one, as we have to 
incorporate the macroscopic occupation of the zero
momentum state and also the depletion of this zero
momentum state, due to interactions. If the depletion 
is neglected, one can generalize the results of Subsec
tion A with a few modifications, as has been done 
earlier by Morita and Tanaka.lo It is believed that the 
fraction of particles in the zero-momentum state is 
around 0.1 at T = 0 °K.H Hence, the nonzero-momen
tum component (in addition to the particles in the zero
momentum state) of the superfluid must be taken into 
consideration in our development. 

The phenomenological theory which we shall now 
outline is the result of an attempt to understand the 
physical predictions derived from the quantum
statistical theory of Mohling, RamaRao, and Sheal2 

and also from the present perturbation theory. These 
attempts suggested a double-quasiparticle notation 
(see Sec. 2 and Appendix B), which we now introduce, 
and an understanding of this notation is essential 
for the rest of this paper. We consider He II at rest. 
The microscopic theory suggests that there are three 
different types of quasiparticle states available for 
occupation by the helium atoms: (1) the macroscopi
cally occupied zero-momentum state with energy g; 
(2) positive-energy quasiparticle states, with energy 
w+(p) = g + €+(p); (3) negative-energy quasiparticle 
states with energy w_(p) = €_(p) + g. Here g is the 
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chemical potential, and we use the convention that 
p is the momentum of a nonzero-momentum quasi
particle, i.e., p ¥= O. We also assume that f:+(p) = 
-c(-p). 

The f:±(p) are generalizations of the energies f:±(p)o 
which we encountered in the perturbation theory of 
Sec. 2 [see Eq. (2.17)]. Corresponding to the quasi
particle energies f:±(p) are two distribution functions 
n±(p). We can imagine that these functions n±(p) are 
associated in the perturbation theory version of the 
micmscopic theory with the quasiparticle operators 
~U 11 and - Lp~!p, there being one set of quasi
particle operators ~ p and ~1 for each p value in the 
perturbation theory. Thus it is reasonable to assume 
that n+(p) and n_( -p) are related by 

n_(-p) = -[1 + n+(+p)], (3.5) 

where the one minus sign for p in n_ is introduced for 
later convenience. [Equation (3.5) follows from Eq. 
(2.15).] 

Because the contributions to physical quantities 
from the two nonzero-momentum states will be 
expected to be different, in general, we anticipate such 
a difference by making the replacement 

L: -+ L: L: if;(p) (3.6) 
1J 'P i 

i=± 

for all single-particle-state sums (momentum-state 
sums for an infinite system). Here the h(P) are the 
weighting factors for the two states, such that 

~ i.Nip) = f+(p) - f-( - p) = 1. (3.7) 
i 

These weighting factors have a natural basis in 
microscopic theory. In fact, the !±(p) are generaliza
tions of the !±(p)o defined by Eq. (2.21). Equation 
(3.7) is essentially the condition that the Bogoliubov 
transformation be canonical. 

The above introduction of the double-quasiparticle 
notation is admittedly rather ad hoc, and there should 
be a more physical way, yet to be discovered, for 
introducing the quantities w±(p), n±(p), and!±(p). In 
what follows, we describe these quantities heuristically. 

Consider a degenerate Bose system with N inter
acting bosons, and consider further how one can 
generate an (N + I)-particle state starting from the 
N-particle system. The peculiarity of the degenerate 
Bose system (with T < T;.) is that there are two ways 
of adding a boson with momentum p, each way 
having its own definite probability. (1) The boson can 
be added to the N-particle system directly in the 
plane-wave state p. (2) The added boson can couple 
with another boson having momentum -p to form 
the paired state (p, -p). The end result in this second 

case is equivalent to an (N - I)-particle system with 
a boson of momentum -p removed from the N
particle system. The double-quasiparticle model seems 
to incorporate, notationalIy, the occurrence of this 
second process. 

Perhaps one should not take these suggested 
interpretations too seriously, since it is possible to 
show for all physical predictions that our double
quasiparticle model reduces to the more usual single
quasiparticle model. Nevertheless, the appearance of 
both positive- and negative-energy-quasiparticle quan
tities throughout the microscopic theory, when it is 
expressed in its most concise form, justifies attempts 
at interpreta.tion of the model. 

Equation (3.7) shows that both !±(p) can be ex
pressed in terms of a single quantity. We therefore 
define a quantity rx._(p) such that 

f+(p) == [1 - rx.~(p)r\ 
f-( -p) == rx.:(p)[1 - rx.:(p)rl. (3.8) 

It is useful, for later convenience, to define one 
further quantity rx.+(p), which is related to rx_(p) by 

rx.+(p) == [rL( -p)r1 (3.9) 
or 

rx.lp) = rx.:'~( - p). 

We then rewrite!+(p) in terms of these two quantities 
by the single equation 

flip) = i[1 - rx~;(ipWl 

= -rx.j(ip) [rx.:;:l( - p) - 1X.:1( + p)r1. (3.10) 

It is trivially verified that Eqs. (3.8) and (3.10) for 
!+(p) satisfy the condition (3.7). From (3.8)-(3.10) it 
is also easy to verify the relation 

!+(p)rx_(p) = !_( -p) IX.+ ( -p). (3.11) 

We now consider expressions for physical quantities 
using the notation outlined above. For. simplicity, 
we shall continue to use the language of an infinite 
system in which the single-particle quantum numbers 
p refer to plane-wave states. Whenever single
particle sums are involved, we shall often use the 
left-hand side of (3.6) to mean the right-hand side 
(the use of the notation being easy to determine by 
context), thereby suppressing the 

L: i/;(p) 
i 

factor in our equations. In order to indicate that a 
quantity carries a single label i in this notation, we 
shall attach a prime to it whenever the label is sup
pressed. Thus the distribution function ni(P) will be 
written as n'(p). The notation rx(-J(p) will represent 
rx_i(p)· 
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Particle Density: One might write down the follow
ing plausible form for the particle density n of the 
system 

n = x + 0-1 ~ n'(p) 
11 

= X + 0-1 ~ ~ iJ;(p)nj(p) (incorrect). (3.12) 
11 i 

This result seems reasonable, because the last term 
in Eq. (3.12) is the sum over all probabilities for both 
kinds of quasi particles to be occupied. Although quite 
plausible, Eq. (3.12) cannot really be justified wit~out 
appealing to a microscopic theory. In fact, ~he .mlc~o
scopic calculation of the momentum d~stn~utlOn 
shows that Eq. (3.12) is only a first approximation to 
the exact expression. We shall return to this point 
at the end of Sec. 5. We note, in passing, that the 
second line of Eq. (3.12) is hard to interpret with a 
single-quasiparticle model. Thus, the double-quasi
particle picture brings a simple order into the under
standing of the microscopic theory in this case. 

C. Phenomenological Expression for Energy 

Using the notation developed in Subsection B, 
we now write a phenomenological expression for the 
energy, in direct analogy with Eq. (3.1) for He I, as 

E = ~ n'(p)w(p) 
v 

+ (tNO)2V + No ~ n'(p)V'(p) 
p 

+ f2 n'(PI)n'(P2)V"(PI, P2), (3.13) 
:111 P 2 

in which three different interaction energies V, V'(p), 
V" (PI' P2) have been introduced. In writing Eq. (3.13) 
for the energy, we have exhibited separately those 
interaction terms which have no explicit dependence 
on n', an explicit dependence on only one n' (p), and 
an explicit dependence on at least two n'(p). The 
interaction energies U, U/(p) , U"(Pl,P2) can all have 
an implicit dependence on n' as explained below Eq. 
(3.3) for the He I case. The interaction energy 
V"(PI,P2) in Eq. (3.13) actually represents four 
different energies, as can be seen by exhibiting the 
sums in Eq. (3.13) explicitly with the aid of Eq. (3.6). 
The second term in Eq. (3.13) represents the inter
action of one zero-momentum boson with another 
zero-momentum boson, and the third term represents 
the interaction of one zero-momentum boson with 
a nonzero-momentum quasiparticle. Finally, the last 
term in Eq. (3.13) represents the interaction energy 
of one nonzero-momentum quasiparticle with another 
nonzero-momentum quasiparticle. The U, U'(p), 

U"(PI,P2} will, in general, also depend functionally on 
No . In the next section we shall show that the average 
energy (E) in perturbation theory has indeed the 
form indicated in (3.13), and we shall also write down 
expressions for U, U'(p), and U"(PI,P2)' 

The expression (3.13) is valid not only for a pure 
state, i.e., one derivable, in principle, from a complete 
many-body perturbation theory calculation involving 
the unperturbed occupation quantum numbers n'(p), 
but it is also valid for a real quantum fluid at T :;6 0 OK. 
Thus, to be valid for a real quantum fluid, Eq. (3.13) 
has only to be averaged over the appropriate ensemble 
(see Appendix A). 

We next consider a generalization of Eq. (3.2), 
for the He II case. It might seem for the He II case that 
one has only to add to the first line of Eq. (3.2) a 
term gbNo to allow for the (virtual) variation in the 
number of zero-momentum bosons. But because Eq. 
(3.12) is incorrect, we must use the second line of Eq. 
(3.2) for the He II case, i.e., 

bE = ~ E'(p)bn'(p) + gbN. (3.14) 
p 

To use this expression for bE, we can either treat No 
as an independent variable or eliminate No in favor of 
N by substituting Eq. (5.13) into the explicit form of 
(3.13). From this expression we obtain the following 
relations for E'(p) and g: 

E'(p) = -- - g--OE I r5N I 
r5n'(p) No.a' r5n'(p) No.a' 

= w(p) + ~'(p) - g, 

aE I g--
- aN n'.a: (3.15) 

in which the quasiparticle self-energy ~'(p) is intro
duced. The reason for holding the quantities iX±(k), 
and hence also the /±(k), constant in these partial 
derivatives is discussed below Eq. (4.22). 

Upon substituting Eq. (3.13) for the energy into 
Eq. (3.15), we obtain the following expression for 
E'(p): 

E'(p) = w(p) + NoV'(p) + ~ n'(P2)U"(P, P2) 
112 

IN)2~_ ~ + (2 0 bn'(p) g bn'(p) 

, r5U'(P2) 
+ N 0 ~ n (P2) ~( ) 

P2 un p 

1. "" '( ) '( ) r5U"(Pa, P4) + 2 £., n Pa n P4 ~'() 
P3 P, un P 

= w(p) + ~'(p) - g, (3.16) 
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where the second equality serves to define the average 
interaction potential Il' (p), or self-energy, experienced 
by a quasiparticle of momentum p. Similarly, we 
obtain for the chemical potential 

g = {tNoU + 2 n'(p)U'(p) + (tNO)2 oU I 
p oNo n'.n.a' 

+ No L n'(p) oU'(p) I 
p oNo n'.n.a' 

+ I '" '( ) '( ) OU"(PI, P2) I } "2 £., n PI n P2 
P1 P2 oN 0 n' .n.a' 

X [(::1',n.J-I

• (3.17) 

We can check Eqs. (3.16) and (3.17), and hence Eqs. 
(3.14) and (3.15), by comparing them with the ex
pressions for €' (p) and g obtained in a calculation which 
does not use the energy expression as a starting point. 
This question is given further discussion at the end 
of Sec. 4. 

We note here that the intimate mathematical 
relation between the double- and single-quasiparticle 
models is linked closely to the simple identity 
c( -p) = -€+(p). This identity, mentioned earlier, 
is given a firm microscopic basis in Sec. 4. It makes 
possible the consistency of Eqs. (3.5) and (3.19). 

Entropy; We now make the fundamental assump
tion that the n'(p) enumerate all the single-particle 
degrees of freedom which can be excited thermally 
in th!,! system. Using this assumption, we can write 
down the following expression for the entropy by a 
simple process of state cOQntingl3 : 

S = K 2 ([I + n+(p)] In [1 + n+(p)] 
P 

- n+(p) In [n+(p)]} (3.1Sa) 

= K 2 ([I + n'(p)] In 11 + n'(p)1 
P 

- n'(p) In In'(p)/}, (3.1Sb) 

where K is Boltzmann's constant. The equivalence of 
Eqs. (3.1Sa) and (3.1Sb) is easily verified by using 
Eqs. (3.7) and (3.5). Thus, the double-quasiparticle 
model and the single-quasiparticle model give identi
cal results for the entropy. 

We next consider liquid helium moving with a 
linear velocity Vs such that Vs is the velocity of the 
bosons in the macroscopically occupied single
quantum state. It is shown in Appendix A, when the 
entropy is maximized over a statistical ensemble, 
subject to the constraints of constant total energy, 
constant total number of particles, and constant 

total momentum, that n'(p) can be expressed in terms 
of the quasiparticle energies as 

n'(p) = {exp P[E'(p) - p' u] - l}-l, (3.19) 

where P = l/KT, P is measured relative to mvs, and u 
is defined by Eq. (AlO). The physical interpretation 
of u as being the drift velocity of the normal fluid 
relative to the velocity Vs of the condensed state is 
demonstrated at the end of Appendix A. 

It is also shown in Appendix A that the energy 
expression (3.13) continues to be valid in the frame 
of reference moving with a velocity Vs relative to the 
laboratory provided the momenta are all measured 
relative to the momentum mvs. To translate to the 
laboratory frame, one has therefore only to (I) add 
the quantity 

tNmv~ + Vs . L pn'(p) (3.20) 

to the right-hand side of Eq. (3.13) for E and (2) 
replace the chemical potential g by fl, where 

fl = g + tmv~. (3.21) 

One could now develop a two-fluid model, using this 
double-quasiparticle picture, and give operational 
definitions of the normal and superfluid densities, 
but we shall not give these details here.14 

As a final matter for this section we derive a useful 
expression for the heat capacity at constant volume 
Cv from Eq. (3.14) for flE. We find 

C _ (OE\ 
v - oT/n.N 

= L E'(p) on'(p) 
P aT 

_ '" () on+(p) 
- £., E+ P . 

P oT (3.22) 

The second line of (3.22), which is precisely the Landau 
result, is derived by using Eqs. (3.5), (3.7), and (4.24). 

4. QUASIPARTICLE ENERGIES 

The phenomenological theory of a Bose fluid 
developed in Sec. 3 gave definite prescriptions for the 
calculation of the quasiparticle energies and the 
chemical potential via the relations (3.15)-(3.17). 
In this section we calculate the quasiparticle energies 
and the chemical potential, using these prescriptions 
as the starting point, and compare the results with 
other, more direct, calculations of the same quantities. 

A. Rearrangement of Average Energy 

We first rewrite the perturbation theory expression 
for the energy (see end of Sec. 2), which is a func
tional of all the zeroth-order quantities J;(P)o, Ei(P)O, 
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rCi(P)O' etc., in terms of the more generalh(p) and 
CI.._i(P) introduced in Eqs. (3.8)-(3.10).15 Thus we 
write in the perturbation theory context 

h(P) = h(P)o + bh(P) + O(va), (4.1) 

CI.._i(P) = CI..-i(p)o + bCl.._i(P) + O(va), (4.2) 

where the correction terms are 0(V2). In analogy with 
definition (2.20) of CI..-i(p)o, we define 

CI.._i(P) == -~2.-;( -P)[€i(P) + €l.-i( _p)]-I, (4.3) 

where 
~2i(P) = ~2i(p)o + ~2i(P)2 + O(Va), (4.4) 

€i(P) == w(p) - g + ~i(P)' (4.5) 

~i(P) == ~1i(p) + CI..-i(P)~2i(P)' 
€li(P) == w(p) - g + ~li(P) 

(4.6) 

= €l(P)O + ~li(P)2 + o(va), (4.7) 

and ~2(P)0' €1(P)O, €i(P)O are given in Eqs. (2.17)
(2.20). It is important to observe that the second
order corrections introduced in Eqs. (4.1)-(4.7) are 
all unknowns and have to be determined via the 
prescriptions (3.15)-(3.17) in Sec. 3. Their explicit 
expressions are, however, unnecessary for rewriting 
the expression for the average energy (see Appendix 
D). Also, to be general, we have included an i 
dependence with the self-energies ~1(P) and ~2(P)' 
The final rearranged result (E) is found to be 

(E) = Eo + E2 + O(Va) 

= Eo + E20 + o(va), (4.8) 

where it is shown in Appendix D that 

Eo = (tNo)2 (001 V(s) 100) + ~ ~ ih(ip)w;(p)on;(p) 
'iJ i 

x Uflp2)n j(P2)] (PIP21 yes) I PIP2) 

- t ~ ~ [([;(PI)CI..-i(PI)ni(PI)] 
'Ill'll. ij 

x UUP2)CI.._ j(P2)n j(P2)] 

x (PI' - PII yes) Ip2' - P2) 

= Eo + O(Va
), 

E2 = [E20 withh(p)o and CI.._;{p)o rePlaCed] 
by h(p) and CI.._;(p), respectively 

(4.9) 

= E 20 + O(Va), (4.10) 

wi(p)o == w(p) + ~tCp)o + CI..-lp)~2(P)0 
(4.11) 

It is now straightforward to verify that the expres
sion for (E) given by (4.8)-(4.10) can indeed be 
written in the form (3.13) if we make the following 

identifications: 

U = (001 yes) 100) + O(Va), (4.12) 

U'(p) = (pOI V(s) IpO) 

- tCl..(_)(p) (001 yes) Ip, - p) + O(Va), 

(4.13) 

U"(Pl, P2) = (PIP21 yes) IpIP2) + !CI..(_)(Pl)CI..(_)(P2) 

x (PI' -PII V(S) Ip2, -P2) 

+ No, '( )A(T)",( )A"'( ) -3 £.., n Pa PIP2Pa PIP2Pa 
'iJa 

X [€'(PI) + €'(P2) + €'(PaWI 

+ /2 :1 n'(Pa)n'(P4) 

x A (T)""(PIP2PaP4)A""(PIP2PaP4) 

X [€'(PI) + €'(P2) + €'(Pa) + €'(P4>r1 

+ O(Va). (4.14) 

The interpretations given below (3.13) for U, Ui , 

and Uij should also be evident from these explicit 
expressions. 

B. Second-Order Calculations of Quasiparticle 
Self-Energies 

We now proceed to the calculation of the quasi
particle self-energies and the chemical potential. One 
can use either (3.15) or (3.16) and (3.17) as a starting 
point. We have used (3.15) in the calculations to be 
presented in this section. It is convenient first to 
rewrite E2 of Eq. (4.10) as 

E2 = (No/6) :1 [€'(PI) + €'(P2) + €'(Pa)r1 

x {n'(PI)n'(P2)n'(Pa)C"(PIP2Pa)A (T)"'(PIP2Pa) 

- [1 + n'(Pl)][1 + n'(P2)][1 + n'(Pa)] 

x A"'(PIP2Pa)C(T)"(PIP2Pa)} 

+ 2
1
4 ~ [€'(Pl) + €'(P2) + €'(Pa) + €'(P4W1 

'iJl'iJ2'iJa'iJ4 

x {n'(PI)n'(P2)n'(Pa)n'(P4)D"'(PIP2PaP4) 

x A(T)""(PIP2PaP4) - [1 + n'(PI)][1 + n'(P2)] 

x [1 + n'(Pa)][1 + n'(P4)] 

(4.15) 

In deriving (4.15) from (4.10) we have used (CI2), 
(CI4), (3.9)-(3.11), and (4.24). Also the permutation 
symmetry among the momenta which existed in (2.40) 
and (2.41) has been destroyed and preference has 
been exhibited for the momentum variable Pl' Since 
the choice of the momentum PI is arbitrary, when we 
take the functional derivative in (3.15), we can perform 
our differentiation with respect to PI only and then 
multiply the result by 3 for the first term in (4.15) and 
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by 4 for the second term in (4.15). This arbitrary 
procedure enables us to avoid terms proportional to 
[IX(_) (p)]2 in /),'(p), thereby simplifying the analysis of 
the quasiparticle-energy expression. 

We can now use (4.9), (4.15), and (5.14) to calculate 
all the self-energies through second order in V. As the 
details are straightforward, we simply summarize the 
final results here: 

€'(p) = w(p) + fl'(p) - g, 

fl'(p) = fl~(p) + 1X;_)(p)/),~(p), 

fli(Pl) = No (PIa \ V(s) \PlO) 

+ L n'(P2) (PlP2\ V(S) \PlP2) 

- iNo I [€'(P2) + e'(P3) + e'(Pl)rl 

P21>S 

X [1 + n'(P2) + n'(P3)] 

X C"(PlP2P3)C(T)"(PlP2P3) 

(4.16) 

(4.17) 

- t L [€'(P2) + e'(P3) + e'(P4) + e'(Pl)rl 

X ([I + n'(P2)][1 + n'(P3)][1 + n'(P4)] 

- n'(P2)n'(PS)n'(P4)} 

X D"'(PlP2PaP4)D(T)"'(PlP2P3P4) + O(Va) 

= fl{(PI)O + fl{(PI)1 

+ fl{(PlhA + fl{(PI)2B + O(va), (4.18) 

fl~(Pl)2 = - iN 0 (00 I V(s) I PI' - PI) 

+ t L n'(P2)1X;_)(P2) 

X [(PI, -PII V(s) Ip2' -P2) 

+ (P2, -P21 V(s) Ipl, -PI)] 

+ iNo ~ 1X[_)(P2)1X(_)(Pa) 
I>21>a 

X [€'(P2) + €'(P3) + e'(PI)rl 

X ([1 + n'(P2)][1 + n'(P3)] 

X C(T)"(PlP2P3)C(T)(-,-)( - PI' - P2' - Pa) 

- n'(P2)n'(P3)C"(PlP2P3) 

X C(-·-)( - PI' - P2, - Pa)} 

- t ~ 1X;_)(P2)1X;-)(Pa)IX;_)(P4) 

X [e'(P2) + €'(Pa) + €'(P4) + €'(Pl)tl 

X ([1 + n'(P2)][1 + n'(Pa))[l + n'(P4)] 

X D(T)"'(PlP2P3P4) 

X D(T)(-.-.-)( - PI' - P2' - Pa, - P4) 

- n'(P2)n'(Pa)n'(P4)D"'(PlP2PaP4) 

X D(-'-'-)( - PI> - P2' - Pa, - P4)} 

= /),~(Pl)O + /),~(Pl)l 
+ fl~(Pl)2A + /),~(Pl)2B + O(Va), (4.19) 

where C;i(PlP2Pa) and Dikl(PlP2PaP4) are given by 
(C13) and (CI5), respectively, and the corresponding 
quantities with (-) superscripts involve subscripts 
-i, -j, -k, etc. From (4.17) and (4.18) we find that 
/),li(P) is i dependent, as indicated earlier, and 

/),2+(p) = fl~~)( -p). (4.20) 

Finally the chemical potential g, obtained by sub
stituting Eqs. (4.9), (4.15), and (5.14) into the second 
of Eqs. (3.15) and treating No as an independent 
variable, is 

g = iNo (001 V(s) 100) 

+ ~ n'(p) (pOI V(s) IpO) + g2 + O(Va) 
P 

(4.21) 
where 

g2 = -t ~ n'(p)IX;_)(p) (001 V(s) Ip, - p) 
I> 

X {n' (Pl)n' (P2)n' (Pa)C" (PlP2Pa)A (T)m (PlP2Pa) 

- [1 + n'(Pl)][1 + n'(P2)][1 + n'(P3)] 

X C(T)"(PIP2Pa)A"'(PIP2Pa)}. (4.22) 

In the derivation of the results (4.18), (4.19), 
(4.21), and (4.22), it is essential to hold constant the 
quantities 1X;(p), as indicated in the functional deriva
tives of Eq. (3.15). By means of this somewhat 
arbitrary convention we are able to achieve agreement, 
for the DHSBG model, between the quasiparticle 
energy-momentum relation derived in this section and 
earlier work in the literature (see Appendix F). Thus, 
1X;(p) andj;(p) must be regarded as parameters in the 
theory, as indeed they are, for example, in the zeroth
order pair Hamiltonian theory before the diagonaliza
tion condition is used [see below Eq. (B13)]. 

The above expressions for /),i(P) and g agree com
pletely with the perturbation-theory limit of the 
corresponding expressions obtained in quantum 
statistics.12 •16 

C. Explicit Expressions for E;(p) 

We come next to the calculation of E;(p). Upon 
substitution of (4.18), (4.19), (4.21), and (4.22) into 
(4.5), we can obtain an expression for Ei(p) which is 
valid to second order in V. However, as is readily 
seen from (4.18) and (4.19), this gives an integral 
equation for ei(P) which we would have to solve to get 
a complete solution for E;(p) [note that /),1; and fl 2i (p) 
are themselves functionals of elp) internally]. Here, 
we shall only give a general partial solution to E;(p) 
and then consider the special case of the DHSBG at 
the end of the section. 
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The partial solution to the integral equation (4.5) 
is found, by using (4.3), to be 

Ei(P) = l[Eli(p) - E1.-i (-P)] 

+ i{i[E1i(P) + E1.-i( _p)]Z 

- ~Zi(P)~Z.-i( _p)}l. (4.23) 

From (4.23) we can conclude quite generally that 

(4.24) 

Moreover, in Appendix E it is shown, provided we 
n&glect ~~(P)ZB' ~~(P)2B' and the second term in 
(4.22), that 

g = ~HO) + ~~(O) + O(Vs). (4.25) 

Then, using (4.25) in (4.23), we can verify immediately 
that 

(4.26) 

which in turn implies that there is no gap in the 
excitation spectrum. However, if we include ~~ (P)2B 
in ~~(P), A~(P)2B in A;(p) , and the second term of 
(4.22) in gz, then we will end up with a gap in the 
excitation spectrum. Justification for neglecting these 
terms is given in Appendix E. The result (4.26) is 
equivalent to assuming, quite generally, that 

g == ~~(O) + A~(O) (4.27) 

to all orders in V. This equation can be called the 
"no gap theorem." A consequence of (4.27) is that 

(4.28) 

as can be established with the aid of (4.3), (4.7), and 
(4.26). 

Returning to (4.23), we expand the rhs of the 
expression for Ei(P) through second order in V to 
obtain the following results (for an isotropic system): 

where Ei(P)O is given by (2.17) with g replaced by 
(go + g1) and 

~Ei(P)2 = i{lX_i(P)0[A2i(P)2 + ~2.-i(-P)2]!£(P)0 
+ f;(p)O~1i(P)2 + f-i( -p)o~1.-l-p)2 

- ig2[fi(P)0 + f-i( -p)o]} 

= -bE_i (-P)2' (4.30) 

Upon substituting (4.18) and (4.19) for ~~(P)2 

and ~~(P)2 into (4.30) for ~Ei(P)2' we get after 
a few manipulations using (CI2) and (C14), for 

Hermitian V, 

~elp)2 = -!No[(f;(p)o] 

x I I [eip)o + Elp2)0 + EI(Pa)Or
1 

pzPa H 

x [j/;{P2)0][lfl(lPs)0][1 + n,(P2) + nl(ps)] 

X Aiil(PPZPs)A~~)(PP2PS) 
- -Hih(p )0] I I j Imf,(pz)ofl(ps)o! m(P4)O 

P2PaPc i!m 

X [E;(p)O + E;(P2)0 + EI(Pa)o + Em(pJor1 

X ([I + n;(p2)][1 + nl(Pa)][l + nm(P4)] 

- n;(P2)nl(Pa)nm(P4)} 

x Aiilm(PP2PaP4)A~~~(PPZP3P4) 
- igz[f+(p)o + f-(p)o]. (4.31) 

We can also derive the results of (4.29)-(4.31) 
directly, if we observe the following relation: 

E;(p) = w(p) - g + A;(p) 

= i{J+(p)w+(p) + f-( - p)w_( - p) 

- [f+(p) + f-( -p)]g}, (4.32) 

where the second line of (4.32) follows from the first 
line and the relations f+(p) - f-( -p) = 1 and 
E_( -p) = -E+(p). The second line of (4.32) is useful, 
because when i = + it provides a useful form for 
E+(P) to use in comparison with other results which 
have appeared in the literature (see below). 

We now consider the special case of the dilute 
hard-sphere Bose gas which is studied in detail in 
Appendix F. It is shown in Appendix F that if we 
neglect the second term of (4.31), then our expression 
agrees completely with that of Mohling and Morita.17 

In the zero-temperature limit we set n+(p) = 0 and 
n_( - p) = -1, in which case if we again neglect the 
second term of (4.31) then our expression for E+(p) 
agrees with that of Mohling and SirIin.1s Also, at 
T = 0 OK our expressions for the self-energies A~ (P)2 
and A~(P)2 agree completely with Belyaev19 if we 
neglect ~~(p)2B and A~(P)2B' 

The behavior of E+(p) in the p -+ 0 limit has been 
investigated by Mohling and Morita,17 who find that 
the low-momentum excitations are phonons. How
ever, their expression for the velocity of phonons 
vanishes in the limit T -+ 17, where T). is the transition 
temperature, whereas one would expect the velocity 
of phonons to change only slightly with temperature 
on the basis of experimental evidence. Sikora and 
Mohling7 have shown theoretically that the phonon 
behavior for the DHSBG persists above the transition 
temperature (i.e., in the region 11). If we include the 
term ~~ (p )2B' our expression for E+ (p) readily reduces 
to theirs at T = TA. This suggests that the term 
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Ll~(P)2B plays an important role in the region of the 
transition temperature. We note in passing that to our 
knowledge none of the microscopic theories in the 
literature except that of Mohling, RamaRao, and 
Shea12 seem to have terms in the expression for Ei(p) 
which can be meaningful at the transition temperature 
T;,.. 

The fact that our results are in agreement with 
previous work in the literature suggests that our 
prescription (3.15) for the calculation of the quasi
particle energies may be true quite generally; If so, 
then we have achieved considerable insight into the 
phenomenological theory of the Bose liquid. Certainly, 
the results in this section provide a microscopic basis 
for the phenomenological theory as it is presented 
in Sec. 3. 

5. MOMENTUM DISTRIBUTION 

In this section we derive an expression for the 
momentum distribution (n(p) through second order 
in V(s). We are interested in such a calculation for 
three reasons: (I) to check the suggestion of the 
phenomenological theory, as given in Eq. (3.12); 
(2) to calculate the fraction of particles in the zero
momentum state; and (3) to obtain an expression for 
(n(p) which is required in the study of correlation 
functions. 

The momentum distribution is defined by 

(n(p) == ('YI a~a1' I'Y)/('Y I 'Y), (5.1) 

where the wavefunction I'Y) is given in perturbation 
theory by 

I'Y) = I'Fo) + 1'Y1 ) + 1'Y2) + o(va), (5.2) 

with 1'Y1 ) and 1'Y2) defined by Eqs. (2.27) and (2.28). 
Upon substituting (5.2) into (5.1) and using (2.27) 
and (2.28), we find for (n(p) the expression 

(n(p) = (n(p»o + (n(p»2 + O(Va), (5.3) 

(n(p»2 = 2Aip) + A2(P), (5.4) 
where 

Al(P) = ('Yo I a!ai l /b)H'(1/b)H'I'Yo), (5.5) 

A2(p) = ('Yo 1 (H')\lJb)[a~a1' - (n(p»](lJb)H'I'Yo)· 

(5.6) 

The expression (5.3) for (n(p» can be simplified 
considerably by substituting the transformation 
equations (B13) and the zeroth-order expression (B17) 
for (n(p» into (5.5) and (5.6) and then recombining 
the terms. The final result, for an isotropic system, 
is given by (for Hermitian V) 

(5.7) 

where 

Ala(P) = !+(p)01X_(p>o[2E+(p)otl 

X ! i ('Yo I [UP)~i( - p), H'](1/b)H' I 'Yo), 
i 

(5.8) 
A2a(P) = [f+(p)o + !-(p)o] 

X ('Yo I (H'/(I/b)2[~;~1" H'] l'Yo). (5.9) 

It is now straightforward to evaluate the matrix 
elements in Eqs. (5.8) and (5.9), which are quite similar 
to those encountered in the calculation of the average 
energy (see Appendix C). We do not need the detailed 
expressions for Ala(p) and A2a(p) here, for we are 
interested only in a quantity A(p) defined via 

(n(p» == ! ifi(p)ni(p) + A(p). (5.10) 
i 

Thus, 

A(p) = 2Ala(P) + A2a(P) - ! iIJ/;(p)ni(p), (5.11) 
i 

where IJj;(p) is defined in Eq. (4.1) and its explicit 
expression is given in Appendix D [see Eqs. (Dl) and 
(D7)]. We obtain finally the following expression for 
A(p), when the potential is Hermitian: 

A(p) = -iNo! ! [Y:(p)on;(p)] 
iikl1'21'S 

X [lfz(p)o][1 + 1X-I(P)olX_;(p)o] 

X [j!lp2)On ;(P2)] [k!iPa)oniPa)] 

X Aijk(PP2Pa)A~;;/(PP2P3) 
X [E;(P2)O + EiPa)o + Ei(P)ot1 

X [Elp2)0 + Ek(P3)O + Elp)orl 

- t! ! [i/;(p)Oni(p)] [lfl(P)O] 
iikZm 1'21'S1'4 

X [1 + 1X_I(p )olX_;Cp )0][j!;CP2)On ;(P2)] 

X [k!k(P3)OniPa)][m! m(P4)Onm(pJ] 

X A~r,.~(PP2P3P4)Alikm(PP2PaP4) 
X [E;(P2)0 + EiP3)O + Em(P4)0 + Elp)ot1 

X [E;(P2)0 + Ek(P3)0 + Em(P4)0 + E;{p)otl, 

(5.12) 

where (p + P2 + P3) = 0 in the first term and 
(p + P2 + P3 + P4) = 0 in the second term. 

The fraction of particles in the zero-momentum 
state is given by 

; = 1 - (nOr l 2 (n(p» 
l' 

= 1 - (nO)-l 2 2 [Y:(p)n;(p)] 
i P 

- (nnrl 2 A(p), (5.13) 
P 
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where A(P) is given by (5.12). We note from (5.12) that 

.2 A(p) ¥= O. (5.14) 
'P 

This result contradicts the phenomenological theory 
prediction (3.12). It is not a surprising result, however, 
when one realizes that the number of quasiparticles in 
a degenerate Bose fluid is not conserved, as it is for a 
normal fluid. Thus, there is no one-to-one corre
spondence between particles and quasiparticles in a 
degenerate Bose fluid. Also, we may note that the 
wavefunction l'Yo) of (2.22) is not an eigenstate of the 
total particle number. 

The DHSBO limit of the expression for ~ is obtained 
from (5.13) by expandingf,;(p) through second order 
in the hard-sphere-gas parameter (na3)! and using 
Eqs. (FI), (F6), and (F9)-(FI2). The resultant ex
pression specialized to T = 0 OK, and obtained by 
setting n+ = 0 and n_ = -1, disagrees20 in part with 
an earlier result by Wu. l The lowest-order expression 
for ~ is given in Eq. (FS). 

6. SUMMARY 

The main results obtained in this paper will now 
be summarized. (1) We have derived an explicit 
expression, valid for all temperatures below T)., 
through second order in the interaction V(s). This 
result constitutes a useful check on any realistic 
calculation of (E)jN. Since (in most of our calcula
tions) we have not used the hermiticity of V(s), we 
have also applied it to the dilute hard-sphere Bose 
gas. (2) Basing it on the form of the average energy 
obtained in perturbation theory, we have proposed 
a phenomenological expression for (E)jN which is 
asserted to be valid eyen for He II. From this expres
sion, useful prescriptions are deduced for the calcula
tion of the quasiparticle energy and the chemical 
potential. This phenomenology is a generalization of 
the earlier work of Morita and Tanaka,lO who 
neglected the depletion effect, known to play an 
important role in theoretical studies of He II. (3) The 
quasiparticle energies and the chemical potential have 
also been derived for all T < T). through second order 
in V(s). The results agree completely with previous 
zero-temperature calculations. A significant feature 
is that our quasiparticle energies do not reduce to free
particle values when T ---+ r; as they do for many of 
the earlier calculations. The importance of the non
vanishing self-energy terms near T = T"i has been 
emphasized. 

APPENDIX A: LINEARLY MOVING SYSTEMS, 
STATISTICAL AVERAGING 

The total energy expression (3.l3) may properly be 
thought of as arising from a perturbation theory 

calculation (see end of Sec. 2) tediously carried out to 
all orders. If the degenerate Bose system is moving, 
then we must add the kinetic energy of bosons in the 
condensed state to the right-hand side of Eq. (3.l3). 
When this state is one of linear motion with velocity 
vs, then this added term is HN - .2'P n' (p)]mv1. We 
now study the most probable, or equilibrium, state 
for He II in linear motion. 

We find the most probable state for the case of 
linear motion by maximizing the entropy (3.lSb) in 
the double-quasiparticle formulation, subject to the 
constraints of constant total energy E, constant total 
number of particles N, and constant total momentum 
P. The variation of all of these quantities with respect 
to the occupation numbers n'(p) and N gives 

K-
1r5S = 21n [1 + n'(p)Jr5n'(p), (AI) 

'P n'(p) 

r5E = .2 e'(p, mvs)r5n'(p) + flr5N, (A2) 
'P 

r5N = 0, (A3) 

r5P = .2 pr5n'(p) + mvsbN. (A4) 
'P 

We have defined the single-particle momenta p to be 
measured relative to mvs and have used Eqs. (3.l4) 
and (3.21). Then, upon introducing the Lagrangian 
multipliers ()(, {3, and y, we find the condition for the 
most probable state to be 

K-
l r5S + ()(r5N - (3r5E + Y . r5P = 0. (AS) 

Equating the coefficient of n'(p) to zero, we obtain 

In {[I + (n'(p»]j(n'(p»} = (3e'(p, mvs) - y' p, 

(A6) 

where we have denoted the value of n'(p) for the most 
probable state by using the bracket symbols. [Note 
that (n'(p» ¥= (n(p», the momentum distribution of 
the system.] Similarly, by equating the coefficient of 
r5N to zero, we obtain 

()( = {3f-l - Y' mvs· (A7) 

Upon solving Eq. (A6) for (n'(p», we find 

(n'(p» = {eP[£'('P.mvs)-VN·'P] - It\ (AS) 

where VN == {3-1y and {3 can be identified as (KT)-l by 
considering the ideal-Bose-gas limit with Vs = VN = 0. 

We now refer back to (3.13), which can be expressed 
for equilibrium systems in terms of the distribution 
functions (n'(p» and No = N - 2'P (n(p», where 
(n(p» is the momentum distribution. Since the plane
wave matrix elements of the helium-atom interaction 
potential are invariant under linear translations in 
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momentum space (Galilean invariance), we may 
readily conclude that the interaction energy terms in 
( E ) can all be written with the momentum sums over 
p relative to mvs. For the kinetic energy term, we 
make the substitution p -- p + mvs and obtain 
thereby the extra term in (E) indicated by (3.20). 
We also conclude from Galilean invariance that 
(n'(p» cannot depend on vs. 

We next conclude from (A2) and (3.13), with (3.20) 
added, that 

f.'(p, mvs) = f.'(p) + p' vs, (A9) 

a result which can also be derived using the argument 
of Galilean invariance. Finally, we define a velocity 
u via 

(AW) 

Upon substituting (A9) into (A8) and using this 
definition, we obtain (3.19), where f.'(P) = w'(p) - g. 
A mathematical justification of (3.21) occurs at this 
point in the analysis, if (n'(p» is to be independent of 
Vs. We note with regard to (3.19) for (n±(p» that if 
f.+(p) = -f._( -p), as is shown in Sec. 4, then 

(n_( -p» = - [I + ("+(p»). (All) 

We can now deduce the finite-temperature expression 
for the total energy (E) in perturbation theory, by 
simply replacing the n±(p) in (4.9) and (4.15) by (3.19). 
Outside of this appendix, we usually drop the bracket 
symbols on statistically-averaged quantities for con
venience, since it can always be determined what is 
meant in context. 

We turn to the physical interpretation of the velocity 
u. In the limit 0 -- 00, one can easily verify from 
(3.19) that 

:IJ 

Since the distribution function for the ther.mal 
excitations of both kinds (+ and -) of quasiparticles 
is n+(p), we may conclude that u is the group velocity 
of the (normal-fluid) quasiparticles relative to the 
velocity of the bosons in the condensed state [see 
(AIO)]. The relative velocity u can thus be interpreted 
as the drift velocity of the gas of quasi particles. 

APPENDIX B: PAIR HAMILTONIAN MODEL 

In this appendix we summarize briefly the method 
for diagonalizing the "pair Hamiltonian" H p, given 
by Eq. (2.11), in order to establish notation which 
proves to be quite useful in this paper. To begin, it is 
well known that Ho(g) of (2.12) can be diagonalized 
by means of a Bogoliubov transformation. 

In order to apply this transformation to diagonalize 
H p , we have somehow to reduce Hp to a form which 

is similar to Ho(g) of Eq. (2.12), i.e., to a form which 
is quadratic in the operators a:IJ and a;. Wentzel5 has 
given a method, which we shall now outline, for 
accomplishing this objective. We define two new 
operators B:IJ and C:IJ to be 

(Bl) 

C:IJ == al1a_:IJ - 'YJ11 , (B2) 

where b:IJ and 'YJ:IJ are c-numbers and, at this stage, 
considered to be trial functions. In terms of these 
operators we can rewrite H p of Eq. (2.11) as 

where 
(B3) 

H'p = t I B:lJ1B113 (PIP21 v(s) IPIP2) 
:lJ1:IJ! 

+ t I C;lC :IJ! (PI> -PII v(s) Ip2, -P2)' (B4) 
:I)}P2 

H~) = Up + L [a;a:IJf.I(p)o - t~~(p)oa:a~:IJ 
" - t~2(P )oa:IJa_:lJ)' (B5) 

and where the c-number quantities Up, f.l(p)o, and 
~2(P)0 are given by 

Up = (tNo)2 (001 V(s) 100) 

- t L b"lb :IJ! (PIP21 V(s) IPIP2) 
:lJ1:IJZ 

- ! L (PI, - PII V(S) Ip2, - pz) 'YJ!l'YJ:IJ!' (B6) 
:lJl"2 

f.1(p)0 = w(p) - g + No (pOI V(S) IpO) 

- t (ppi V(S) Ipp) + I (PPII V(S) IpPI) bj) 
:lJl 

== w(p) - g + ~1(P)O' (B7) 

~2(P)0 = -iNo (001 v(s) Ip, -p) 

- t L'YJ!2 (Pz, -P21 yes) Ip, -p). (B8) 
:lJ2 

The grand partition functions associated with Ht,) 
and Hp are 

0/;°) = In {Tr exp [ - /1Ht,)]}, (B9) 

nip = In {Trexp [-{JHpJ}. (BI0) 

Wentzel5 has proved that for the trial functions b:IJ 

and 'YJ:IJ which minimize Of11' , i.e., for 

o(O/~) = O(O/~') = 0, 

obl1 O'YJl1 
(Bll) 

H'p of (B4) does not contribute to nfp in the infinite 
volume limit, i.e., fp = f11) in the limit n -- a:>. 

Wentzel has also shown that the proper choices of 
d:IJ and rJ:IJ consistent with (Bl1) are 

-" t t t t U:IJ = (a:IJa:IJ)' rJ:IJ = (a:IJa_:lJ)' rJ:IJ = (a1,a_p)' (BI2) 
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Henceforth we shall neglect H'p because it does not 
contribute to the thermodynamics of the system in the 
infinite volume limit when the choice (B12) of the 
trial functions is made. The Hamiltonian H<J,) of (B5) 
is now formally similar to Ho(g) of Eq. (2.12). We 
consider an isotropic system at rest; assume that H<J,) 
is Hermitian. (This assumption is necessary in order 
to apply the Bogoliubov transformation.) We can 
then diagonalize H<J,) by the Bogoliubov transforma
tion 

(B13) 

where the operators ; v and ;X must satisfy Bose 
commutation relations and Eq. (2.21) in order that 
the transformation be canonical. The unknown 
quantities f±(p)o are determined by demanding that 
the Hamiltonian be diagonal after the transformation 
(B13) has been made. 

We shall not outline the diagonalization procedure, 
as it has been given at several places in the literature.2,5 
The results are summarized by Eqs. (2.13)-(2.21). We 
can also rewrite Eq. (2.13) for H<J,) using (2.21) and 
the commutation relations for; v and ;~ as 

H~) = Up - 2,!_(p)OE+(p)0 + ! E+(p)o;~;v' (B14) 
v v 

The Hamiltonian H<J,) of Eq. (B14) can be inter
preted as describing a set of noninteracting quasi
particles whose energy-momentum relation is given by 
(2.17). Thus the thermodynamics in the pair Hamil
tonian model is the same as that of an ideal gas of 
quasiparticles. The grand potential f<J,) of (B9) can 
readily be calculated using (B14), and one finds 

f'f,) = -{3U p + (3 ! f_(p)OE+(p)O 
v 

v 

With the aid of Eq. (B15), all the thermodynamic 
quantities of interest can be calculated. We quote 
a few relevant results: 

n±(p) = ± Tr [p;=F(p);±(p)] 

= {exp [{3E±(p)O] - 1tl, (B16) 

(n(p»o = ~ i/;(ip)on;(ip), (B17) 
i=± 

t t IX._(p)o 
(apa_v) = (ava_p) = - 2 [1 + 2n+(p)] 

1 - IX._(p)o 

= -! i/;{iPkci(ip)on;(ip). (BI8) 
i 

The average energy (E)o is given by 

(E)o = (Ep) + g! (n(p»o' 
v 

(BI9) 

Upon substituting (2.13) and (2.14) into (B19) and 
using (B17) and (B18), we can rewrite (E)o as 

Eo == (E)o = (!NO)2 (001 V(s) 100) 

+ !! iJ:(ip)on;(ip)[E;(ip)o + g] 
v i 

x [(PIP21 V(s) IpIP2) + !oc_lipI)oOC-i(jPa)o 

X (PI, -PII V(S) Ip2, -P2)]' (B20) 

The chemical potential g can be calculated from the 
approximate expression 

g = (b(E)/bNo)is, (B2l) 
and one finds 

g = tNo (001 V(s) 100) + ! ! i/;(ip)on/ip) 
v i 

x [(pOI V(s) IpO) - toc_lip)o (001 V(s) Ip, -p)]. 

(B22) 

APPENDIX C: THREE- AND FOUR-QUASI
PARTICLE MATRIX ELEMENTS 

The operators Sm and Siikl of (2.38) and (2.39) are 
given by 

Sm == (1/3!) 

X ~ In+(ipI) - i, n+(jPa) - j, n+(kPa) - k) 

X (n+(kPa) - k, n+(jP2) - j, n+(iPI) - ii, 

(C1) 
SiikZ == (1/4!) 

X ! In+(ipl) - i, n+(jPa) - j, 

n+(kPa) - k, n+(lP4) - I) 

X (n+(lp4) - I, n+(kPa) - k, 

n+(jPa) - j, n+(iPI) - il. (C2) 

It is easily verified that Siik and Siikl satisfy the follow
ing relations: 

t t 
Siik = Siik, Sml = SiikZ' (C3) 

S;ik = Siik, S;ikl = SilkZ; (C4) 

hence Sm and SUkl are projection operators. They 
are also orthogonal, Siik being a projector onto states 
which differ by three quasi particles relative to l'Yo) 
and Sml being a projector onto states which differ 
by four quasiparticles relative to I'Y 0)' 

We next evaluate typical matrix elements occurring 
in (2.38) and (2.39). We define a quantity Bijk(Pl ,Pa ,Pa) 
by 

Biik(PI , Pa, Pa) 

== (n+(iPI) - i, n+(jPa) - j, n+(kPa - kl H{ \'Yo), 
(C5) 
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B;ik(PI, P2, P3) 

= tNt! ! lmnft(lP4)of!(mps)of!(np6)o 
lmn P(P5P6 

x [(Op41 yes) IpSP6) - rJ._rn(mps)o 

X (P4, -Psi yes) Ip60)] 

X (n+(iPI) - i, n+(jP2) - j, n+(kp3) - kl· 
X Lt(lP4)~rn(mP5)~n(nP6) 1'1"0)' (C6) 

The matrix element in Eq. (C6) is straightforward to 
evaluate with the aid of (2.24), and after a few manipu
lati'2ns we obtain (in the infinite volume limit) 

B;jiPI , P2 , P3) = - Ntij kAiik(PIP2P3) 

X {[ i/;( i PI)On..( i PI) ] [jjl j P2)On h P2)] 

X [kfikp3)Onikp3)]}l, (C7) 
where 

AijipIP2P3) 

= rJ.-;(ipI)O (0, - PII yes) Ip2P3) 

+ rJ.- j(jP2)0 (0, - P21 yes) IPIP3) 

+ rJ._k(kp3)O (0, -P31 y(s) IPIP2) 

- rJ.-;(iPI)OrJ.-hp2)0 (-PI, - P21 y(s) Ip30) 

- CL;(iPI)0rJ._ikp3)0 (-PI' -P31 y(s) Ip20) 

- rJ.-ljP2)0rJ.-ikp3)0 (-P2, - P31 yes) IpIO). (C8) 

Similarly, we need the four-quasiparticle generaliza
tion of Eqs. (C7) and (C8) for (2.39). We thus define a 
quantity Bij/cl(PI, P2 ,P3 ,P4) by 

B;jklpI, P2 , P3, P4) 

== (n+(ipI) - i, n+(j - P2) - j, n+(kp3) - k, 

n+(lP4) - 11 H~ 1'1"0)' (C9) 

The evaluation of this matrix element is done in 
exactly the same way as above. We obtain (in the 
infinite volume limit) 

Bijkl(PI, P2, P3, P4) 

= ijkIA;jkl(PIP2P3P4) 

X ([ if;( i PI)On i ( i PI)] [jfl j P2)On j(j P2)] 

X [kfikp3)Onikp3)][lfl(lP4)On t(lP4)]}l, (ClO) 
where 

Aiikl(PIP2P3P4) 
= rJ._;(ipI)OrLj(jP2)0 (-PI' - P21 yes) Ip3P4) 

+ rJ._i(ipI)0rJ.-ikp3)0 (-PI' - P31 yes) Ip4P2) 

+ rJ._;(i PI)OOC-l(l P4)0 ( - PI, - P41 yes) I P3P2) 

+ rJ._j(jP2)0rJ._ikPa)0 (-Pa, - P21 y(s) IPIP4) 

+ rJ.-ljp2)0rJ.-Z(lP4)0 < - P2, - P41 yes) IPIP3) 

+ rJ._ikp3)0rJ._zClp4)0 < - Pa, - P41 yes) IPIP2)' 

(Cll) 

[Note that the excluded terms in the momentum sums 
of (2.35) give only 0(1) contributions to (E) in the 
infinite volume limit.] 

Finally, we observe that Eq. (C8) can also be 
written as 

A iiipIP2P3) = Cjk(PIP2P3) - rJ._ i (iPI)0rJ.-;(jp2)0rJ._k(kp3)0 

where 
X C~~:-k(-PI' -P2' -Pa), (C12) 

C jk(PIP2Pa) 

= rJ.- j(jP2)0 (0, - P21 yes) IPIP3) 

+ rJ._ikp3)0 (O,'-P31 yes) IPIP2) 

- rJ._;(jp2)0rJ.-ikp3)/j (-P2' - P31 y(s) IpIO), (C13) 

and the superscript (T) indicates the transpose of all 
matrix elements. Similarly, 

A;iklpIP2P3P4) 

= D jkl(PIP2P3PJ 

+ rJ.-l i PI)OrJ._ j(j P2)0rJ.-k( k P3)0rJ.- t( 1 P4)0 

X D~~~-k.-t(-PI' -P2, -P3, -P4)' (C14) 
where 

D jkZ(PIP2P3P4) 

= rJ.-k(kPa)orJ.-z(lP4)O (-Pa, - P41 yes) IPIP2) 

+ rJ.-ljp2)OrJ.-ikp3)O(-P3, -P21 y(s)lpIP4) 

+ rJ.-ljp2)OrJ.-t(lP4)O (-P4' - P21 y(s) IPIP3)' 

(C15) 

APPENDIX D: GENERALIZED WEIGHTING 
FACTORS 

In this appendix we prove the result (4.8). For this 
purpose we need the genera.! forms of the corrections 
bj;(p) and brJ._;(P) , defined in Eqs. (4.1) and (4.2). 
These corrections can be derived by iterating Eqs. 
(3.8) and the first line of (4.3) and using definitions 
(4.4)-(4.7). The results are 

b/;(P) = 2rJ._lp>o[l - rJ.~ip)or%(p)obrJ.-lp), (01) 

brJ._lp) = -[1 - rJ.':;(p)or1[Ei(p)o + EI(p)Orl 

X {CLi(P>o[Lll+(P)2 + Ll1-(-P)2] 

+ [1 + rJ.:i(p)o]Ll2;(p)2}, (02) 

where Llli (p)2 and Ll2i(P)2 are the second-order correc
tions to the self-energies. The corrections bj;(p) and 
bOC~i(P) are second order in y(s), and hence the result 
(4.10) ensues. The result of (4.9) and (4.11) can be 
proved as follows: 

! if;(p)w;(p)Oni(p) 
i 

= ! i/;{P}o[E;(p)O + g]n;{p) 
; 

(03) 
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Using (Dl) and also the relation 

[1 - a.:;(p)o] = 2E;(pMEi(P)0 + El(p)Orl 

= -2Ei(P)0a.-lp)o[~2(p)Or\ (D4) 

we can easily prove that 

b!;(p)E;(p)O + ba.-i(P)~2(P)ofip)0 == O. (DS) 

Substitution of CDS) into (D3) gives 

I i!;(P)Wi(p)On;(p) 

= I iflp)o[E;(P)O + g]n;(p) + O(ya). (D6) 

Finally, substitution of (D6) into (B20) gives (4.9) 
after we also observe that h(P)o and a.-i(P)O in the 
third term of (B20) can be replaced by h(P) and a.-i(p) 
through second order in y(s). Equation (D4) can also 
be used to check that 

I i!;(ip) = I i!;(ip)o = l. 
i i 

An explicit expression for ba._i(p) can be obtained 
by substituting Eqs. (4.18) and (4.19) into the rhs of 
(D2). For completeness we list the result below, for 
Hermitian V, inasmuch as it is required in Sec. S: 

ba._;(p) = t N 0[2E;(p )or1a._;(p)0 I I j k!;(P2)oNPa)0 
1'21'3 ik 

X [1 + nj(P2) + niPa)] 

x A!f,/(PP2Pa)A-i.iiPP2Pa) 

X [E;(P2)0 + Ek(Pa)o + Ei(p)O]-l 

+ H2Ei(p )or1a._;(p)0 

x I I jklf;{P2)ofk(Pa)oNP4)0 
1'21'31'0 jkl 

X A!%~(PP2PaP4)A-i.jkl(PP2PaP4) 
X [Ei(P)O + E;(P2)0 + EiPa)o + Ez(P4)Or

l 

x ([I + n;(p2)][1 + niPa)][I + n Z(P4)] 

- n;(P2)niPa)n Z(P4)}' (D7) 

APPENDIX E: NO-GAP THEOREM 

The expression for the quasiparticle energy in the 
pair-Hamiltonian model possesses a gap in the zero
momentum limit as can be easily verified from (2.17). 
The reason for this gap can be understood in the 
following manner. If we examine carefully the 
expressions (4.18) and (4.19) for ~~(P)2A and ~~(P)2A' 
respectively, then we find in the limit P -- 0 that these 
terms have the same form as the last term in (B22) or 
the first term in (4.22). This discovery leads one to 
suspect that D.2(P)1 of (4.19) and the last term in (B22) 
should be considered as being second order in pertur
bation theory. Thus, using (4.18), (4.19), and (4.22), 
we can verify, after some manipulations with the help 

of (C13), that 

g(l) == go + gl - t I n'(p)a.(_)(p) (001 y(s) Ip, - p) 
I' 

= [~~(O)o + ~~(O)o] 

whereas 

+ {~~(0)1 + ~~(0)2A + ~~(0)1 + ~~(0)2A}' 
(E1) 

g(l) :F ~~(O)o + ~~(O)o + [~~(O)l + ~~(O)d. (E2) 

A similar difficulty occurs with the second term in 
(4.22) for g2' in the sense that if we had included this 
term along with ~1(P)2B and ~2(P)2B of (4.18) and 
(4.19), then we would have again ended up with a 
gap in Ei(p) to second order. In the same way in which 
a gap obtained in the first order is eliminated in the 
second order, we believe that the second-order terms 
cited above will combine with certain third-order 
self-energies to eliminate the "second-order gap." 
In general, we will have to mix different orders in 
perturbation-theory calculations. This fact, i.e., the 
cancellation of a gap in any particular "order" by 
mixing with higher-order terms, has been proved by 
Hugenholtz and Pines21 to all orders in perturbation 
theory at T = 0 OK. Thus, we shall always truncate the 
expressions for g and ~2(P) in order to be consistent 
with the no-gap theorem. 

APPENDIX F: DILUTE HARD-SPHERE 
BOSE GAS 

In this appendix we show how to extract the "dilute 
hard-sphere Bose gas" (DHSBG) results from the 
perturbation-theory calculations. 

The hard-sphere Bose gas was first studied exten
sively by Lee, Huang, and Yang,22 who used the 
pseudopotential method to study the ground-state 
(T = 0 OK) properties. The use of the pseudopotential 
for the DHSBG is equivalent to the following replace
ment, due to WU,l in the Hamiltonian H of Eq. (2.1): 

(klk21 V(s) Ikak4) -- I 67Ta(Q)-1 cos [E(ka - k4)!po] 

x bKR(kl + k2 - ka - k4), (FI) 

where a is the hard sphere diameter, Po = (l67Tan~)1, 
and bKR( ) is a Kronecker-Cl function. (We have also 
used units Ii = 2m = 1.) We must set E -- 0+ at the 
end of any calculation. 

The DHSBG model is characterized by three 
lengths: (I) the interparticle distance t = n-!, (2) 
the hard sphere diameter a, and (3) the thermal wave
length AT = (47TfJ)-1. Three dimensionless parameters 
of interest in this model are (1) a/AT' (2) (na3)!, and 
(3) naA} . A dilute hard-sphere gas is characterized by 
the condition (na3)1 « 1. 
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Equation (Fl) shows that the pseudopotential VIs) 

is non-Hermitian. We have generally been careful to 
write down expressions correctly for non-Hermitian 
potentials. However, we have not been completely 
consistent, in this respect, in writing down the zeroth
order expressions of Sec. 2 and Appendix B. The 
difficulty there was that we cannot diagonalize 
Ho(g) of (2.4) by a canonical transformation for a 
non-Hermitian potential. Wu1 introduced the concept 
of "left" and "right" eigenstates to overcome this 
difficulty, and we can use the consequences of Wu's 
procedure whenever we encounter inconsistencies. 

As was shown by WU,l we can set E ---+ 0+ in most 
of the first-order calculations from the outset. How
ever, it is not permissible to set E ---+ 0+ in second-order 
expressions before explicit calculations, although it is 
still permissible to set E -+ 0+ in the zeroth-order 
quantities oc_;(P)o and E;(p)O' Thus, we can extract 
mostly correct DHSBG expressions from our results 
by using (Fl). 

Before we proceed to obtain explicit expressions for 
(E), E+(q) , and (n(q», we first list DHSBG limits of 
some important quantities which occur frequently in 
second-order calculations. The procedure for obtain
ing the proper DHSBG limits consists of three steps: 
(i) Use Eq. (Fl) for (klk21 VIs) Iksk4) everywhere; 
(ii) expand the pair-Hamiltonian-model results to 
any desired order in the expansion parameters (naS)! 
and (a/AT); (iii) follow the subtraction procedure 
described below to eliminate all divergences. 
, We now illustrate this procedure for the lowest
ord~r DHSBG results. With prescriptions (i) and (ii) 
we obtain 

~l(P)"-' W~, 

~2(P) "-' -(iW~), 

(F2) 

(F3) 

go "-' l(W ~), (F4) 

E;(p)O "-' ip(p2 + 167Tan~)! == iEp , (F5) 

OC-i(P)O "-' 1 + 2y2 - 2iy(y2 + I)! == g_;(y), (F6) 

where y = p/Po and W = 167Tan, and the fraction of 
particles in the zero-momentum state at T = 0 oK is 
given (in the lowest approximation) by 

~ "-' 1 - (nQ)-l I (n(p»o 
p 

with g(y) == g_(y). The integral in (F7) can be re~dily 
evaluated, and one obtains 

; = 1 - !(n;~a3f + O«na3)!), (FS) 

which is a well-known result first derived by Lee, 
Huang, and Yang.22 

The quantities AiiipIP2PS) and Aiik/(PlP2PSP4) of 
(C8) and (Cll) occur very frequently in the second
order calculations of this work. Hence we list their 

'DHSBG limits here: 

AiiipIP2PS) = C~a) {OC-;(yl)O cos E IY2 - Y31 

+ OC-;(Y2)O cos E IYa - Yll 

+ oc-iYa)o cos E IY2 - Yll 

- OC-;(Yl)OOC_;(Y2)O cos EYa 

- oc_;(Yl)ooc-iYa)o cos EY2 

- OC-;(Y2)oOC-k(Ya)o cos EYl}, (F9) 

(T) (167Ta) { ) Aiik (PIP2Pa) = n OC_;(YI 0 cos EYI 

+ OC-;(Y2)O cos EY2 + OC-k(Ya)o cos EYa 

- oc_;(YI)ooc-lY2)O cos E IYI - Y21 

- OC-;(Yl)OOC-k(Y3)O cos E IYI - Yal 

- oc_;(Y2)ooc-iYa)o cos E IY2 - Yal}· 

(FlO) 

In the limit E -+ 0+, we get, for A;;k(PlP2PS), 

Aiik(PIP2PS) = A~'f,}(PIP2PS) 

= c~a){OC_;(yI)O + OC-;{Y2)O + oc-k(Ys)o 

- OC_;(Yl)OOC_;{Y2)O - OC-;(YI)OOC-k(Ys)o 

- oc_;(Y2)ooc-iY3)O}' (Fll) 

For Aiikl(PIP2PSP4), we obtain 

AiiklpIP2PSP4) = (167Ta/Q) 

etc. 

X {OC_;(Yl)OOC_;(Y2)O cos E Iys - Y41 

+ oc-iYs)ooc-b4)O cos E IYI - Y21 

+ OC-;(Yl)olX_k(Y3)O cos E IY2 - Y41 

+ OC_;(y0olX-bJo cos E Iys - Yll 

+ OC-;(Yl)OOC-/(Y4)O cos E IY2 - Yal 

+ OC- i (Y2)OOC-k(Ys)o COSE IY4 - YII}, 

(FI2) 

We now list the results obtained for the chemical 
potential, the self-energies, and the average energy 
(E) by following the procedure described above (F2). 
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Chemical Potential 

The DHSBG limit of the chemical potential is 
derived by referring to Eqs. (4.21) and (4.22). We 
find 

g == go + g1 + 82 + O(na3
) + O(naA.~), (F13) 

where 

go = 81Tane == lwe, (F14) 

g1 = W(nQ)-l! (n(p» = W(i - ;), (Ft5) 
:P 

= _l~( Q)-l ~ g(p) [1 + 2n (p)J. (FI6) g2 "2 n k 1 2( ) + 
l' - g P 

A straightforward calculation of Eq. (F16) for g2 
shows that the integral is divergent. This divergence 
is well known and comes from the y - IX) limit at 
T = O. To avoid this divergence, we subtract the 
y __ IX) term from the rhs of (F16), i.e., according to 
Wu1 we write 

g2 = -IW(nO)-l I ( g(p! [1 + 2n+(p)] 
:P 1 - g (p) 

- iWeCw(p) - gOrl). (Ft7) 

The real justification for this subtraction procedure 
is to avoid setting E -+ 0+ until the divergence in Eq. 
(F16) is apparent and then to take the limit E -+ 0+ 
with proper care. We adopt the above procedure 
wherever necessary below. 

/).2lp) = -(tw;) + tW(nQ)-l 

x ! { g(p:) [1 + 2n+(P2)] 
1>2 1 - g (Pa) 

- (iwe)· (w(Pa) - gO)-I} 

+ (tW2~)(nO)-1 ! ! [1 + nlPa) + nips)] 
1>21>3 ;k 

(1)+1>2+1>3=0) 

X Uf,(P2)okfk(Pa)o] 

x [1X-ip2)O + lX-iPa)o - 1X_;(Pa)olX_ips)o] 

X [1X-i(P2)O + lX-k(Pa)o - 1] 

x [E;(P2)0 + Ek(PS)O + Elp)or1 + /).2lp)2B· 
(F20) 

If we negiect the terms /).li(P)2B and /).2;(P)2B and 
take the T = 0 oK limit by setting n+(p) = 0 in Eqs. 
(F19) and (F20), then we find that the above results 
agree completely with the earlier results of Belyaev.I9 

The justification for neglecting the terms /).li(P)2B and 
/).2i(P)2B near T = 0 oK, and their significance at 
T:;!: 0 oK, will be discussed at the end of this appendix. 

Average Energy 

An expression for the average energy of the DHSBG 
can be deduced from Eqs. (B20) and (2.37), after 
expanding the pair-Hamiltonian result (B20) for Eo 
through second order in (naa)t. We also need to use 
the lowest-order results given by Eqs. (F2)-(F8) and 
(F14) in Eqs. (2.37), (2.40), and (2.41). We shall not 
give the straightforward and tedious intermediate 
details here but will quote only the final result: 

(E) = Eo + 2: (EJiik + ! (E2)iikl, (F21a) 
;;k iikl 

The results (F13)-(F17) agree with previous results 
of various authors.llB The integral in (FI7) can be 
evaluated easily at T = 0 oK. Then upon substituting 
the expression (F8) for ~, we obtain for g at T = 0 oK 
the well-known result where (E2)iik and (E2)i;k, are obtained from (2.40) and 

(2.41) by substituting Eqs. (F9)-(FI2) without setting 
g = (!We)[1 + ~ .. .n~3a3/1T)t + O(nas)] . . (FI8) E -+ 0+. The quantity Eo in (F21) is given by 

The self-energies /).u(P) and /).2i(P), for the DHSBG, 
can be obtained by applying the procedure outlined 
above (F2) to Eqs. (4.18) and (4.19). The final results 
are 

/).li(P) = (w~) + W(I - e) - !W2~(nnrl 

X ! 2: [1 + niP2) + nk(ps)J 
1>,,1>3 ik 

(P+P 2+1>a=O) 

x Ukji(P2)oh.(Ps)oJ 

x [EipJo + Ek(Pa)O + Ei(p)Or1 

x [Ot-i(pJo + Ot-k(Pa)o - Ot_ip2)oOt_iPa)o]2 

+ !W2~(nn)-1 2: [W(P2) - gorl 

(F19) 

EolN = lW[1 + (1 - ~)2] - (iW~)2[2nOrl 

x ! ([Ep + El(P)Orl - ![W(p) - gorl} 
:P 

+ {nnrl ! n+(p)Ep 
1> 

+ (nQrl(gl + g2) ~ (n(p»o 
II 

+ Iw[<nQrl! ( g(p; [1 + 2n+(p)] 
1> 1 - g (p) 

- C!We)[w(p) - gO]-I) J + Eu , (F21 b) 

where En denotes the (small) part24 of the rhs of 
(B20) that is not included with the other terms of 
(F21b). Also El(P)O, in the second term of (F21b), is 
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the lowest-order contribution' in the expansion of 
(4.7), obtained by making the approximations indi
cated in (F2) and (F4). 

At T = 0 oK, the term (E2)iikl can be neglected for 
the following reason. The only dimensionless param
eter after setting n+(p) = 0 is (nl;a3j7T)!. Each momen
tum sum in (F21), when replaced by an integral, gives 
a factor of pg after it is converted to dimensionless 
variables. Each energy denominator gives a factor of 
Ijp~ and each matrix element gives p~. With these 
observations one can easily check that (E2)iikl "" (pO)!1 
which is indeed of a higher order and can therefore 
be neglected. The term E21 in (F21 b) can also be 
neglected in the zero-temperature limit for the same 
reasons.25 In this limit then we find that the result (F21) 
agrees with WU,1 except for the term (gl + g2) X 
(nQ)-l I1' (n(p»o, which is third order in (na3)t. As 
noted by WU,l and also by Hugenholtz and Pines,21 
the evaluation of the third-order terms in the energy 
is quite uncertain except for a logarithmic term which 
comes from a careful study of (E2)iik' On the other 
hand, near the Bose-Einstein transition temperature 
T;., where I; is small, the term (E2)ijkl cannot be 
neglected, as has already been indicated at the end 
of Secs. 2 and 4. 

Quasiparticle Energies 

The quasiparticle energies €i(P) for the DHSBG 
are derived most easily by applying the procedure 
outlined above (F2) directly to Eqs. (4.29) and (4.31). 
We need to expand Eq. (2.17) for €i(P)O, through 
second order in (na3)t, by using (F2)-(F8) and also 
(F13)-(FI5). The final result is 

€;(p) = i€1' + tiW(nQrl[1 + g(y)]2[1 - g2(y)f1 

x I ( g(p:) [1 + 2n+(P2)] 
1'2 1 - g (P2) 

- (!W!;)[W(P2) - gO]-I) + b€;(P)2' (F22) 

where b€i(P)2 is obtained explicitly by substituting 
Eqs. (F9), (FlO), and (FI2) into the rhs of Eq. (4.31). 

In the temperature region near T = 0 OK, the second 
term in (4.31) can be neglected for the same reasons 
mentioned below (F21 b). Then the result (F22) 
agrees completely with the real part of the corre
sponding result derived earlier by Mohling and 
Morita17 after the following additional observation is 
made. Mohling and Morita used a parameter X, 
defined to be the fraction of zero-momentum par
ticles in the unperturbed plane-wave states, instead of 
1;, which is the fraction of zero-momentum particles 

in the perturbed plane-wave states, i.e., 

(1 - X)N = 1: n+(p) ¥= 1: (n(p» = (1 - I;)N. 
1'*0 1'*0 

We can rewrite (F5) in terms of X as 

€;(p)o = ip[l + 167TanX]! 

(F23) 

- iW(2nQ)-1[1 - g(pW[l - g2(p)fl 

x I ( g2(p;) [1 + 2n+(P2)] 
1'2 1 - g (P2) 

- tW!;[w(p) - gO]-I) + 0(Wna 3
). (F24) 

Equation (F24) is derived from (F5) by taking the 
difference between the two sides in the inequality 
(F23) and then using the lowest-order expression for 
(n(p» given in (F7). Hence when we compare our 
result (F22) with that of Mohling and Morita, we 
must make the substitution indicated by the right-hand 
side of (F24). We need not evaluate the integrals in 
(F22) any further, because they have already been 
examined in Ref. 17 for various limiting cases of 
interest (T f".J 0 OK and T "" T;.). For completeness, 
we quote Mohling and Morita's result here for the case 
T,....., 0 OK and p « Po: 

€;(p) = iP(167Tan)I[1 + 8 (n;)l + 0(na3
) + 0(;;) 1 

(F25) 

An unphysical feature in the above analysis is that 
unless care is exercised the phonon velocity vanishes 
as T --+ r;. This fact can be verified immediately from 
(F22), since, if we let I; --+ 0 and neglect the second 
term in (4.31), we obtain €+(p) "" p2 when p --+ O. 
We mention in this connection that, in the high
temperature region T"" T;., Eq. (F5) for €i(P)O is not 
a good first approximation because I; --+ 0; hence the 
iteration procedure used to obtain (F22) is no longer 
justified. In this limit T --+ r;, the terms 111(P)2B and 
112(p)2B ofEqs. (4.18) and (4.19), and hence the second 
term in (4.31), are expected to play an important role. 
This point is discussed at the end of Sec. 4. We have 
not pursued the analysis of €i(P) for the DHSBG any 
further. In particular, the detailed study of €i(P) in 
the temperature region T --+ r; is left for future 
investigation. 

We now summarize the results of this appendix. 
(1) In the zero-temperature limit our expressions for 
the average energy and the quasiparticle energies agree 
with all previous work in the literature through 
second order in the hard-sphere gas parameter (na3)!. 
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(2) We have emphasized the importance of some 
additional terms in the quasiparticle energy and the 
average energy in the region T,..; T;". To our knowl
edge these terms have not been obtained previously. 
(3) Agreement with all previous work in the literature 
for Ei(P) and (E), as mentioned in (1), gives support 
to the phenomenological theory developed in Sec. 3. 
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1. INTRODUCTION 

It has been pointed out by several authorsl - 4 that, 
in view of the theorems of 0' Raifeartaigh, 5 J ost, 6 and 
Segal,7 Poincare invariance is incompatible with the 
description of free particles in terms of linear repre
sentations of higher symmetry or noninvariance groups 
and the discreteness of the mass spectrum of the 
elementary particles. They suggest that the Poincare 
group P should be replaced by a group which has 
P as a limiting case. The de Sitter groups, which are 
isomorphic to SO(4, 1) and SO(3, 2), are obvious 
canditates for a geometrical group, for they both 
contact into P in the limit in which the de Sitter radius 
goes to infinity; and 

lim cr.C2 = Pl'pl', 
~ .... o 

where C2 is the second-order Casimir operator of the 

de Sitter algebras, IX is proportional to the curvature 
of the Universe, and Pp is the momentum 4-vector in 
the Poincare algebra. If P is a subalgebra of an 
algebra G, then it is the nilpotency of P in its adjoint 
action on G which leads to the result of the theorems 
mentioned above, namely that the spectrum of the 
mass-squared operator is either continuous or is a 
single point in an irreducible representation of G. 
Since this criterion of nilpotency is removed by 
replacing P by either of the de Sitter algebras,1-3 it is 
worthwhile considering all possible unifications8 

U(D, S), over the real field, of the de Sitter algebras 
SO(4, 1) and SO(3, 2), both denoted by D, with a 
real, simple, integral symmetry algebra S. A similar 
analysis for P has been carried out by Flato and 
Sternheimer.8 

Let AI' ... , An be n finite-dimensional Lie algebras 
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group P should be replaced by a group which has 
P as a limiting case. The de Sitter groups, which are 
isomorphic to SO(4, 1) and SO(3, 2), are obvious 
canditates for a geometrical group, for they both 
contact into P in the limit in which the de Sitter radius 
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~ .... o 

where C2 is the second-order Casimir operator of the 

de Sitter algebras, IX is proportional to the curvature 
of the Universe, and Pp is the momentum 4-vector in 
the Poincare algebra. If P is a subalgebra of an 
algebra G, then it is the nilpotency of P in its adjoint 
action on G which leads to the result of the theorems 
mentioned above, namely that the spectrum of the 
mass-squared operator is either continuous or is a 
single point in an irreducible representation of G. 
Since this criterion of nilpotency is removed by 
replacing P by either of the de Sitter algebras,1-3 it is 
worthwhile considering all possible unifications8 

U(D, S), over the real field, of the de Sitter algebras 
SO(4, 1) and SO(3, 2), both denoted by D, with a 
real, simple, integral symmetry algebra S. A similar 
analysis for P has been carried out by Flato and 
Sternheimer.8 

Let AI' ... , An be n finite-dimensional Lie algebras 
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over the same commutative field K. A Lie algebra X 
over K is defined to be a unification of AI' ... , An' if 
there exist isomorphisms Ak of Ak into X (k = 1, 
. . . , n) such that 

X = A1(A 1) + ... + An(An), 

where the direct sum of vector spaces is not necessarily 
implied, so that 

dim X :::;; dim Al + ... + dim An. 

It is customary to use the notation 

X = U(A 1 , ••• , An)' 

The concept of a unification is useful as a minimality 
condition in finding a group which combines internal 
and external symmetries. However, there arises the 
conceptual difficulty of having a nonzero intersection 
of the internal and external symmetry groups which 
would imply, for example, that a space-time trans
formation could change the internal quantum numbers 
of a particle state. This conflict, in a higher symmetry 
scheme, between keeping the number of uninterpreted 
generators down to a minimum and avoiding a non
zero intersection of D and S, has led Vigier4 to propose 
a novel solution to the problem, namely that there 
should be two de Sitter groups DL and DR which are 
left and right translations of D. D L commutes with 
DR and their Casimir invariants are equal. DR is a 
subgroup of the unification, while DL is taken to be 
the external space-time symmetry whose representa
tions describe the states of free particles. 

Examples of the unifications of P with an internal 
symmetry which have been considered are R9Et 
SL(3, C) = U(P, SL(3, C», where R9 is a nine-dimen
sional commutative ideal,S and 

SU(2,2) = U(P, SU(2, 1».9-11 

Since the advent of the O'Raifeartaigh theorem, 
more attention has been paid to the de Sitter groups as 
space-time symmetries. 

and 
SU(2,2) = U(D, SU(2, 1»,1,12,13 

SO(6, 1) = U(SO(4, 1), SU(4)} 4 

have both been considered, and it is worth noting 
that, in terms of certain representations of these 
groups, some progress has been made in finding a 
discrete mass spectrum for the strongly interacting 
particles. 

As the natural unit of mass-squared in a de Sitter 
cosmology is very small because of the very large 
radius of the universe, Roman2 and Roman and Kohs 

have made the proposal, which they have examined 

in detail, that the mass-squared operator should be 
(R2/r2)ocC2, where R is the radius of the universe and 
r is the Compton wavelength of an elementary particle . 
This gives the correct magnitude for the masses under 
consideration. 

2. ANALYSIS 

Let G = U(D, S), where Sand D are both simple 
and where, by assumption, 

dimG:::;; dimD + dimS. (1) 

By Levi's radial splitting theorem,14 any Lie algebra 
G may be decomposed into the semidirect sum of its 
radical R and a semisimple subalgebra F, i.e., 

(2) 

since F, being semisimple, is a direct sum of a set of 
simple ideals Fi • This implies that 

n 

dim G = dim R + 2 dim Fi • 
;=1 

Because of the semidirect sum structure of G, there 
exist15 homomorphic mappings of Sand D into F, 
with images that will be denoted by S(F) and D(F), 
respectively. As Sand D are simple, S(F) I::::,j 0 or S, 
and D(F) I::::,j 0 or D, where I::::,j denotes an isomorphic 
mapping. But, if S(F) I::::,j 0, then S is contained in R, 
which is impossible. Thus S(F) I::::,j S and similarly 
D(F) I::::,j D. There also exist homomorphic mappings 
of Sand D into each F; of (2) with images denoted by 
S(Fi) and D(Fi ), respectively. Again S(F;) I::::,j 0 or S, 
and D(Fi) I::::,j 0 or D. The three possibilities for 
embedding S(F) and D(F) in F will now be examined 
in turn. 

(a) 3 an Fi with S(Fi ) = 0 and D(F;) I::::,j D. 
Let S(F}) = 0, and D(F}) I::::,j D; then dim D :::;; 

dim F}. From (1) and (2), 

dim (~Fi) + dim R:::;; dim S, 

and so dim F; :::;; dim S for i ~ 2. Therefore 3 an F; 
such that F; = S. It follows that F1 I::::,j D, R I::::,j 0, 
and Fi I::::,j 0 for i ~ l,j. Thus 

F = Fl EB F; = D(F}) EB S(F;), 

where the image D(F;) need not be zero. If D is 
isomorphic to a suba\gebra of S, then either D(F;) I::::,j 

D or D(Fj ) I::::,j O. In the first case, 

G = S((£D, 
and, in the second, 

G = SEB D. 
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If D is not isomorphic to a subalgebra of S, then 
D(Fj ) ~ 0, and only the second case can occur. 

(b) 3 an Fi with D(Fi) = 0 and S(Fi) ~ S. 
The treatment for case (b) is analogous to that for 

(a), with the result that either G = D(£S or G = 
DEBS. Clearly case (b) is not very restrictive as there 
are an infinite number of candidates for S. 

(c) 3 an Fi with D(Fi) ~ D and S(Fi) ~ S. This is 
the most interesting type of unification. 

Let i = 1. There are three possibilities, (Cl), (C2) , 
and (C3): 

(Cl) Fl ~ D. Then D:2 ~ S, and, since dim Fl = 
dimD, 

n 

I dim Fi + dim R ~ dim S. (3) 
i=2 

If 3 an F j , j ~ 2, such that S(Fj) ~ S, then R ~ 0, 
and 

G = Fl EB F j , Fl ~ D, F j ~ S. 

Then G = D(£ S as in case (b) above. If 3 an 
F j (j ~ 2) such that D(Fj ) ~ D, then R ~ 0, and 
so it is necessary that S ~ D, and 

G = Fl EB F;, Fl ~ F; ~ D. 

The remaining possibility is that for F j , j ~ 2, 
S(Fj) ~ D(Fj) ~ 0, implying that 

G = R(£ (Fl EB F2), 

where 
n 

(4) 
i=2 

However, as F2 commutes with Fl and Sand D have 
no images in F2 , it follows that F2 is redundant, and 
(4) may be rewritten as . 

G = R(£ F1 , Fl ~ D. (5) 

For D = SO(3, 2), S = SO(3, 2), SO(3, 1), SO(2, 1) 
or SO(3). From (3), dim R ~ dim S. As R is a real 
Lie algebra, the elements of R must provide a basis for 
a real (but not necessarily irreducible) representation 
of Fl' The five- and ten-dimensional representations 
of SO(3, 2) are the only real irreducible representa
tions of dimension ~ 10, so that the semidirect product 
in (5) survives only if S = SO(3, 2) or SO(3, 1) 
and the direct product otherwise. In the latter case 
R becomes redundant and may be discarded. 

Similarly for D = SO(4, 1), R need be kept only 
for S = SOC 4, 1) or SO(3, I). [SO ( 4, I) and [SO (3 , 2) 
are examples of such unifications. When R ~. 0, 
G = D ::::> S and the unification is said to be banal. S 

(C2) Fl ~ S. Then S:2 ~ D. An analysis similar 
to (CI) may be carried out but it is not very restrictive 

since there are an infinite number of possibilities for S. 
(C3) D =;f Fl =;f S, so that 

max (10, dim S) < dim Fl ~ dim S + 10. 

Since dim Fl > 10, for i ~ 2 it follows that dim Fi < 
dim S, and so the image S(Fi) ~ S cannot be realized. 
Hence i = I, and F is simple, i.e. 

G = R(£ F, F simple. 

It is now necessary to see if F actually exists, and, 
to do this, all simple Lie algebras F containing D and 
S, satisfying 

dim F ~ dim S + dim D, (6) 

are examined. 
Let F, jj, and 8 be the complexifications of F, D, and 

S, respectively. There are two cases: (1) Fis simple or 
(2) F is semisimple, being the direct sum of two iso
morphic simple Lie algebras. These will be discussed 
in turn. 

(1) jj ~ B2 is simple. 8 is simple or 8 = 81 EB S{, 
where 81 ~ 8~ (both simple). The inclusion F::::> 8 
must satisfy 

10 < dim F ~ dim S + 10. 

The only possible F::::> 8 are 

(i) Aa ::::> B2 , (ii) Ba ::::> Da, 
(vi) B5 ::::> D5, (v) D4::::> Ba, 

(vii) G2 ::::> A2 , (viii) A4 ::::> Aa, 
(x) Da::::> Dz . 

(iii) B4 ::::> D4, 
(vi) D5::::> B4, 
(ix) As ::::> A 2 , 

Examination of the real forms of F and its sub
algebras shows that all the above pairs except (vii) 
(Gz ::p Bz) provide unifications. These are summarized 
in Table 1. The method of Cornwelp6 for determining 
the real simple subalgebras of real simple lie algebras 
has been used to show that these are the only unifica
tions, i.e., real forms of F which contain none of the 
real forms of 8 are omitted. For example, NDlO , one 
of the real forms of D5 , contains none of the real 
forms of B4 • N Ds does not appear explicitly as a 
possible F, since it has been established16 that it is 
locally isomorphic to SO(6, 2). 

(2) F = Fl EB F~, Fl ~ F~ (both simple); 8 = 81 EB 
8~ or 8 is simple, i.e., 8; = O. In the mapping of 8 and 
jj into F, let Fl ::::> ~ jj and 81 , Then, as 

dim F (= 2 dim FI ) ~ 10 + 2 dim 81 , 

it is necessary to find all Fl ::::> 81 which satisfy 

10 ~ dim Fl ~ 5 + dim 81 

The only candidates are (i) Fl R::j 81, (ii) FI = As, 
81 = B2 • These will be considered in turn. 
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TABLE I. Unifications for F'simple. 

F' F D 

(i) SO(5,1) SO(4,1) 
SO(4,2) both 
SO(3,3) SO(3,2) 

(ii) SO(n, l) SO(4,1) 
to 6 ~ n ~ 10 

(vi) SO(p,q) both 
p+q=n+l 
p>q>1 

(viii) SU(4,1) SO(4,1) 
SU(3,2) both 
SL(5, R) both 

(ix) SU(2,2) both 
SL(4, R) SO(3,2) 

(x) SO(5,1) SO(4,1) 
SO(4,2) both 
SO(3,3) SO(3,2) 

(i) 8 = 81 , as otherwise dim F = dim S, contrary 
to the assumption that F strictly contains S, so that 
2 dim 8 = dim F::::;; dim 8 + 10, i.e., 

dim 8 = dimFI ::::;; 10. 

However, FI ::> ~ D, so that dim FI = 10. It 
follows that Fl ~ 8 ~ B2 • Thus F = SO(S, C), as 
this is the only real simple form of B2 EB B2. 

(ii) Suppose 8 ~ 81 ; then dim F::::;; dim B2 + 10, 
i.e., dim Fl ::::;; 10, and so, since Fl ::> 81 , dim Fl = 10. 
But dim Aa = 15, so that 8~ ~ 81 is necessary. 
Therefore, S = B2 EB B2 , which only has SO(S, C), 
considered as a real Lie algebra, as a simple real form. 

The possible unifications are shown in Table II. 
From Tables I and II, it can be seen that G can have 

the form G = R(£ F only in the case F = SO(3, 3), 
S = SO(3, 2), since SO(3, 3), being locally isomorphic 
to SL(4, R), has a four-dimensional real representa
tion. For example G = ISL(4, R). In all other cases 
G = REB Fand R, being redundant, may be discarded. 

3. CONCLUSIONS 

The unifications (a), (b), (C1), and (C2) are neither 
illuminating nor restrictive from a physical point of 
view, since they involve only the banal unifications, 
and direct or semidirect products of D and S. 

The case (C3) provides nontrivial and nonbanal 
unifications, which, because of the restriction on 

F 

SO(5, C) 
SL(4, C) 

TABLE II. Unification for F'semisimple. 

D 

both 
both 

Compact S 

SO(5) 

Noncompact S 

SO(4, 1), SO(3, 2) 
SO(5, C) 

Compact S Noncompact S 

SO(5) SO(4,1) 
SO(4, 1), SO(3, 2) 
SO(3,2) 

SO(n) SO(n - 1,1) 

SO(r, s), r + s = n, r ~ p, s ~ q 

SU(4) SU(3,I) 
SU(3, 1), SU(2, 2) 
SL(4, R) 

SU(2,1) 
SL(3, R) 

SO(3, 1) 
SO(3, 1) 
SO(3,1) 

their dimensions, are more likely to be of physical 
interest. They are displayed in Tables I and II, where 
it can be seen that there is no nontrivial unification 
of D and SU(3). A similar result holdss for P and 
SU(3). To establish the suitability of any of these 
algebras G, as a higher symmetry or noninvariance 
algebra, it is first of all necessary to see if the corre
sponding S has irreducible representations, capable 
of classifying a subset of the elementary particles. 
A representation of G can then (if possible) be con
structed on these representation spaces of S, so that 
the spectrum of C2 may be examined. 
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Analytic solutions of the fundamental equation of the reference spectrum method for nuclear matter 
are obtained in the cases of the square well and exponential potentials with hard cores. In the former 
case analytic wavefunctions are obtained for every partial wave L. These wavefunctions are expressed 
in terms of spherical Bessel and Hankel functions or in terms of spherical Bessel, Hankel, and Newmann 
functions of order L. In the latter case an analytic expression is obtained for the s wavefunction only. 
This is given in terms of the transcendental functions G ±v(r) and M ±v(r) which are defined as series of 
well-known functions. Finally an application is made of our results to the calculation of the well depth 
of a A particle in its ground state in nuclear matter. 

1. INTRODUCTION 

Considerable effort has been made for obtaining 
analytic solutions of various equations of mathe
matical physics. In particular, concerning quantum 
theory and its applications, the Schrodinger and also 
the Klein-Gordon and the Dirac equations have 
been studied in detail with the aim of obtaining 
analytic solutions for various types of potentials. We 
refer to the classical treatise of Morse and Feshbach1 

and also to the article of Va sud evan, Venkatesan, and 
Jagannathan.2 

. In the recent years the interest pertaining to the 
applications of quantum theory to nuclear problems 
has been shifted to the study of equations governing 
the motion of a pair of nucleons in a nucleus or in the 
(infinite) nuclear matter. One of the most popular 
methods which have been used in nuclear matter 
calculations is the reference spectrum method,3-9 in 
which the radial differential equation for the relative 
motion of two nucleons in nuclear matter is linear but 
not homogeneous. In this method the following two 
approximations are made for the solution of the 
Brueckner integral equation. First the Pauli principle 
is neglected, that is, one puts Q = I in the Brueckner 
equation for the reaction matrix G. Secondly the 
actual energy spectrum in intermediate states is 
replaced by a "reference spectrum" of the form 
A + k 2j2m*, where the constant A and the dimen
sionless effective mass m* = M*jM are chosen in 
such a way that the reference spectrum is a good 
approximation to the actual one in the "important 
region": 3 ~ k ;( 5fm-1• 

The reference spectrum method has a number of 
technical advantages: The Brueckner integral equation 
reduces to the reference spectrum equation, which, as 
we already stated, is a differential, linear, inhomo
geneous equation. Also the contribution to the 
reference reaction matrix elements from the hard 

core can be approximately summed over angular 
momentum. The contribution from the outer part of 
the potential is determined by the solutions of the 
above mentioned differential equation. There is also 
an iteration expansion for the outer contribution 
which is analogous to Born series and has been called 
"modified Born expansion." 3 

The aim of this paper is to give analytic solutions of 
the fundamental equation of the reference spectrum 
method for nuclear matter in the cases in which the 
interparticle potential is of square well or exponential 
shape with hard core. Although in most calculations 
methods of numerical analysis are used for obtaining 
solutions of the reference spectrum equation, it seems 
desirable to have, whenever possible, analytic 
solutions as for the other differential equations of 
mathematical physics. One advantage of analytic 
solutions is that they are free of the inaccuracies 
involved in the solutions obtained by numerical 
integration. These inaccuracies depend on the step 
length of the integration and also on the large number 
which is taken as an upper boundary point (when the 
actual upper boundary point is infinity) and may not 
be negligible, if, for example, a parameter which 
appears in the differential equation has values in 
certain regions. Analytic solutions are therefore useful 
in making an independent check of the solutions 
obtained with numerical methods and also in deriving 
asymptotic behaviors, etc. 

In the next section we describe briefly the way in 
which the (radial) fundamental equation of the 
reference spectrum method for nuclear matter is 
derived, and we write this equation in the form which 
will be used in this paper. In Sec. 3 we obtain analytic 
solutions of this equation, for any partial wave in the 
case of the square well potential with hard core. An 
analytic expression for the s-wave part of the diagonal 
reference reaction matrix element is also given. In 

1655 
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Sec. 4 we obtain the s-wave solution of the reference 
spectrum equation for the exponential potential with 
hard core. Finally in the last section we calculate the 
s-wave contribution to the "spin average" well depth 
of a A particle in its ground state in nuclear matter, 
using the analytic expressions obtained in the previous 
sections. 

2. THE FUNDAMENTAL EQUATION OF THE 
REFERENCE SPECTRUM METHOD 

FOR NUCLEAR MATTER 

We denote by an index R the quantities of the 
Brueckner theory calculated with the reference 
spectrum approximations. We follow also Ref. 3 and 
define all energy quantities such as e and v as the 
actual ones multiplied by M . /i-2. Thus these quantities 
are expressed in units fm- 2• In order to convert to 
MeV, we use the relation 

Ifm-2 = 41.467 MeV. (1) 

The equation for the "reference reaction matrix" is 

GR = V - veiilGR, (2) 
where 

eR = 2A + k'2Jm* + p2Jm* - H(ko'P) • (3) 

In this expression k' is the relative momentum in the 
intermediate state, P the "average" momentum 
(2P = momentum of the center of mass), ko the initial 
relative momentum, and H the "starting energy." 

Using the equations 

GR = vQR and 1pR = QRr/>, (4) 

we can write Eq. (2), in coordinate space in the 
following form: 

(y2 _ V2),R = m*v1pR, (5) 
where 

y2 = p2 + m* [2A - H(ko'P)]' (6) 

The function' is the "distortion of the wavefunction" : 

(7) 

In the above equations r/> is the free-particle wave
function and 1p the actual one for the relative motion 
of a pair of particles in nuclear matter. 

Equation (5) is the fundamental equation of the 
reference spectrum method. 

Consider now the partial wave expansions 

ential equations 

( 
d2 L(L + 1) 2) . 
-2 - 2 + ko korJLCkor) = 0, 
dr r 

(9) 

( 
d2 L(L + 1) 2) 
-2 - 2 - Y x~Cr) = -m*vCr)u~(r). 
dr r 

(10) 
Substituting into (10) the 

x~(r) = kori£(kor) - u~Cr), (11) 

which is derived from Eqs. (7) Ccorresponding to 
the reference spectrum) and (8) and taking into 
consideration Eq. (9), we obtain the radial funda
mental equation of the reference spectrum method for 
nuclear matter in the following form: 

d2u~Cr) (L(L + 1) + * ( ) + 2) R() --- - m v r Y UL r 
dr2 r2 

= -(k~ + y2)kori£Ckor), C < r < 00. (12) 

The uf(r) has to vanish inside and at the hard cote 
radius c and approach the unperturbed wave function 
for large separations. Therefore, the boundary 
conditions for uf(r) are 

u~(c) = 0, lim u~(r) = kori£Ckor). (13) 
r-> 00 

The parameter y in Eq. (12) is called the "healing 
parameter." The larger the value of y, the more 
rapidly uf(r) approaches the unperturbed wave
function korJLCkor). 

We may finally remark that Eq. (12) can be easily 
transformed, by using, for example, the transfor~ 

mati on 

w~Cr) = u~(r) 

( 
. . iyrh(l)(iyr») 

- korJL(kor) - kocJL(koc) '. (1). 
lych (IYC) 

(14) 

into another one which has a different inhomogeneous 
term, but homogeneous boundary conditions: wf(c) = 
0, wf( 00) = O. The conditions for the existence and 
the uniqueness of the solution for such a boundary 
value problem are very well known.lo•n 

3. REFERENCE SPECTRUM WA VEFUNCTIONS 
FOR THE SQUARE WELL WITH HARD 

CORE POTENTIAL 

We consider the case in which the internucleon 
potential is of square well shape with hard core: 

{

= 00, 

vCr) = -Vo, 

=0, 

O<r<c 
(15) 
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Although potentials of this type are crude approxi
mations to the internucleon potential, they have been 
used for simplicity in various nuclear structure calcu
lations.12 •13 

In the case of potential (15), Eq. (12) is written 

d2u~(r) (L(L + 1) * 2) R() 
--2- - 2 - m Vo + Y UL r 

dr r 

= -(k~ + y2)korh(kor), c < r < rx, (16a) 

d2u~(r) (L(L + 1) 2) R() --- +y uLr 
dr2 r2 

= -(k~ + l)korh(kor), rx < r < 00. (16b) 

We proceed in finding the u~(r) by distinguishing two 
cases according to the sign of the constant -m*vo + 
y2: 

(i) -m*vo + y2 = g2 > o. 
We treat first the case of the s waves because this is 
simpler and will indicate also how to find the solution 
for arbitrary L. Particular solutions of Eqs. (I6a) and 
(16b) (with L = 0) are respectively 

u~p(r) = [(k~ + y2)/(k~ + g2)] sin kor, c < r < rx, 

(17a) 

u~ir) = sin kor, rx < r < 00. (17b) 

These particular solutions are very easily found since 
the differential equations for L = 0 are of constant 
coefficients and their inhomogeneous term of well
known type. 

Using particular solutions (17a) and (17b) and the 
general solutions of the homogeneous equations 
corresponding to (I6a) and (16b) with L = 0, we find 
that the s wave u~(r), which also satisfies the boundary 
conditions (13), is 

As sinh gCr - c) 

u~(r) = 
_ Ck~ + y2) Ce-g(r-C> sin k c - sin k r) 

(k~ + g2) 0 0 , 

c =:;; r =:;; rx (18a) 

Bse-yr + sin kor, rx =:;; r < 00. (18b) 

The constants As and B. are determined by matching 
the u~(r) and du~/dr at the point r = rx. The result is 

As = [y sinh g(a - c) + g cosh g(rx - C)]-l 

X 0 Y (y - g)e-g(~-c) sin k c 
(

k2 + 2) 

(k~ + g2) 0 

- ~*vo 2 (y sin korx + ko cos korx»), 
(ko + g) 

(19) 

m*vo . ) + 2 2 sm korx . 
Cko + g) 

(20) 

We find now the solutions of (16a) and (16b) for 
arbitrary L. The fact that for L = 0 the particular 
solution of (16a) is 

u~ir) = [(k~ + y2)/Ck~ + g2)] sin kor 

= C~(korio(kor» 
suggests looking for a particular solution of the form 
uf.pCr) = C~korjL(kor). Substituting into Eq. (16a), 
we see that, the C~ being chosen appropriately, 
uf.ir) is indeed a particular solution. We find 

u~.pCr) = [Ck~ + y2)/(k~ + g2)]korh(kor), 

c < r < rx, (21a) 
and similarly 

u~.ir) = korhCkor), rx < r < 00. C21b) 

We choose as a fundamental set of solutions of the 
homogeneous equations corresponding to (16a) and 
(16b) the (korhQl(igr), korh7;l(igr» and (korhQl(iyr), 
korh!J.l(iyr», respectively. Using these and also the 
particular solutions (2Ia) and (2Ib), we find that the 
u~(r) which satisfies the boundary conditions (13) is 

u~(r) 

kor' [AL . [h2lCigc) . h~l(igr) 
- h2l(igr)h~lCigc)] 

_ (k~ + y2) . (h(koC) h(ll(i r) - . (k r»)] 
(k~ + g2) h2l(igc) L g 1£ 0 , 

c ~ r ~ rx (22a) 

kor' [BL ' h2l(iyr) + h(kor)], rx =:;; r < 00 • 

C22b) 

The constants AL and BL are determined by matching 
u~(r) and du~(r)/dr at r = rx. The two equations which 
we obtain in this way contain derivatives of spherical 
Bessel and Hankel functions. We can eliminate these 
derivatives by using the relation 

djdL(p) = !: h(p) - h+1(p), 
P P 

(23) 

which we obtained by using Eqs. (I5.9) and (15.10) 
of Ref. 14. In this way we find the following formulas 
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for AL and BL: 

AL = {igoch2)(iyoc)[h2~1(igoc)h2)(igc) 
- h2)(igc)h2!-1(igoc)] 

+ iyoch2~1(iyoc)[h2\igc)h2)(igoc) 
- h2)(igoc)h2)(igc)]}-1 

X (k; + y2). h(koc) [i OCh(l) (i oc)h(l)(i oc) 
(k; + g2) h2)(igc) y L+1 Y L g 

- h2)(iyoc)igoch2~iigoc)] 

m*vo . . (1). 
2 2 [lL(kooc)lyochL+1(IYOC) 

(ko + g) 

- kooch+1(kooc)h2)(iYOC)]) , (24) 

(25) 

Note that Ao and Bo differ from As and Bs by a factor. 
A similar remark holds for Co and Do in case (ii): 

(ii) -m*vo + y2 = _g2 < O. 

We choose in this case as a fundamental set of 
solu~ions of the homogeneous equation corresponding 
to Eq. (16a) the (korh(gor), kOrnL(gr», where nL(gr) 
is the spherical Neumann function of order L.14 The 
results at which we arrive are the following: For the 
s-wave solution, 

Cs sin g(r - c) 

u~(r) = 
(k~ + y2) [Sin koc . . k ] 

- 2 2 -.-- sm gr - sm or , 
(ko - g) sm gc 

c ~ r ~ oc, (26a) 

Dse-rr + sin kor, oc ~ r < 00, (26b) 
where 

Cs = [g cos g(oc - c) + y sin g(oc - C)]-l 

(Ck~ + y2) sin koc . 
X 2 2 -.-- (g cos goc + y sm goc) 

Cko - g) sm gc 

- ;n*vo 2 (ko cos kooc + y sin kooc») , (27) 
(ko - g) 

D _ ra(c . (_) _ Ck~ + y2) sin koc . 
s - e s sm g oc c 2 2' sm goc 

(ko - g) sm gc 

m*vo . ) + 2 2 sm kooc , 
(ko - g) 

(28) 

while, for an arbitrary partial wave, 

kor[ CL[h(gc)nL(gr) - hCgr)nL(gc)] 

u~(r) = 

(k~ + y2)(h(koc) . .)] 
- (k; _ g2) h(gc) lL(gr) - lL(kor) , 

where 

c ~ r ~ oc, (29a) 

kor[DL · h2)(iyr) + h(kor)], 

oc ~ r < 00, (29b) 

cL = {goch2)(iyoc)[jL+1(goc)nL(gc) - h(gc)nL+1(goc)] 

+ iyoch2~1(iyoc)[h(gc)nL(goc)-h(goc)nL(gc)]}-l 

X (k; + y2)h(koc) [i och(1) (i oc)' ( oc) 
(k2 2)' ( ) Y L+1 Y J L g 

0- g JL gc 

- h2)(iyoc)gocj L+1(gOC)] 

m*vo . . (1). 
2 2 [lL(kooc)lyochL+1(IYOC) 

(ko - g) 

- koocj L+ikooc)h2)(iYOC)]) , (30) 

DL = [hQ)(iyoc)t1 

X (CL[h(gc)nLcgoc) - h(goc)nL(gc)] 

(k; + y2)hCkoc). ( + m*vo . (k ) 
- (k 2 2). ( ) lL goc) (k2 2)lL ooc) . 

0- g JL gc 0 - g 

(31) 

We may remark that in the case -m*vo + y2 < 0 the 
forms of the above reference wavefunctions are 
similar to those obtained by Razavy and Sprung.5 

These authors applied the reference spectrum method 
to the boundary condition model of Feshbach and 
Lomon.15 •16 However, there are differences as far as 
the determination of the constants is concerned, 
because the solution they obtained was meant to be 
used only in connection with the Boundary condition 
model. 

Before ending this section it may be worthwhile to 
point out that in some cases we can use the analytic 
reference wavefunctions we have derived in order to 
obtain analytic expressions of the reference reaction 
matrix elements. As an example, consider the s-wave 
part of the "direct" diagonal element 'of GR for two 
particles of relative momentum ko and distinct (spin
isospin) states. Using expression (5.1) of Ref. 3, we 
have (for any m*) 

R 47T(k~ + y2)IOO R . 
(kol G I kO)L~O = 2 Xo (r) sm kor dr. 

m*ko 0 

(32) 
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This can be calculated analytically with our wave
functions (18a) and (18b). After a rather lengthy 
calculation we arrive at the following result: 

(kol G
R Iko)L=O 

47TVo [ -1«( . k k k) = 2 2 2 Ese Y sm oot + 0 cos oot 
ko(ko + g) 

(k~ + y2) . + sm koc 
m*vo 

(
k2 + y2) ) 

X ~ 2 (g sin koc + ko cos koc) + gAs 
(ko + g) 

(k~ + y2)2 ( sin 2koc) + C---=-
2m*vo 2ko 

_ (k~ + y2)(ot _ sin 2koot)] 
2 2ko ' 

(33) 

where As and Es are given by expressions (19) and 
(20). The above result was checked by using the 
alternative expression for (kol GR Iko) L=O, that is, the 
expression in terms of uf instead of X~ (see Sec. 5 of 
Ref. 3). 

4. REFERENCE SPECTRUM s WA VEFUNCTIONS 
FOR THE EXPONENTIAL WITH HARD CORE 

POTENTIAL 

In this section we obtain the s-wave solution of 
Eq. (12), when the internucleon potential is of 
exponential shape with hard core 

vCr) = roo, 
_voe-Il (r-cl, C < r 

r<c (34) 

Potentials of this shape have been used extensively in 
various nuclear structure calculationsp-23 Among the 
most popular potentials of this type are the "Mosz
kowski and Scott potential" 17 (sometimes referred as 
"standard hard core potential") and also the Kallio
Kolltveit potential,lS which has different strengths and 
ranges in singlet and triplet spin states. 

With potential (34), Eq. (12) for L = 0 becomes 

d2~~;r) + (m*voe"ce-Ilr _ y2)u:(r) 

= -(k~ + y2) sin kor, c < r < 00. (35) 

The corresponding homogeneous equation can be 
easily solved using the transformation z = 2(m*voe"c/ 
p,2)!e-1Jr/2 (see p. 1670 of Ref. 1). The result is 

u~\(r) = ClJv«2/p)(m*voY!e-ll (r-C)/2) 

+ C2J_v«2/p)(m*vo)!e-ll(r-cl/2), (36) 
where 

Jv«2/p)(m*vo)!e-ll(r-cl/2) == ul(r), 

J_v«2/p)(m*vo)!e-ll(r-cl/2) == u2(r) (37) 

are Bessel functions of the first kind of order 11 and 
-11, respectively24 (11 = 2Y/{l, 11 :F integer). If 11 happens 
to be an integer n, it is well known that I n and Ln are 
not linearly independent. In such a case we can use as 
a fundamental set of solutions, the I n and Yn ,24 where 
Yn is the Bessel function of the second kind (or 
Neumann's function). The Green's function which we 
need for solving Eq. (35) can be constructed in the 
usual way.25 We find 

7T[(U 2(C)/U l(C» . ul(r) - u2(r)] . ul(r') 

p sin 117T 

G(r, r') = C ~ r < r', (38a) 
7T[(U2(C)/utCc»ul(r') - u2(r')] . ul(r) 

p sin 117T 

r' ~ r < 00. (38b) 

In calculating the Wronskian of W[u< , u>] where 

u«r') = [u2(C)/Ul(C)] . ul(r') - u2(r'), 

u>(r') = ul(r'), 
we used the expression24 

(39) 

J.(z) dJ_v(z) _ J_v(z) dJv(z) = _ 2 sin 117T. (40) 
dz dz 7TZ 

In terms of the Green's function, the solution of an 
inhomogeneous second-order differential equation 
with inhomogeneous boundary condition is given by a 
quite well-known formula (Ref. 25, Chap. IV, 11.5). 
Applying this to our case and observing that the 
surface term is zero, we arrive after some algebra at 
the following expression for u~(r): 

u:(r) = 100 

G(r, r')[ -(k~ + y2) sin kor'] dr' 

= (k~ + y2)7T[-J_v(~(m*vo)!)/Jv(~(m*vo)!) 
{l sm 117T {l P 

X J v(; (m*vo)!e-ll(r-cl/ 2) 

X i oo 

Jv e (m*vo)!e-ll(r'-cl/2) sin kor' dr' 

+ Jv(; (m*vo)!e-ll(r-cJ/2) 

X irJ_v(; (m*vo)!e-ll(r'-cl/2) sin kor' dr' 

+ J_v(; (m*vo)te-ll(r-cl/2) 

X 5.00 

Jv(; (m*vo)!e-ll(r'-cl/2) sin kor' drJ 

(41) 
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The integrals can be calculated analytically using the series expression of Bessel function. We have, for 
example, 

iT Jv (; (m*vo)!-e-ll (r'-C)/2) sin kor' dr' 

- ~ (-It(m*voellc/,u2)!-v+nir -Il(!-v+n)r' . k ' d ' 
- £.. e sm or r 

n=O n! rev + n + 1) C 

= (m*vo)!v(i(_1)n(m*vo/,u2t· [kocos koc + ,u(!v + n)sin koc] 

,u2 ,,=0 n! rev + n + 1)[k~ + ,u2(!V + n)2] 

_ e-!-vll(r-cl . ! (-It(m*vo/,u2)ne-nll(r-c) . [ko cos kor + ,u(iv + n) sin korl) (42) 

,,=0 n! rev + n + 1)· [k~ + ,u2(iv + n)2] . 

Our final result for u~(r) can be put in a rather elegant form if we define the transcendental functions 

00 (-I)n(m*vo/,u2)ne-nll(r-c) 
G±v(r) = L , (43) 

,,=0 n! (±v)(±v + 1)··· (±v + n) 

M±v(r) = ! (-It(m*vo/,u
2
te-,,"(r-c). [kocos kor + ,u(±iv + n) sin kor] 

n=O n! (±v)(±v + 1)· .. (±v + n)[k~ + ,u2(±tv + n)2] . 
(44) 

The functions G±v(r) are closely related to Bessel 
functions of exponential argument: 

G±v(r) = r(±v)(m*vo/lt!-ve±!-vll(r-C) 

X J±.([2(m*vo)!/,u]e-J·(r-cl/2). (45) 

The functions M ±v(r) have their origin to the integrals 
in expression (41), containing Bessel functions of 
exponential argument. 

The final result for u~(r) in terms of G±v(r) and 
M ±v(r) is the following: 

u~(r) = 2Y(k:;- y
2

)([G_.(C). Mv(c) 

- Gv(c) . M_.(c)] ~:~:; e-y(r-cl 

+ Gv(r)M_v(r) - G_v(r)Mv(r»). (46) 

As a test we computed the wavefunction uNr) from 
expression (46) for values of r in the interval 0.4 < r < 
12F, using the parameters of the Moszkowski and 
Scott potentiaP7 (vo = 6.29F-2, C = O.4F, and ,u = 
2.083F-l) and the values m* = 0.88, ko = 0.822F-l, 
and y = 1. 643F-l. The values of the functions 
G±v(r) and M±v(r) were computed to a high degree of 
accuracy from expressions (43) and (44), using simple 
subroutines. The results were compared with the 
numerical solution of Eq. (35), and good agreement 
was obtained. 

We may finally point out that we can very easily 
check from expression (46) that ulf{r) satisfies the 
required boundary conditions. The boundary con-

dition at the hard core radius is obviously satisfied. 
The boundary condition at infinity is also satisfied 
since for large r only the last two terms in (46) survive, 
due to the contribution of the term with n = 0 in the 
expressIons (43) and (44); that is, 

r R() 2y(k~ + y2)( ko cos kor - y sin kor 
1m uo r = 2 - 2 2 2 

r->oo ,u v(ko+Y) 

ko cos kor + y sin kor) _ . k (47) + 2 2 2 - sm or. 
v (ko + y) 

5. APPLICATION TO HYPERNUCLEAR MATTER 

In this final section we make an application of the 
results of the previous sections to the calculation of 
the well depth D of a A-hyperon in its ground state 
in nuclear matter. This problem aroused considerable 
interest in the recent years,26-30 and most potentials 
which have been used in calculating this well depth 
are of the type discussed in this paper. 

We use spin-average potentials 

and therefore the A well depth which we obtain is the 
"spin-average" one, D. 

We consider the s-wave contribution to D, Do. In 
this case we can use analytic wavefunctions for both 
square well and exponential potentials with hard cores. 
Note also that most available A-nucleon potentials 
(which are determined from the analyses of s-shell 
hypernuclei or low-energy A-nucleon scattering data) 
are s-wave potentials. 
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TABLE I. Values of Do obtained with the square well with hard core potential (51) of Downs and Ware. 

20.9 20.4 19.5 

where 

(kol GR Iko)L=O 

= 4; [OO(korjo(kor)V(r)U~r) dr 
koJo 

47T(k~ + 1'2)1"(' k )2 d = - sm or r 
k~ m* 0 

+ ...L sin koc(ko cos koc + I' sin koc) 
m* 

+ LX) (sin kor - sin koc . e-1(r-c»)v(r)u~r) dr). (49) 

The analytic wavefunctions u~(r) of the previous 
sections can be used here, provided that we take into 
account that the reduced mass of the pair is no longer 
MN/2 but ftAN = M A ' MN/(MA + M N), where MN is 
the mass of the nucleon and MAthe mass of the 
A-particle. This has the effect that the energy quantities 
are now in units /i2 12ft AN . 

We use, as in other similar studies, unmodified 
kinetic energies (together with a gap) for the inter
mediate states, and therefore we put m* = 1 in our 
formulas. 

The expression for 1'2 can be easily obtained using 
the original definition and the fact that the momt:ntum 
of the A-particle in its ground state in nuclear matter 
is zero. This expression is the following: 

2 = 2ftAN ~ + (MN _ MN(l + MN))k2 (50) 
Y 1=2 M M* M 0, 

11 A N A 

22.1 21.4 20.4 

where the gap ~ = ~N + ~A is given in MeV. We 
performed first numerical calculations using the square 
well potential with hard core of Downs and Ware.26 

The parameters are 

c = 0.4 fm, IX = 1.5 fm, Vo = 44.24 MeV. (51) 

We have chosen the value of ~ = 126 MeV for the 
gap, as in Ref. 29, and two values for k F : 

kF = 1.366 fm-I, kF = 1.4 fm-I. 

Several values of M;IMN were assumed, in order 
to investigate the sensitivity of i\ to the effective mass 
M;/MN • The results are given in Table I. We see 
that the dependence of Do on M;/MN is quite weak. 
The value of Do = 20.4 MeV, which was obtained 
with M;/MN = 0.735 and kF = 1.366 fm-I, is close 
to the value (= 18.7 MeV) obtained by Downs and 
Ware with the same potential and the same values of 
M;/MN and kF but using instead of the reference 
spectrum wavefunction an approximate Bethe
Goldstone wavefunction. 

Secondly, we performed calculations using the 
exponential potential with hard core of Herndon and 
Tang3I (see potential B of their Table IX). The 
parameters are 

c = 0.3 fm, ft = 3.935 fm-I, Vo = 544.6 MeV. 

(52) 

Choosing again a value of ~, used also in Ref. 29, 
namely L\ = 48.8 MeV, we obtain the results given in 
Table II. The values of Do are considerably larger than 
those with the square well potential with hard core. 

In conclusion we should remark that the feasibility 
of obtaining analytic solutions of the reference 
spectrum equation, which was shown in this paper, 

TABLE II. Values of Do obtained with the exponential with hard core 
potential (52) of Herndon and Tang. 

kJ! = 1.366 fm-1 kg = 1.4 fm-1 

41.1 38.8 44.2 41.5 
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emphasizes the computational advantages of this 
method in comparison with certain other methods as, 
for example, with the method based on the Bethe
Goldstone equation. As it is well known, an analytic 
solution of the Bethe-Goldstone equation has been 
obtained only in the case of the hard core potential 
alone.26 
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The Schrodinger equation of A nucleons is transformed to new coordinates. Six of them have collec
tive nature and 3A - 9 are single-particle coordinates. The connection is given to the conventional 
collective model in which five collective coordinates are used. The additional sixth collective coordinate 
of this paper gives a simple description of monopole vibrations. The new coordinates can also be used 
in the theory of nuclear reactions: By introducing a symmetrized distance vector for reaction partners, the 
antisymmetrization procedure is simplified considerably. 

1. INTRODUCTION 

In a recent paper Villars and Cooper have shown 
how to treat nuclear rotations starting from the 
Schrodinger equation of A nucleons1 (for further 
references, see Ref. 1) and how to include the single
particle motion and the coupling between single
particle motion and rotations. Most of the results 
of the paper of Villars and Cooper have been known 
before, but have not been derived in such a unified 
way. Nuclear vibrations have not been included in 
Villars and Cooper's paper. How this can be done 
will be shown in the present paper. In some earlier 
publications2- 6 the author has shown how special 
sets of coordinates are of advantage for the three
and four-nucleon problems. For completeness here 
is a short review. 

Three Nucleons 

For the three-nucleon problem one has six degrees 
of fr.eedom in the center of mass system. Any wave
function of a three-nucleon system has to be anti
symmetric with respect. to an exchange of two 
nucleons. In conventional Jacobi coordinates such 
an antisymmetrization is a rather complicated 
procedure. In many cases it is therefore worthwhile 
to chose a coordinate system in which as many 
coordinates as possible are symmetric with respect 
to exchange of identical particles. In the case of three 
particles we have five symmetric coordinates. These 
are the three Euler angles "P, {}, rp of the three axis of 
the inertia ellipsoid and two coordinates which are 
simple functions of the two principal moments of 
inertia, which are independent (the third principal 
moment of inertia is simply the sum of the two others). 
If J1 and J2 are the independent moments of inertia, 
the two symmetric coordinates IX and yare defined 
in the following way: 

The remaining sixth coordinate is the only coordi
nate which changes when identical particles are 
exchanged. Its properties can best be seen from its 
connection with the three interparticle distances 
r 12 , r 23 , r 31 : 

r12 = y[1 - sin IX sin fJ]f/2f , 

r23 = y[1 - sin IX sin (fJ - i1T)]f/2f , 

r 31 = y[1 - sin IX sin ({3 - t1T)]f/2f. 

Four Nucleons 

(3) 

In the center of mass system one has nine degrees 
of freedom. Six of these can be defined as symmetric 
with respect to exchange of identical particles. They 
again are, as in the three-particle case, the three 
Euler angles "P, {}, rp of the inertia ellipsoid and three 
coordinates which are connected with the three 
principal moments of inertia (instead of two as in 
the case of three particles). For the latter coordinates 
the symbols Yl , Y2, Y3 are used, and their connection 
with the principal moments of inertia J1 , J2 , J3 is 

J 1 = m(y~ + Y;), 

J 2 = m(y; + yiJ, 
J3 = m(yi + y~). 

(4) 

One could also, instead of Y1' Y2' Ya, take J1 , J2 , J3 

as three coordinates. But they are not very useful 
because the ranges of the variables Ji are not in
dependent. They obey a triangular condition: 

(5) 

Also there would be mixed derivatives 02/0J1 ' oJ2 

in the Schrodinger equation, which are not convenient. 
The ranges of the variables Yl are independent and 
there are no mixed derivatives like 02/0YI0Y2 in the 
Schrodinger equation.6 The remaining three co

sin IX = IJ1 - J21/(11 + J2), 

y2 = 2(J1 + J2)/m; 

(l) ordinates are best chosen as three internal Euler 
angles (IX, fJ, y),6 The whole transformation from the 

(2) Jacobi coordinates to the new coordinate system 
can then be written in a very simple way. If r1 , r2 , 

m is the nucleon mass. 

1663 
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fS' f, are the space vectors of the four particles, then 
a set of convenient Jacobi coordinates (obtained by 
an orthogonal transformation from fl' f2' fs, f,) are 

Xl = (fl + f2 - fa - f4)/2, 

X2 = (fl - f2 + fa - f4)/2, (6) 

Xs = (fl - f2 - fa + f4)/2. 

The transformation from Xl: X2, Xs to YI' Y2' Ys, 

tp, D, q;, 0(, p, Y is then in matrix notation (with 
XiI' X i 2, XiS as components of Xi): 

(

xn , X12 , XIS) 
X21 , X22' X23 

Xal , XS2 , Xss 

(

COS y cos 0( - sin y sin 0( cos p, . . . ) 
-sin y cos ~ ~ c~s y sin ex cos p, ... 

sm ex sm p, ... 

(
Yl'O'O) 

X 0'Y2' ° 
O,O,Ya 

(

COS q; cos tp - sin rp sin tp cos D, . .. ) 
X -sin q; cos ~ - c~s rp sin tp cos D, . .. . (7) 

sm tp sm D, ... 

The first and the last matrices in Eq. (7) are 3 X 3 
orthogonal matrices in ex, p, y and tp, D, q;, respec
tively. Only the first columns have been written down, 
because the matrix elements are well known and can 
either be looked up in mathematics books or derived 
easily. Any exchange of identical particles is a rotation 
in the (ex, p, y) space.6 

2. DEFINITION OF THE COORDINATES FOR 
THE NUCLEAR MANY-BODY PROBLEM 

The generalization of the transformation (7) to A 
nucleons is straightforward when we look at the new 
coordinatesYl,Y2,Ya, rp, D, tp, ex, p, y in the follow
ing way: If the coordinates Yl' Y2, Ys, q;, D, tp are 
kept fixed, position and magnitude of the inertia 
ellipsoid are fixed. oc, p, y can be considered as the 
remaining single-particle coordinates in a nucleus of 
fixed orientation and with fixed moments of inertia. 
From this point of view one can write the trans
formation (7) also in the following way: 

Xl = anYl + a12Y2 + alsYs, 

X2 = a2lYl + a22Y2 + a2aYa, (8) 

xa ::-.-. aSlYl + aS2Y2 + aaaYa; 

the aik are the components of the vectors X; in a 
coordinate system given by Yl' Y2, Ya. The vectors 

Yl, Y2, Ys are obtained from (7) as the rows of the 
product matrix 

~2 ~) 
° Ys 

X (OS ~ cos ~ - sin:~ sin W cos II, ")' (9) 

The aik are the elements of the first matrix on the right 
of Eq. (7). Thus, when writing the transformation in 
the form of Eq. (8), we find that it is connected with the 
following constraints: 

3 

YiYk = YiYk • ~ik' .2 aija ik = ~jk' (10) 
;=1 

If Yl' Y2, Ya are fixed vectors, then the aik give the 
remaining degrees of freedom in a nucleus of fixed 
orientation and with fixed moments of inertia. From 
this point of view one can immediately generalize 
the coordinates to the nuclear many-body problem. 
The Jacobi coordinate vectors are called Xl, ... , XA- I 

now. Then the transformation is given by the 
following equation: 

Xi = ailYl + ai 2Y2 + aiays· (II) 

The constraints are 

Y;Yk = Y;Yk~;k' 
A-I 

L aija ik = ~jk' 
;=1 

(12) 

(13) 

One can show easily that Yl' Y2, Ya are in the direction 
of the axis of the inertia ellipsoid. One can also show 
what the moments of inertia are. If the space vectors 
of the particles in the center of mass system are given 
by f;, then the moment of inertia with respect to an 
arbitrary axis through the center of mass is (e is a 
unit vector in the direction of the axis chosen) 

A 
J = m L [r; - (f;e)2]. (14) 

i=l 
The transformation from the fi-vectors to the Jacobi 
vectors X; is an orthogonal one; for example, 

Xl = [fl - f2]/2l , 

x2 = [fl + f2 - 2fs]/6l , 

X3 = [fl + f2 + fs - 3f,]/12l , 

XA- l = [fl + f2 + ... + fA_l - (A - l)fA] 

X [l/A(A - l)]l. 

(15) 
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From Eq. (14) one finds that J has the same form in 
Xi as it had in r i : 

A-I 

J = m . I [x~ - (xi e)2]. (16) 
i=l 

The transformation (11) with the constraints (12) and 
(13) yields 

a 
J = m I [y~ - (yi e)2]. (17) 

i=l 

From Eq. (17) it is clear that the directions of the 
vectors Yi coincide with the axis of the inertia ellipsoid. 
For the principal moments of inertia one finds 

J l = m(y~ + y~), 
J2 = m(y~ + y~), 
J s = m(yi + y;). 

(18) 

Henceforth, the vectors Yi or the six quantities Yl , Y2 , 
Ys, cp, f}, 1p defining them will be called collective 
coordinates. The internal coordinates are not inde
pendent due to the constraint (13). 3A - 9 of the 
aik can be chosen independently. 

The Jacobi coordinates Xi are not very convenient 
for a system of identical particles such as we deal with 
in nuclear physics. Their transformation properties 
under exchange of identical particles are complicated. 
The same is true for the internal coordinates aik • This 
difficulty is overcome by using the components of the 
single-particle space vectors (in the center of mass 
system) in the Yl, Y2' Ys system instead of the a ik : 

r i = SilYl + Si2Y2 + siaYs· (19) 

The constraints for the Sik are 

A 

A 

I Sij = 0, 
i=O 

I Sij • Sik = tJ Jk • 
i=l 

(20) 

(21) 

The vectors Yi are the same as before. Of the Sik again 
3A - 9 can be chosen independently. 

The SchrOdinger equation will be given in the 
following section for the two possible sets of internal 
coordinates. 

3. THE SCHRODINGER EQUATION IN 
THE NEW COORDINATES 

The transformation of the kinetic energy operator 
is straightforward, but tedious. With the Jacobi 
coordinate vectors Xl' •.• ,XA-l [e.g., as defined by 
Eq. (15)], the kinetic energy operator in the center 
of mass system is 

(1i2/2m)(~1 + ... + ~A-l)' (22) 

with ~i = (J2/0X~1 + 02/0X~2 + 02/0X'ts. 
With the set of coordinates defined by Eqs. (11)-

(13), one obtains 

~l + ... + ~A-l 
_ ~ + (A - 4 2Yl 2Yt)~ 
-~2 +2 2+2 2~ 

uYl Yl Yl - Y2 Yl - Ya UYI 

_ y~ + y~ 1.. (L 2 L 2 ) 

( 2 2)21i2 el + n 
Y2 - Ya 

4Y2Ya 1 
( 

2 2\2 -1i2 LeI . LI1 
Y2 - Ya) 

1 ( d
2 

+ 2 I (tJmm, - 8 m ' am') ----
Yl mm' daml . dam'l 

(ind) 

- (A - 4) I am1-
d
-) 

(ind) da ml 

+ cyclic permutations. (23) 

The cyclic permutations in this equation are to be 
taken among 1, 2, 3. The operators LeI, L e2 , Les 
are the components of the orbital angular momentum 
with respect to the body fixed axis defined by the 
directions of the vectors Yl' Y2, Ya: 

L ± iL = ilie'fi1p (_1_ ~ _ cos f) . ..! T i..!) 
el e2 sin f} ocp sin f} otp of}' 

Lea = - iii ..! . (24) 
otp 

The index e with these operators stands for "external." 
L I1 , L i2 , LiS are the components of the internal 
orbital angular momentum: 

Ln = iii I (a m2 · ~ - ams' ~). (25) 
m da m3 da m2 

(lnd) 

LiZ and L ia are obtained by cyclic permutations again. 
The sums over m and m' appearing in Eqs. (23) and 

(25) are to be taken over independent components 
ami only. This is indicated by (ind) below the summa
tion sign. 

If, instead of ami' the internal single-particle co
ordinates Smi are used, Eq. (23) is replaced by 

~l + ... + ~A-l 
_~+ (A-4 2Yl ~)~ 
-~2 +22+22 

UYl Yl Yl - Y2 Yl - Ya OYl 

Y: + Y; 1 (L 2 L 2 ) 
- ( 2 _ 2)2 1i2 el + il 

Y2 Ya 

4Y2YS 1.. L . L 
(

2 2)2 1i2 el 11 
Y2 - Ya 

+ 12( I (CJmm, - ! - Sm' Sm') d
2 

Yl m'm' A dSml . dSm'l 
(ind) 

- (A - 4) I Sml ~) 
m ds 1 

(lnd) m 

+ cyclic permutations, (26) 
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with 

Lil = in L (Sm2 ~ - Sm3 ~), (27) 
m dSm3 dSm2 

(lnd) 

and Li2 and L i3 , correspondingly. 
Again, all the sums over m are to be taken over 

independent components only. 
Calculations with the new coordinates will be 

difficult as a consequence of the constraints (20) and 
(21). To facilitate calculations, one has to use approxi
mations; one could require, for example, that the 
expectation values of the quantities appearing in (20) 
and (21) are 0 or b jk, respectively. A big help in 
calculations will be a special property of the operators 
appearing in Eqs. (23) and (26). This property which 
is shown in the following equations can be derived 
from the constraints (13) or (20) and (21), and it is 
true for any function 'Y(Sik): 

~ (Sm2' d: - Sm3 d: )'Y(Sik) 
(ind) m3 m2 

A (0 a ) = L Sm2;-- - Sm3;-- 'Y(Sik), (28) 
m=l uSm3 USm2 

[ L (bmm' _l_ Sm' Sm') d

2 

'!Om' A dSml . dSm'l 
(md) 

- (A - 4) L Sml ~J'Y(Sik) 
m ds 1 

(ind) m 

= [f f (bmm' - l - Sm . Sm') 0
2 

m=l m'=l A OSml • OSm'l 

- (A - 4) m~/ml . OSOmJ'Y(Sik)' (29) 

The method of proving (28) and (29) is the same for 
both equations, and so it will be outlined for (28) only: 
Of the 3A variables Sik, nine are determined from the 
remaining 3A - 9 variables by the nine constraints 
(20) and (21). One could choose as dependent 
variables, for example (this is rather arbitrary), S11, 

S21, S3l, S12' S22' S32, SA-2.3, SA-1.3 , SA3' Any of these 
dependent variables appearing in the wavefunction 
'Y is to be replaced by the independent ones with the 
constraints (20) and (21). The operator on the left side 
of Eq. (28) has the following form now: 

A-3 dAd 
L sm2 - - L Sm3 - • (28') 

m=l dSm3 m=4 dSm2 

The total derivatives in (28') are (for the case that the 
dependent variables are appearing explicitly in the 
wavefunction) 

~ = ~ + OS11 ~ + ... + OSA3 ~. (28") 
dS m3 OSm3 OSm30S11 OSm3 0SA3 ' 

similarly for d/dsm2 • The ellipsis in (28") is for the 
terms which contain the other partial derivatives with 
respect to the dependent variables. 

Thus one has 

A-3 dAd 
L sm2-- - L sm3--
m=1 dSm3 m=4 dSm2 

A-3 0 A 0 

= ~ sm2 - - ~ sm3-
m=l OSm3 m=4 OSm2 

+ (~3Sm2 OS11 _ f sm3 OS11) • ~ 
m=l OSm3 m=4 OSm2 OS11 

+ (~3Sm2 OSA3 _ f sm3 OSA3) • ~. (28"') 
m=l OSm3 m=4 OSm2 oS A3 

The derivatives OS11/0Sm3' etc., are derived from (20) 
and (21): Taking the derivatives of (20) and (21) with 
respect to a special independent variable Sik ,. one 
obtains nine equations for the nine derivatives of the 
dependent variables. One obtains, for example, from 
(20) for the derivatives OS11/0Sm3' etc., 

OS11 OS21 OS31 
-+-+-=0, 
OSm3 OSm3 OSm3 

OS/2 OS22 OS32 
-+-+-=0, (28"") 
OSm3 OSm3 OSm3 

OSA-2,3 + OSA_l,3' + OSA3 = -1. 
OSm3 OSm3 OSm3 

From (21) one obtains six more equations. Thus all 
derivatives of the dep'endent variables appearing in 
(28 111

) can be calculated from the constraints. With the 
results one obtains Eq. (28) from Eq. (28 111

). So, if one 
is looking for eigenfunctions of the operator Li3 for 
example, one can consider Sik as independent variables. 
From now on the abbreviations 0 81 , 0 82 , 0.3 will be 
used for the operators appearing in the last term of 
Eq. (26) and in Eq. (29): 

D81 = L bmm, - - - Sm' Sm' ( 
1 ) 0

2 

m.m' A OSm10Sm'1 

- (A - 4) L Sml • ~. (30) 
m 8sm1 

0 82 and 0'3 are obtained by cyclic permutations. For 
the sum of these three operators the abbreviation 0 8 

will be used: 
(31) 

4. JACOBIAN OF THE TRANSFORMATION 

As mentioned before, it will be difficult for any real 
calculations to take into account the constraints 
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connecting the coordinates Sik (or aik). By treating the 
Sik as independent and requiring the constraints (20), 
(21)' for the matrix elements only, things are much 
simpler. The part of the volume element containing 
the Sik is then simply 

down) 

V;i[(Sil - Sil)2y; + (Si2 - Si2)2y~ + (Si3 - Si3)2y:]. 

(36) 

For a spherical nucleus one could approximately put 

(d d) (d d) (d d) (32) Yl = Y2 = Y3 and then would have Vii[Y~tS; - s)2] S11 . . . SAl, S12' •• S ..12 , S13 • •• S ..13 . 
with 

The calculation of the Jacobian for the collective 
coordinates yields 

(YIY2Y3)A-4 Iyi - y~1 . Iy~ - y;lly; - yil sin 1J. (33) 

Thus the total volume element in the new coordinates 
with the approximation of independent Sik is 

dT A = [(YIY2Y3)A-4 Iy; - Y;I 

x Iy; - y;lly; - yil dYl dY2 dY3] 

x (sin 1J d1J dip) 

X [(dsu ' .. dSA1) . (dS12 ... dSA2) 

X (dS13 ' .. dSA3)]. (34) 

5. COLLECTIVE AND SINGLE-PARTICLE 
EXCITATIONS 

A clear separation between single particle and 
collective excitations will, in general, not be possible. 
If tensor forces. are not taken into account, the solu
tion of the SchrOdinger equation will be an eigenfunc
tion of the orbital angular momentum L;, and will 
be of the following form: 

'Y LM = I DXtK(ip, 1J, tp). <PK , (35) 
K 

with L;3<P K = IiK<P K' <P K depends on Yl , Y2' Y3 and 
the internal degrees of freedom Sik' 

As an approximation, one might try a variational 
calculation with a single term of the sum in (35). But 
in general this would lead to useless results because 
there is a coupling between different values of K due 
to the operators LeI, L e2 , L il , Li2 in the Schrodinger 
equation. 

How such a variational calculation could be im
proved is shown in the paper of Villars and Cooper. 1 

Conditions are especially simple if the internal part 
of the wavefunction is an eigenfunction of q, with 
eigenvalue zero. This is probably a good approxi
mation for spherical nuclei, or-more generally-nuclei 
which have a strong maximum in the probability 
distribution in Yl , Y2, Y3 space at h = Y2 = Y3' One 
can see this very simply if one assumes that tensor 
forces are of no great importance. In that case the 
interaction energy of nucleons i and j would be of 
the form (no spin and isospin dependence written 

(Sl - Si)2 

= (sa - Sil)2 + (S;2 - Si2)2 + (S;3 - Si3t (37) 

This approximate Vii in (37) commutes with the 
internal angular momentum operators Lit, L i2 , Li3 . 
Therefore, the ground state of a spherical nucleus 
will approximately be an eigenfunction of Lf with 
eigenvalue zero. 

The case of internal angular momentum 0 will now 
be considered in more detail, and it will lead to the 
well-known equations of the collective model of Bohr 
and Mottelson. 

The Schrodinger equation for the collective part C 
of the wavefunction is 

{K[~ + (A - 4 2Yl 2Y1 ) 0 
2 

':l2 + 2 2+-2--2-
m UYI Yl Yl - Y2 Yt - Ya OYI 

y~ + Y; 1 2 • • ] 
- 9 2 2 --; LeI + cyclIc permutatlons 

(y;; - Ya) Ii 

+ E - Ve(Yl' Y2' Y3) }C(Yl' Y2, Y3) = O. (38) 

The "potential" Va in this last equation does not 
contain the original potential energy alone. It also 
contains the matrix elements of the terms os1/yi + 
OS21yi + OsaIY;· That means it contains part of the 
kinetic energy, namely the part from the internal 
degrees offreedom. Instead oftive degrees offreedom, 
as in the ordinary collective model, we have six now. 
As will be seen shortly, these six degrees of freedom 
allow for density vibrations also. One can see this 
best by introducing three new coordinates instead of 
the three lengths Y1 , Y2' Y3: 

Y1 = b(l + sin rJ. cos y)!, 

Y2 = b[l + sin rJ. cos (y - 17T)]!, (39) 

Y3 = b[l + sin rJ.' cos (y - t7T)]!. 

The meaning of the new coordinates is obvious: For 
rJ. = 0 one has Y1 = Y2 = Ya and hence, from Eq. 
(18), J1 = J 2 = J3 • All three moments of inertia are 
equal for rJ. = O. In the language of the collective 
model, this means a spherical nucleus. One concludes 
that rJ. is related to the coordinate fJ of the collective 



                                                                                                                                    

1668 W. ZICKENDRAHT 

modeF'S (for further information see Ref. 8). It is 

oc = c· {J, (40) 
where C is constant. 

For y = 0, one finds Yz = Ya. From Eq. (I8) one 
finds J2 = J3 • Similarly, one has, for y = 27T/3, 
J1 = J3 and, for y = 47T/3, J1 = J2 • This means that 
the coordinate y describes the deviation of the nucleus 
from rotational symmetry. y is identical with the y 
defined by Bohr and Mottelson. 7•s 

The meaning of Y becomes clear by considering a 
nucleus with homogeneous mass distribution and with 
the form of an ellipsoid. The volume is proportional 
to Y1 . Yz . Ya. Constant volume, as is assumed for the 
collective model with an incompressible fluid, means 

Y1 . Yz . Y3 = const. 

Also it is assumed for the collective model that the 
defo;mation is small, that is, small (J. In our notation 
that means small oc. Using this assumption, one 
'obtains 

Y1YZYS = 3-iy3(l - ! sinZ oc - ! sin3 
IX cos 3y)! 

R:! 3-iy3• (41) 

From this equation we conclude that incompressi
bility is identical with the assumption of constant y; 
this means the probability distribution for Y takes the 
form of a delta function. 

IX- and y-vibrations are obtained by considering 
special potentials Vc' With the additional degree of 
freedom Y one can get also vibrations in y. This is 
the. case if Vc is of the form 

Vc = VII(Y) + y-2V«y(OC, y). (42) 

In that case a separation of the SchrOdinger equation 
is possible. The possibility of separation is, of cour~e, 
the reason for choosing this special Vc' The collective 
wavefunction C is now of the form 

C(Yl> Yz, Ya) = Y(y) ~ Aioc, y) . DXtK(rp, D, 'Ip). (43) 
k 

The separation of oc- and y-vibrations requires 
additional assumptions which are well known.7•s ~he 
simple form of C in Eq. (43) rests on the assumption 
that the internal degrees of freedom are not coupled 
to the collective degrees of freedom. This is the case 
if one assumes a very simple form of the potential 
energy V in the original Schrodinger equation, for 
example, that V has the same form as Vc in Eq .. (42). 
That means no dependence of V on the smgle
particle coordinates Sik • In that case, the wavefunction 
of the A-nucleon system will be of the form 

'¥ = C(Y1' Yz, Ya) . S(Sik)' (44) 

Apart from collective excitations in which C alone is 
changed, one will have single-particle excitations in 
which S is changed. The S function of the excited 
states will be orthogonal to that of the ground state. 
But there is a coupling in the kinetic energy (26) 
between Sik and the collective coordinates through 
the factors I/y: before 0si' This coupling means a 
change of C for single-particle excited states compared 
to that of the ground state, but the change may be 
negligible. 

To start any calculations (for example, Ritz 
variational calculations), one will need a system of 
orthogonal functions. If one assumes that there are 
collective excitations which have a wavefunction 
C(Y1' Yz, Y3) as given by Eq. (44), one will start the 
calculations by using simple functions S for the 
internal structure. It is, of course, difficult to con
struct a complete orthogonal system for the S wave
function, as there are a large number of commutable 
operators to which the functions of the orthogonal 
system would have to be eigenfunctions. The wave
function S has to be anti symmetric with respect to an 
exchange of nucleons. Therefore, one will chose 
orthogonal functions which have this antisymmetry 
already. There are three simple operators which 
commute and which are convenient to handle. These 
are the operators 

Lf, LiS' Os. (45) 

Constructing the eigenfunctions of these operators, 
one will, in general, have a number of degenerate 
eigenfunctions for fixed eigenvalues of these operators, 
and one has to orthogonalize them. The wave
functions have also to be eigenfunctions for total 
momentum 0, that is, 

A oS . 
~ - = 0, J = 1,2,3. (46) 
i=10Sii 

Hence the functions of the orthogonal system must 
be eigenfunctions of the operator 

A 0 
!-
i=10S;; 

(47) 

with eigenvalue zero. 

6. CONNECTION WITH THE WELL-KNOWN 
EQUATIONS OF THE COLLECTIVE MODEL 

In the preceding section it was shown that the 
transformation (39) defines coordinates IX and y 
which are closely connected to the coordinates defined 
in the collective model. 7•s Here it should be mentioned 
that the transformation (39) contains an approxi
mation already. The original range of the variables 
Yl , Yz , Ya is from - 00 to + 00. By allowing only real 
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values for the variables Y, oc, 1', this range is not 
completely covered by Eq. (39). For example, 
Yl = Y2 = 0 and Ya =F 0 is excluded by the trans
formation. It can be shown that the range of the Yi 
covered by Eq. (39) is given by the triangular condi-
tions 

IYi - yjl ::::;; Yk ::::;; Yi + Yj' i =F j =F k. (48) 

The configuration Yt = Y2 = 0 and Ya =F 0 would 
mean that all nucleons are on a straight line. This 
configuration is excluded by the triangular conditions. 
Similar configurations are excluded too, for example, 
a nucleus of extreme prolate shape. As in the collec
tive model, only small deformations are considered; 
therefore, the restriction (48) introduced by Eq. (39) 
is of no importance in that case. With the transforma
tion (39) one obtains, for the vibrational part of the 
kinetic energy, 

[ 
02 + (A - 4 2Yl 2Y1 ) 0 
-2 --+ 2 2+ 2 2-

0 oy! Yl YI - Y2 YI - Ya Yl 

+ cyclic permutations] 

= ~ + 3A - 4 .E.. + 1.. 
oy2 Y oy y2 

X (_4_ (2 - sin oc . cos 31' - sin2 oc) 0
2

2 cos2 oc 0(1. 

4 . 02 sin 31' 02 

+ --(2 + smoc'cos3y)- + 8----
sin2 

(I. 01'2 cos (I. 0(1.01' 

+. 2 (2 - (9A - 43) cos2 oc + (9A - 29) 
sm (I.' cos3 

(I. 

X cos4 
«(I. + 2) sin (I. • cos 2(1. . cos 31'] ~ 

OOC 

+. 4 . (3 sin (I. - 2 sin (I. • sin2 31' 
sm2 

(I.' sm 31' 

+ 6 cos 3Y)..E.). (49) 
01' 

For small deformations, that is, small (I., this expres
sion simplifies very much, and one obtains for the 
Schrodinger equation (38) 

!f:{~ + 3A - 4 0 + ![~ + --±.....E. 
2m ol Y oy l 0(1.2 sin oc orx 

+ _1_(~ + 3 cos 31' ~)J 
sin2 ex 01'2 sin 31' 01' 

__ 2_( L:I + L:2 

sin2 
(I. sin2 I' sin2 (I' - 21T/3) 

+ sin2 (yL~ 41T/3) }c 
(50) 

This agrees with the well-known SchrOdinger equation 
of the collective model. 

1. DENSITY VIBRATIONS 

The case of pure y-vibrations will be discussed 
shortly now, and it will be shown that it corresponds 
to density vibrations of monopole character. Only 
the case of a spherical nucleus will be considered, 
that is, a nucleus for which the wavefunction has a 
strong maximum for (I. = O. Let all the internal and 
the collective degrees of freedom apart from y have 
fixed values. For a spherical nucleus y is then simply 
proportional to the radius of the nucleus. This follows 
from Eq. (41). If the density distribution of the 
nuclear matter in the nucleus for fixed y is known, 
one can compute the average density distribution 
from the probability distribution of y. It will be shown 
now how that can be done. To make that simple, it 
will be assumed that the wavefunction of the nucleus 
gives-for a fixed value of y (which is proportional 
to the radius R)-constant nucleon density for r < R 
and zero nucleon density for r > R: 

per) = Pc for r < R, p(r) = 0 for r> R. 

(51) 

The probability distribution of R (which is propor
tional to y) for the ground state will be assumed to be 
of the simple form (as an approximation): 

(52) 

Ro is the nuclear radius. For the first excited monopole 
vibration one has 

PI(R) oc e-b(R-Ro)' • (R - Ro)2. (53) 

Equation (51) gives the nucleon density for a fixed 
value of R. As different values of R will appear, due 
to the probability distributions (52) and (53), one has 
to compute the average nucleon density (averaged 
over R). For p in Eq. (51) this average is simply 

J"" e-b<R-Ro)' dR 
po(r) = Pc • _r_"" ____ _ L e-b(R-Ro)' dR 

(54) 

for the ground state (52), 

J"" e-b<R-Ro)' • (R - RO)2 dR 

~~=~. ~ ~~ L e-b(R-Ro)·. (R - RO)2 dR 

for the excited state (53). 



                                                                                                                                    

1670 W. ZICKENDRAHT 

In the denominators of Eqs. (54) and (55), one can 
integrate from - 00 to + 00 as an approximation. 
After a partial integration in Eq. (55) one obtains, 
instead of Eqs. (54) and (55), 

po(r) = p.(b/7T)l fil e-b(R-Ro)2 dR, (56) 

P1(r) = po(r) + (b/7T)t(r - Ro)e-bCr-Ro)2. (57) 

Equation (57) shows that P1{r) is different from po{r) 
only in the surface region of the nucleus, because the 
exponential function has appreciable values only in 
the surrounding of r = Ro. Thus we can conclude 
that y-vibrations are characterized by changes of the 
density in the nuclear surface. 

Papers on calculations of monopole vibrations 
have been published recently.9.10 Perhaps the co
ordinates defined in this paper will be of help in 
simplifying future calculations. 

8. THE OSCILLATOR POTENTIAL 

With respect to the mathematics, the simplest shell 
model is that in which it is assumed that all the 
nucleons move in an oscillator well of equal strength. 
The harmonic oscillator has been studied extensively 
by Moshinsky et al.11·12 (for further references, see 
Refs. 11 and 12). In the following the very simplest of 
the- oscillator models will be discussed, namely that 
in which any spin and isospin dependent parts are 
neglected. It will be seen that there are excited states 
which are of collective nature, a fact which one cannot 
see easily in ordinary single-particle coordinates. 

The ith nucleon moves in a potential 

J-: = b2r; . Ji2/2m. (58) 

The total potential entering the Schrodinger equation 
is then Lt:1 Vi' With the transformation (19) this is 
transformed to the new coordinates 

2m ~ 2( )2 
-2 • V = £. b Si1Y1 + Si2Y2 + Si3Y3 • 
Ii i~l 

(59) 

Using the constraints (20) and (21) for the coordinates 
Sij' one obtains simply 

(2m/1i2) . V = b2(y~ + y: + y;). (60) 

Thus the oscillator potential does not depend on the 
single-particle coordinates. Hence one would expect 
excited states for this potential which are of purely 
collective character, others which are single-particle 
states. Many of these states are degenerate, but their 
wavefunctions are completely different showing their 
different character. The degeneracy is just a peculiarity 
of the oscillator potential. 

In the next section the case 0[160 is discussed shortly 
for the oscillator potential (60). 

9. 160 IN THE OSCILLATOR POTENTIAL 

The wavefunction for 160 in the oscillator potential 
(60) has an especially simple form. The groundstate 
is an eigenstate of the three operators 0 sl, 0 s2, 0 s3 

[Eq. (30)]. This is an exception because Osl, Os2' OS3 

do not commute and functions of an orthogonal 
system will, in general, not be eigenfunctions of all 
three oper;ttors at the same time. The dependence of 
the ground state wavefunction on the single-particle 
coordinates Sik will be written in the form of a Slater 
determinant. The spin functions of the nucleons will 
be abbreviated by i i and L, where the index i is 
numbering the nucleons. The two directions of the 
arrow indicate the two possible spin states of spin t. 
The direction to which the spin is referred may be 
either space-fixed or body-fixed. As the total spin of 
160 is zero, one can choose any axis. For the isospin 

state the abbreviations $i and ~i will be used. The first 

row of the Slater determinant has the following form: 

i 1 $1, h $1' i 1 !1, !1 !1, i 1 $lSn, !1 $lSn, i 1 !lSn, 

!1 !lSn, i 1 $lS12' !1 $lS12' i 1 !lS12, !1 !lS12 , i 1 ~lS13' 
(61) 

The second row is the same as (61), but for the second 
nucleon; that means that the indices of the spin and 
the isospin functions and the first indices of the Sik 

appearing in (61) are replaced by 2 now. For the 
total Slater determinant the abbreviation So will be 
used. 

Before continuing the discussion of solving the 
Schrodinger equation in the new coordinates, it will 
be shown that the well-known ground state of 160 
(written with the space vectors f i ) depends on Sik as 
given by Eq. (61). 

To do this, we will start from the SchrOdinger 
equation in the space vectors fi , solve it for the ground 
state with the oscillator potential, and transform the 
wavefunction to the new coordinates. The Schrodinger 
equation for a particle moving in the oscillator 
potential (58) is 

[(Ji2/2m)~i + Ei - (Ji2/2m)b2r~]'Yi(fi) = O. (61') 

For the present purpose the components of fi are 
convenient for the use as coordinates: 

(61") 
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The ground state and the first excited states lfi'; are 

lfi' oc e-bri2/2 lfi'. oc e-br;2/2r .. J' = 1 2 3 
i '1. 'I.' , , , , 

respectively. The groundstate of 160 is then (A means 
an tisymmetrizati on) 

lfi'o = e-b<lil2+Y22+Y3
2

)/2 

X A{i1 ~1' L2 ~2' ia ~a, L4 ~4' r51i5 ~5" 
r61 L6 ~6' r 71i7 ~7' rSlLs ~s,,· .}. (61"') 

To obtain (61 111 ), the factors e-br2
;/2 were put before 

the A sign because the product of the 16 factors 
e-~ri2/2 is symmetric with respect to particle exchange. 
In the same way as in Eqs. (59) and (60), one can 
express the sum L r;2 by yi + y~ + yi. In Eq. (61111) 
some of the single-particle wavefunctions have not 
been written down behind the A sign because the 
continuation of the scheme is obvious. The anti
symmetric factor in (61'") can also be written as a 
Slater determinant. The first row has the same form 
as (61) with Sli replaced by r1i' Now the transforma
tion (19) is performed: 

rlj = SuY1; + S12Y2; + s13hi' etc. (61/111) 

By combining different columns of the Slater deter
minant which have the same spin-isospin functions, 
the final form is obtained. It will be illustrated for the 
5th, 9th, and 13th columns which have the spin-

isospin function i i ~i' 
5th column 

(SUYll + sl2Y21 + S13Y31)i 1 $1 

(S21Yn + S22Y21 + S23Y31)i 2 ~2 

9th column 

(SllY12 + S12Y22 + S13Y32)i 1 ~1 

(S21Y12 + S22Y22 + S23Y32)i 2 $2 

13th column 

(SllY13 + S12h3 + S13Y33)i 1 $1 
(S21Y13 + S22Y23 + S23Y33)i 2 $2 

To the 5th column the 9th column times Yl2lyu and 
the 13th column times Y13/Yll is added. Thus the 5th 
column is (this follows from the properties of the 
vectors Yi) the following. 

By subtracting the 5th column times YuYu/y; from the 
9th column and the 5th column times YUY13/y~ from 
the 13th column one obtains the following. 

5th 9th 13th 
column column column 

2 
(S12Y22 + S13Y32)i 1 $1 (S12Y23 + S13Y33)i 1 $1 SllYl i 1 $1 

Yll 
2 

(S22Y22 + S23Y32)i 2 ~2 (S22Y23 + S23Y33)i 2 ~2 S21Yt i 2 $2 
Yll 

Similarly one can eliminate Si3 from the 9th and Si2 

from the 13th column by suitably combining these 
columns. The result is 

5th column 
2 

SuY! i t 
-- q;l 
Yll 

9th column 13th column 

S (Y 
Y32Y23) i t 12 22 - -- q:1 
'Y33 

The factors Y~/Yl1' Y22 - Y32Y23!Y33, Y33 can be put 
before the Slater determinant. They yield with Eq. (9) 

(Y;/Yll)(Y22Y33 - Y32Y23) = Y1 . Y2 . Y3' (61'1/") 

Similarly, one deals with the other columns, obtaining 
at the end, the Slater determinant (61). 

This way we have found the Slater determinant for 
the ground state of 160 in the oscillator potential. It 
is an eigenfunction of 0 81 , 0 82 , 0 83 and of Lr (see 
below). In general, one will not use this way of con
structing the eigenfunctions for the operators (45). It 
is obvious that the completely antisymmetrized 
wavefunctions in the oscillator potential are poly
nomials with respect to Sik (this will be true for any 
potential which depends on y2 = yi + y~ + y; only). 
The eigenfunctions of 0 8 , Lr , Li3 are polynomials too. 
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Thus one will construct these polynomial eigen
functions and will use them for expanding the wave
function, hoping that only a few of them are sufficient. 

Operating with the operators Osl, Os2, Osa on So, 
one obtains 

OSlS0 = 082S0 = 08aSo = -60· So. (62) 

So is an eigenfunction of L il , Li2' Lia with eigenvalue 
zero: 

LilSO = L i2S0 = LiaSo = O. (63) 

The ground state wavefunction of 160 in the oscillator 
potential (60) has the following form: 

(64) 

For fo one obtains the following differential equation 
from the Schrodinger equation: 

{ 
/i2 [a2 

(12 2Y1 2Y1 ) a 60 --+ -+ + ---
2m ay~ Y1 y~ -y; y~ - yi aYl yi 

10. EFFECTIVE POTENTIALS BETWEEN 
COMPOSITE NUCLEI 

With the help of the coordinates defined in this paper, 
one can simplify calculations on nuclear reactions in 
many cases. As an example for illustrating this, the 
possibilities for simplification in the elastic scattering 
of two (X particles will be considered. One cannot 
simply treat the two (X particles as bosons because the 
wavefunction of the system must be antisymmetric 
with respect to exchange of all the nucleons, including 
exchange between the nucleons which are in different 
(X particles. This latter part of the antisymmetrization 
is of no importance as long as the (X particles are far 
apart. But, as soon as they come close to each other, 
one has to anti symmetrize the wavefunction with 
respect to all exchanges. One can do this the way it is 
done by Wildermuth and McClurela (for further 
references, see Ref. 13). Then one starts from the 
variational principle 

+ cyclic permutations] r5 J '£1'* H'Y dr = O. (69) 

+ E - ~. b2(y~ + y~ + Yi)}fo = O. (65) For the wavefunction one uses the ansatz 
2m 

The solution of Eq. (65) is (not normalized) 

fo = (Y1Y2Ya)4e-lb(1I12+lIa2+Y32). (66) 

Excited states can be of different kinds: Collective 
states are those' for which the Slater determinant is 
the same as in the ground state. Noncollective states 
are those in which the dependence on the single
particle coordinates is different from the ground state. 
Only the first excited collective states will be written 
down here as examples. 

They are a 0+ and a 2+ state: 

'Y~+ = (Y1Y2Ya)'e-(bI2)(1I12+1122+Y32) 

X {I - 6\b(y~ + y~ + yi)} . So, (67) 

'Y~+ = (YIY2Yale-(bI2)(1I12+1122+Y32) 

X {(y~ - y~). [D:,dp, {}, "p) + D~I-2(P' {}, "p)] 

+ i(2y; - y~ - y~)D~fO(P' {}, "p)}' So. (68) 

The parameter b is usually fitted such that the 
expectation value of the radius agrees with the ex
perimentally measured radius. If that is done, the 
excitation energy of the two degenerate states (67) 
and (68) is several times as high as the experimentally 
measured excitation energy. This disagreement shows 
the necessity to include residual two-body forces. As 
a consequence the wavefunctions will in general not 
be of the simple form as in (64), (67), and (68). 

The collective states (67) and (68) cannot be con
sidered as simple fJ- or ,,-vibrations. 

(70) 

where <1> .. is the (X-particle ground state and X is the 
function of the relative motion to be determined by 
the variational principle. The sign .:It; before the wave
function means anti symmetrization. The function X 
depends on the distance of the two (X particles. If 
nucleons 1,2,3,4 are in the first (X particle, then one 
has 

R = t . Cr1 + r2 + ra + r4 - rs - rs - r7 - rs). 

(71) 

The anti symmetrization effects R also. As a conse
quence, one obtains an integro-differential equation 
for the function X(R).la 

This method can be simplified by introducing a 
symmetrized (X-(X distance. Consider the (X particles 
as spheres of radius RI1 for simplicity. The principal 
moments of inertia are (with R as the distance of the 
ex particles) 

J1 = fMR;, J 2 = Ja = fMR; + MR2j2 (72) 

Here M is the total mass of an (X particle. The sequence 
of the moments J1 , J2 , Ja in Eq. (72) is arbitrary, of 
course. From Eqs. (4) and (39) we have 

J1 + J2 + Ja = 2m(yi + y~ + y~) = 2my2. (73) 

Equations (72) and (73) together give (with M = 4m 
as an approximation) 

(74) 
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The direction of the vector R is identical in this 
approximation with the direction of one of the 
vectors Yi' Therefore, we can define its direction by 
the angles {} and qJ. Instead of describing the relative 
motion of the ex particles by the nonsymmetrical 
vector R, one can simplify the mathematics of the' 
problem by describing the relative motion with a sym
metrical vector, the direction and length of which are 
given by {}, qJ, and y, respectively. The symbol Y 
will be used for this vector in the following. 

The ansatz (70) is now replaced by an ansatz 

(75) 

From the variational principal (69) one obtains a 
differential equation for x(y). The kinetic energy 
operator will be somewhat different from the well
known two-particle kinetic energy operator. The 
potential energy is obtained as 

Vetly) = f{[<I>a(1)<I>i2)]}* . [V12(r12) + ... ] 
x ([<I>a(1)<I>i2)]} dTl dT2' .. dTs dTa,1 d1p. 

(76) 

In Eq. (76) only central interactions have been used 
giving an effective interaction which depends on y 
only and not on {} and qJ. 

Naturally it is much easier now to solve the problem 
mathematically, as one has a differential equation for 
x(y) instead of an integro-differential equation as one 

. would have with Eq. (73). Asymptotically, that is, for 
large lX-lX distances, there is no difference between 
Eq. (73) and Eq. (75): 

(77) 

The effect of the anti symmetrization on the relative 
motion of the two lX particles is replaced with this 
method by a potential. 

For illustration, here is a little example. At first the 
case will be considered in which the wavefunction is 
not antisymmetrized with respect to the nucleons in 
different ex particles. To simplify the problem, only one 
nucleon in every lX particle is considered; nucleon one 
is in the first lX particle, nucleon five in the second. 
The "average" interaction between these two nucleons 
will be calculated. We assume identical nucleons with 
parallel spins to see the effect of the antisymmetriza
tion of the space function. Spin-dependent potentials 
will not be considered. The wavefunctions of the 
nucleons are taken to be those of oscillator potentials 
in the ex particles. The wave functions of the two 
nucleons considered are then 

e-lbCrl-lR). and e-1b(r.+1R)\ (78) 

for the interaction of the two nucleons 

(79) 

is used. To compute the average interaction of the 
two nucleons, one would have to replace the appearing 
coordinate vectors by the coordinates defined in this 
paper. The integration is difficult. So a further 
approximation is used: rl and rs are simply treated as 
independent vectors, and the integrations are per
formed over the whole r 1 , r5-space. With that, the 
average interaction between the two nucleons is 

Vav(R) = - Vo·f dr1f drs 

x e-b(rl-R/2)2e-b(r5+R/2)2e-,,(rl-r5)2 

X {f dr
1 
f drse-b(rl-R/2)2e-b(r5+R/2)'rl. 

(80) 
The result is: 

Vav(R) = - Vo . [bl(b + 2A.)]!e-R2bAl
(b+2).). (81) 

Expressed with the symmetric quantity y, this is, 
with Eq. (74), 

(
b)! (12 2 bA.) 

Vav(Y) = - Vo' b + 2A. exp "5 Ra' b + 2A. 

x exp (-l' ~ b :\A.)' (82) 

If the anti symmetrization between the two lX particles 
is taken into account, then one uses for the internal 
wavefunction (the symmetric spin-isospin function 
is assumed here) 

exp {-ib[(rl - tR)2 + (r5 + iR)2]) 

- exp {-tb[(rs - tR)2 + (rl + tR)2]). (83) 

R is treated as the symmetric quantity R(y) here, 
as discussed before. The result for the average 
potential is now 

( b)! (12 2 b),,) 
Vav(Y) = - Vo b + 2A. exp 5' R,,' b + 2A. 

( 
21 b)" ) x exp -y ----

2 b + 2A. 

x [1 - exp (~R2~) 
5 a K + 2A. 

( 
1 2 K2 )] X exp - - y --- . 
4 K + 2A. 

(84) 

In the asymptotic region there is no difference between 
Eq. (82) and Eq. (84). If the ex particles are close to 
each other, a repulsive force is added to the original 
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attractive force. This is the effect of the antisymmetri
zation. 
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We verify the closure relation of a continuum basis of Lieb's wavefunctions, describing the scattering 
states of identical bosons interacting via a a-function potential in one dimension. 

1. INTRODUCTION 

We consider the system of N identical Bose particles 
on an infinite axis interacting via a two-body repulsive 
b-function potential. The Schrodinger equation for 
the wavefunction is 

which are the momenta of the particles in the ingoing 
or outgoing states. The energy of the state is 

N 

E = 1 k~. (6) 
i=1 

So far, the wavefunction 1f!{k}(X) is not normalized. 
(1) Our aim is to prove the following closure relation: 

The symmetrical scattering solution of Eq. (1) has 
been given by Lieb. l In the fundamental region D of 
RN defined by the inequalities 

- 00 < Xl < X2 < ... < XN < 00 (2) 

such a wavefunction is expressed as a sum over all the 
permutations P of order N, 

"P{k}(X) = 1 a(P)ei(Pk,.,l, (3) 
P 

with the notation 
N 

(Pk, x) = 1 kpiXi 
i=1 

and the rational form of the coefficients a(P) : 

a(P) = IT 1 + . ( iC) 
id kPi - kPi 

(4) 

The set {k} parametrizes the scattering state 1f!{k} and 
consists of N arbitrary but distinct real numbers, 

IN =J dkN _
1
_ "P{k}(X)1f!{,.}(Y) 

RN G(k) 

= N! (27T)Nb(x - y), 
with 

XED, yED. 

The 6 function in D is defined as 

(7) 

(8) 

£5(x - y) = 15(xl - Yl)15(x2 - Y2) •.. 15(xN - YN), 

(9) 
and the normalization factor is 

G(k) = IT (1 + c
2 

2)' 
i<; (k i - k j ) 

(10) 

By introducing the phases "Pii 

(11) 

(5) we infer from (7) that the normalized wavefunction in 
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the continuum would be 

<P{k}(X) = [N! (21T)Nrl 

x Lexp (.i L1pPi.Pi + iLkpiXi) (12) 
P 2i<i i 

for xED; and after extension of the rp by symmetry, 
we would have 

r rp~}(X)rp{k'}(X) dNx = b(k - k'), (13) 
JRN 

with k and k' ED. 

2. PROOF 

We will denote the inversion of the pair (i,j) by R 
with the notation (i,j)R' For example, with the 
permutation RI = m::J, we have the inverted pairs 
(1, 2)R

1
, (1, 4)R

1
, and (3, 4)R

1 
• 

In case (b), the corresponding factor in (18) is 
clearly 

a(Pj, Pi) 
--'--''-'----'-, i < j, (i, j)R' (21) 
a(Pi, Pj) 

Therefore we can write 

IN = r dkN L 11 k Pi - k Pi + ~c 
JRN .F.R <i.i)R kpi - kpi - IC 

A. Algebraic Part 
We set 

( ..) 1 ic 
at,} = -

ki - ki 

X exp (i t kpz(xz - YRZ»)' (22) 

(14) The change of integration variables 

Substituting the right-hand side of equality (3) for the 
wavefunctions in the expression (7) for f N' we have 

IN = r dkN L _1_ II a(Pj, Pi)a(Qi, Qj) 
JRN P.Q G(k)i<i 

X exp [i(Pk, x) - i(Qk, y)J (15) 

as a sum over independent permutations P and Q. 
Substituting the expression (10) for G(k) and 

summing over P and R = Q-IP, we get 

I = r dkN L II a(PR-li, PR-Ij) 
N JRN P.Ri<i a(Pi,Pj) 

x exp [i(Pk, (x - Ry»). (16) 

Now we consider the double product over all pairs 
of indices (a pair is defined as a set of two elements) 
in the integrand of (16). By the following change of 
indices in the numerator, 

R-li = i', (17) 
we write 

(PR-I' PR-I.) II a(Pi', Pi') 
II a ~'. J = Ri' < Rf' . . 

<1 a(Pl, Pj) 11 a(PI, Pi) 
(18) 

i<; 

In any double product, the !N(N - 1) pairs occur. 
With each pair (i,j) in the denominator of the right
hand side of (18), we associate the corresponding 
identical pair (i' ,j') in the numerator. Thus we have 
two possibilities: 

(a) i' = i,j' = j, which means 

i <j, Ri < Rj 

and that the corresponding terms cancel in (18); 
(b) i' = j,j' = i, which means 

(19) 

i <j, Ri> Rj. (20) 

gives us 

IN = LI(R), 
R 

with 

I(R) = N!l dkN 11 k i 
- k j + ~c 

RN (i.i)R ki - k j - IC 

X exp (i t kz(xz - YRZ»)' (23) 

B. Integration Part 

It remains to perform the integrations (23); let us 
isolate the term f(1) associated with the identical 
permutation. There is no pair inverted by R = 
identity, and we have 

/(1) = N! (21T)Nb(XI - YI)b(X2 - Y2) ... b(XN - YN)' 

(24) 
Now we prove 

feR) = 0, for all R :;!: identity, x, Y E D. (25) 

Suppose R is given. For each pair (i,j)R inverted by 
R, we have the implications 

i < j and XED => Xi < Xi' (26) 

Ri> Rj and Y ED=> YRi > YRi' 

Therefore, by setting 

~i = Xi - YRi' 

we deduce from (26) and (27) 

;i < ~i for (i,j)R' i < j. 

(27) 

(28) 

(29) 

The quantities ~i form a set partially ordered by the 
relation "inverted by R." Let us introduce the graph 
r, the vertices of which are labeled by the indices i, 
with a line between i and j, if (i,j)R' Since R is not the 
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identity, the graph r contains at least one line. The 
integrand of J(R) is clearly constructed by associating 
one factor with each line of r. Thus the integral J(R) 
is a product of integrals associated with each con
nected part of r. Consider one connected part r e of r, 
with L vertices and at least one line. Call the corre
sponding integral J(re)' Changing the name of the 
variables k, we have 

l(r ) =1+oo f+00 dk ... dk II ki - k j + ic 
e -00 -00 1 L(i.ilRer, ki - k i - ic 

x exp (i I~ k,~z). (30) 

In the variables ~, l(re) is a distribution Fourier 
transform of a rational function translationally in
variant; hence its support is the plane 

L 

L ~I = 0, (31) 
1=1 

On the other hand, there exists a vertex mEre such 
that 

~m ~ ~i' ViE re' (32) 

Call {n} the set of vertices of re connected to m by a 
line. Since the line (m, n) exists, we have (m, n)R; 
this means from (39) that 

m < n and ~ m < ~ n 

or 
m > n and ~ m > ~ n • 

From (32), the second part of the alternative is 
impossible and we are left with 

m < n and ~ m < ~ n (33) 

for the vertices {n} connected to m. Now we deduce 

~m < O. (34) 

Assume ;m ~ 0; from (32) and (33) this would imply 

I ~i > 0, 
iEr, 

which contradicts Eq. (31). 

With the results ~ m < 0 and n > m for the vertices 
n connected to m by a line of r e' we are able to show 
that J(re) is zero. According to a theorem (Schwartz2 

and Gel'fand3) on the generalized functions, the 
Fourier transform J(re) can be calculated as limit of 
the corresponding integral over a box [-Ki < k i < 
Kil, i = (1, L) with lim Ki = + 00. We first integrate 
over the variable k m • The corresponding factor J m 

in J{re) is 

J m = lim 1+Km 
dkmeikmgm II km - kn + ~c. (35) 

Km .... oo -Km n>m km - kn - IC 

The poles of the integrand (35) are all in the upper 
half-plane km ~ kn + ic (c > 0), and at infinity we 
have 

IT = 1 + 0(1..). 
n>m km 

Thus we deduce J m = 27Tc5(~m) + a function of ~m 
which is zero for ;m < O. Therefore, in the open 
domain ~m < 0, the distribution Jm is zero. This 
proves J(re) = 0 and J(R) = 0 in the open domain D, 
for R ':#: identity. Then the closure property follows 
from (23) and (24): 

IN = 1(1) = N! (27T)Nc5(x - y) x, y ED. 

In the following paper, we will give a direct proof of 
the orthogonality relation (13). 
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A direct calculation gives the normalization integral for a basis of scattering wavefunctions of inter
acting bosons in one dimension. 

In the preceding, Paper I, we found the closure 
relation of a basis of scattering wavefunctions for the 
one-dimensional system of bosons with repulsive tJ 
interaction. Here is given a direct calculation of the 
normalization integral (1.13). This approach is based 
on algebraic identities which show once more the 
interesting structure of Bethe's wavefunctions. 

With the notations of Paper I, a convenient basis of 
scattering states for the system of N repulsive bosons 
is the following: 

'IjJ(k)(X) = L a(P)ei(Pk.,,), 
P 

(1) 

with X (Xl' X2' ... ,xN) in the fundamental region 
DN of RN: Xl < x2 < ... < xN' The k are distinct 
real momenta in DN, and the coefficient a(P) is 

a(P)-= II 1 + . ( iC) 
i<i kpi - kpi 

(2) 

So far, the V'{k}(X) are not normalized. 
We calculate the normalization integral 

.N'(klk2· .. kN) i * ( N , , , = V'{k) x)V'{k,}(x)d X, 
k1k2 ' .. kN Dn 

(3) 

which is a generalized function, the sum of Fourier 
transforms of characteristic functions of the domain 

DN · 

Using the definitions (1) and (2), we have 

.N' = L a*(P)a'(Q) r exp [i(Qk' - Pk), x)]dNx. 
p.Q JDn 

Setting 
Pk - Qk' = q, 

we calculate the distribution in q, 

J N = r e-i(o''') dNx 
JDn 

(4) 

(5) 

=1 e-i!Ol"l+"'+an"n) dXI ... dXN' 
-00 <Xl <X2 < .. , <XN< 00 

(6) 

and we easily find 

J N(q) = 27TtJ(ql + q2 + ... + qN) 

x -----------------------------------
(ql + iO)(ql + q2 + io)'" (ql + ... + qN-I + io) 

(7) 

Here we derive an equality which will be useful 
later. From the definition (6) of IN(q) we have 

L IN(Pq) = (27T)NtJ(ql)tJ(q2) ... tJ(qN)' (g) 
P 

On the other hand, a known algebraic identity gives 
us from (7) the result 

L IN(Pq) 
p 

= 27TtJ(ql + q2 + ... + qN) 
N iN-I 

X ~l(ql + io)" . (qi-l + iO)(qi+1 + io)·· '(qN+ io) 

= (27T)NtJ(ql) ... tJ(qN)' (9) 

Now, using (5) and (7), we obtain 

.N' = 27TiN- 1tJ(kl + ... + kN - k{ - ... - k~) 

X ~(kl + io, k2 + io, 
k{, k~, 

kN + iO) 
kN ' 

(10) 

with the following definition of ~, a rational 
function of {k} and {k'}: 

Ll = L a*(P)a'(Q) :t(kk,) 
p.Q 

X [(kpi - kQ1)(kpl + kP2 - kQI - kQ2)··· 

(kPl + ... + kp(N-l) 

- kQI - ... - kQ(N_l)rl . (11) 

In the expression (10), the norm .N' appears as the 
product of an over-all tJ function expressing the 
conservation of total momentum by the boundary 
value of an analytic function of {k} in 1m k > O. 

Now the fundamental identity proved in the 
Appendix [Eq. (All)] is used to write ~ in a form 
which exhibits its true singularities. We obtain 

1677 
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from (A4)-(A6) with the coefficients d(R) given by 

li(:,) = ~(:,)(kl + ... + kN - k{ - ... - kN) 

= I J(R) d(R) 

d(R) = .L 1 (13) 
tJN (kl - kRl + IC)·· . (kN - kIlN + ic) 

and 

R (14) 

The only singularities of li are the poles k i = k'Ri . 
Using the expansion (12), we write 

tJ(k + ... + k - k' _ k' _ ... _ k' )li(kl + io ... kN + ;0) 
1 N 1 2 N k{ . . . kN 

= I J(R)d(R)tJ(kl + ... - k{ - ... - kN) 
R 

~ 1 

Xi~ (kl - kIn + io)· .. (ki- l - kRU-O + io)(ki+l - kRU+O + io)... (15) 

The equality (9) applied to each term of the sum over 
R gives for the left-hand side of Eq. (15) 

li(k~, iO)tJ(kl + ... - kN) 

= -; ~ d(R)J(R)tJ(kl - k~l) ... tJ(kN - k~N). (
2 )N-l 

I R 

(16) 

Clearly the function d(R) has to be evaluated at the 
point k i = kIu for all i. This gives from (13) and (14) 

IT (k i - k i )2 

d(R) = feR) i<i 2 2. (17) 
IT (ki - ki ) + c 
i<i 

From (10), (16), and (17), we finally obtain 

x(kl ... kN) = (27T)NIT (1 + c
2 

) 
k{ ... kN i<i (ki - ki)2 

X L tJ(kl - kRl) ... tJ(kN - kIlN). (18) 
R 

Together with the previous result on the closure 
property, the formula (I8) expresses the unitarity of 
the following transformation function introduced in 
Paper I: 

({k} I {x}) 
= (27T)-NI2[G(k)]-!1p{k}(X) 

= (27TrNI2 L exp (i L 1pPi.Pi + i I k PiX}), (19) 
P 2 i<j j 

with both X and k in the domain DN • 

APPENDIX 
1. Identity (A4) 

Consider the coefficients a(P) of the scattering 
Bethe's wavefunction as a function of N complex 

numbers {k}. We choose the rational form 

a(P) = IT 1 + , ( Y) 
lS,i<iS,N kpi - kpi 

(AI) 

with y = ic. We call a'(Q) the coefficient defined with 
another set {k'}, for a current permutation Q, and we 
note ii(P) , the result of reversing the sign of the 
constant c (or y) in a(P). When the k are real, we have 
ii(P) = a*(P). From the definition (AI), we have also 

ii(P) = a(PT), (A2) 

where T is the permutation [1(~-1):::f]. 
Let us define the quantity ~N(~.) by the following 

double sum over permutations P and Q: 

~N = L a(P)a'(Q) 
P.Q 

x [(kpl - kQl)(kPl + kP2 - kQl - kQ2) ... 

(kpl + ... + kpN - kQl - ... - kQN)]-l. 

(A3) 

Clearly ~N is a rational and completely symmetric 
function of the k, and separately of the k'. It will be 
expressed as the quotient of two determinants, in a 
way reminiscent of the bialternant of the theory of 
symmetric functions. We have the identity 

~ 1 N =-.!! (k ... k) D 

k~ ... kN tJN ' 

with 

DN = I (ki - kj)(~ - kj + y) IN 
and Cauchy's determinant 

(A4) 

(AS) 

(A6) 
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The indices i andj label, respectively, the lines and the 
columns in (AS) and (A6). 

This identity was verified at the lowest order N = 2 
by noticing that the sum 

L ii(P)a'(Q) 1 
P.Q kPl - kQ1 

is divisible by (k1 + k2 - k~ - k~). We obtain in a 
straightforward way 

~ (k1 k2) = (1 c
2 

- ic(k1 + k2 - k~ - k~)) 
2 k~ k~ + (k1 - k2)(k~ - k~) 

1 x------
(k1 - k{)(k2 - k~) 

(
1 _ c2 

- ic(k1 + k2 - k~ - k~») 
+ (k1 - k2)(k~ - k~) 

1 x------
(k1 - k~)(k2 - k~) 

(A7) 

Subtracting and adding the quantity [(k1 - k2)(k~ -
k~)]-\ we find a sum of two terms: 

~2 = L f(R)d(R) 1 , (A~) 
R (k1 - k'Rl)(k2 - kR2) 

with feR) the sign of the permutation Rand 

(k1 - k'R2 + ic)(k2 - k'Rl + ic) 
d(R) = - . (A9) 

(k1 - k2)(k{ - k~) 

In this form the generalization of (A8) and (A9) is 
almost obvious and leads us to 

II (ki - kRi + ic) 
d(R) _ --:i..;,,*.:....; _____ _ 

- II (ki - k,)(kj - k~) 
(AlO) 

and 
i<j 

~ = "" f(R)d(R) 1 
N.t., (k k') ... (k k') R 1-R1 N-RN 

Using Cauchy's identity, one gets (A4). 

2. Proof of Identity (A4) 

(All) 

The definition (A3) of ~N is equivalent to the 
following recurrence relation, obtained by multiplying 
the two sides of Eq. (A3) by .2~1 (ki - k~), setting 
P N = r, QN = s, and using the definition of ii(P) 
and a'(Q): 
N 

I(k i - k~)~N 

i=l = i i tl.
N

_
1 
(" • ~~ ... ) 

r=18=1 ••• Its ••• 

x II (1 - Y ) II (1 + Y ). (A12) 
j(*r) k j - kr i(*8) k; - k~ 

The identity (AI2) has been proved for N = 2 in 
(A7)-(All) and now we proceed by induction over N. 
Assume that (A4) is true to order N - I; then we 
have 

A ( ••• Itr · .. ) _ cofactor IDNlrs _ cofactor IDNlr .. , 
UN_l - -

... j(~ . . . cofactor IbNI.. ()N 

(Al3) 
We choose the definition 

IA I = I ( - y+sars cofactor I ars I· 
s 

Substituting in (AI2) for ~N-1 given by (A13), we 
reduce the equality to be proved to 

L (k - k') IDNI 

1 = -; L (-y+scofactor IDNlrs (kr - k~ + y)ere~, 
y r,s 

(A14) 
with 

rrN k; - kr - Y 
er = I ' 

;=1 k j - kr - Y 
(A1S) 

N k~ - k' + y , _ rr t s es - • 
i=l k i - k~ + y 

(A16) 

Clearly the right-hand side of (AI4) is the sum of 
three determinants of order N + I obtained by 
adding to DN one line and one column of index O. 
Thus we have to prove the identity 

_y2.2 (k - k')DN = D(l) - D(2) + yD(3), (A17) 

with the definitions 

D~~) = 0, D;~) = IDNlrso r, S = [1, N], 

D~!) = e;, D:!) = kre., 

D~;) = k~e~, D;~) = er, 
(A18) 

Now we remark that the new line (or column) is a 
linear combination of those of D N . By a partial 
fraction decomposition of er and e~ in the variable y, 
we have 

N f. 
e. = 1 - L " ' (A19) 

j=l kr - k; + y 

N f' 
e' = 1 - I i 

s i=l k i - k~ + y 
(A20) 



                                                                                                                                    

1680 M. GAUDIN 

From their definition, (At5) and. (At6), these quan
tities are zero for y = O. Thus we obtain 

'" f, 
er = Y .t:.. (k k')(k k' )' , r- , r- ,+y 

(A2l) 

'L f~ 
es = Y i (ki - k~)(ki - k~ + y) 

(A22) 

or in other terms, 

D(S) - Y "'f·D(~) = 0 
'70 £., ,r3 • (A23) 

j 

Thus, by combining the lines for DU) and D(S), the 
columns for D(2) and D(a), we obtain 

D(l) = -DN · y(.t:.r;kie+ (A24) 

D(2) = -DN' Y(tf,kiei) , (A25) 

D(3) = -DN ' (Y tf,e j) 

= -DN' Y(~:.r~e+ (A26) 

Substituting for the quantities ei and e~ the ex
pressions (AI9) and (A20), we add (A24), (A25), and 
(A26) divided by DN: 

_1_ (D(l) _ D(2) + yD(3» 
DN 

= -Y L (kif, - k;.f;) - ,,2 Lf~ 
j i 

(A2?) 

It remains to use the definitions of the residues j; 
and/; from (AtS) and (A19): 

Lf~ = (coefficient of! in e;) = L (ki - k;). (A28) 
i "i 
In the same way, we find 

"2.f. = "2. (ki - k;), (A29) 
i i 

"2. kd~ = ! "2. (k'2 - k2) - t <"2. (k' - kW, (A30) 
i 

"2. k;f. = ! L (k,2 - k2) + HL (k' - k»2. (A31) 
t 

By using equalities (A28)-(A31), the equality (A2?) 
becomes 

which is exactly the required identity (AI?). This 
completes the proof of the identity (A4). 

3. Limiting Cases 

C --+- 00: We have for the leading term 

a(P)a'(Q) IX I(P)I(Q) II (k
i 

_ kj)(k; _ kj) 
i< ; 

By summing over P the right-hand side of (A3) at 
R = QP-l fixed, we deduce from a known identity 

which is precisely the limiting form available from 
(AlO) and (All). 

C --+- 0: ii(P)a'(Q) ---+ I and we have 

+ + 

/).N = 1_1_/ (permanent). 
ki - kj N 

Even in this limit we get a nontrivial identity due to 
Borchart1 between this permanent and the quotient 
of two determinants 

+ + 

I ki ~ ki IN' I ki ~ ki IN = I (ki ~ ki)2IN' 

which can be proved directly. In a following paper we 
will ~how a surprising connection between the 
bisymmetric /).N(~') and Bethe's wavefunction for the 
spino! fermion system. 

• Work supported in part by the u.s. Atomic Energy Commission, 
under Contract No. AT(30-1)3668B. 

t On leave of absence from Service de Physique Theorique, 
C.E.A. Orme des Merisiers, B.P. No.2, Gif-sur-Yvette 91, France. 

1 T. Muir, Theory of Determinants (Dover, New York), Chap. 
VI, p. 151. 
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A parametrization scheme for orthogonal and unitary groups is developed. This scheme is broadly 
similar to one developed earlier by Wigner, but differs from it in some essential details. It is shown that 
an arbitrary elementg of the group SO(p,q), [SU(p, q)], 3 s;,p < 00,0 s;, q < oo,p + q = N, can be 
written as a product of three factors, g = aBc, such that the extreme factors a and c belong to 
SO(p, q - 1) [SU(p, q - 1)] and the middle factor is an element of SO(p, q), [SU(p, q)] depending on at 
most two parameters and representing a "rotation" (real, complex, unitary or pseudo-unitary, as the 
case may be) in the (1 - N) plane. This parametrization includes the Euler parametrization R = 
R12(CP1)R13(O)R 12(cp.) of the group SO(3) as a special case, and is theref~re a generalization of the Euler 
angle concept to more general orthogonal and unitary groups. The present factorization scheme differs 
from Wigner's, which is of the form g = [SO(P) @ SO(q)]K[SO(p) @ SO(q)] [and similarly for 
SU(p, q)], in that the extremal factors of this latter scheme are not the next natural subgroup of the 
original group. Consequently, the middle term K may depend on more than two parameters. Further
more, the method of proof presented here is entirely different from Wigner's, and may serve as a useful 
alternative, if further generalization to real Lie groups that preserve some other types of bilinear forms 
is envisaged. By stepwise factorization, the element g may ultimately be expressed as a product of real, 
complex, unitary or pseudo-unitary "rotations" in the plane. 

1. INTRODUCTION 

The expression of the general element of an n
parameter Lie group, as a product of factors depending 
on fewer than n parameters, usually simplifies the 
problem of deriving the representation matrices of 
the group. In fact, in deriving matrices for finite 
transformations of such groups as SU(3), such a 
factorization is virtually imperative. l Such a factori
zation in terms of the Euler angles P and 0 is well 
known for the rotation group SO(3). Thus, if R E 

SO(3). then R = R12(Pl)Rl3«()R12(P2)' Murnaghan2 

has worked out a factorization (and hence a parametri
zation) scheme for more general orthogonal and 
unitary groups in terms of the so-called latitude and 
longitude angles. For SO(3), this factorization differs 
essentially from the Euler factorization in that there 
is no repeated R12(91) factor. The Euler angles are 
useful parameters for the analysis of rigid body 
motions. It is therefore reasonable to require that 
when symmetry groups other than SO(3) are used in 
physics, the factorization (and parametrization) of such 
groups should be such as to preserve the advantages of 
the Euler angle parametrization. This can best be 
achieved by ensuring that the parameters used are 
simple and direct generalizations of the Euler angles of 
rigid body mechanics. The latitude and longitude 
angles do not quite satisfy this criterion. In the book of 
Murnaghan,3 there is a statement: "The repetition of 
the 12-plane in the Euler factorization impedes the 
extension of this factorization to n-dimensional rota
tion matrices, where n > 3." The results of our present 
paper indicate that the contrary is rather the case: The 

Euler factorization R = R12( IPl)Rl3(f})R12( P2) of the 
group SO(3) can be generalized in a simple and 
straightforward way to all SO(p, q) and SU(p, q) 
groups, for p ~ 3, q ~ O. 

We present the problem in the form of the following 
two theorems: 

Theorem 1: Every matrix g E SO(p, q), 3 ::; p < 00, 

0::; q < 00, p + q = N, P ~ q, may be represented 
in the form g = aB(O)c, where a, c E SO(p, q - 1) if 
q > 0 or a, c E SO(p - 1) if q = 0, and B(O) belongs 
to a one-parameter subgroup of SO(p, q). 

Theorem 2: Every matrixg E SU(p, q), 3::; P < 00, 

0::; q < 00, p + q = N, P ~ q, may be represented 
in the form g = UB(Pl' P2 = 0, O)v, where u, v E 

SU(p, q - 1) if q > 0 or u, v E SU(p - 1) if q = 0; 
and B( PI' P2' 0) is an element of a three-parameter 
subgroup of SU(p, q). 

The factorization scheme which is embodied in the 
above theorems is somewhat similar to that derived by 
Wigner4 as a by-product of his theory of peripheral 
nuclear reactions. This factorization given in Ref. 4 
is of the form 

g = [SQ(p) @ SQ(q)]U'[SQ(p) @ SQ(q)], 

g E SQ(p, q), Q = 0 or U, 

where U' is of the form 

U' = (C S). 
_ST C' 

1681 
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C and C' are real diagonal matrices, with the last Let 
n - m diagonal elements of C being 1, the first m 
elements being identical with those of ct. S is a real 

K2 = (gNN)2 - 1, 

K; = (glN)2 + (g2N)2 + ... + (g1'N)2, (2.4) n x m matrix. The last n - m rows of S are equal to 
zero, and the relations 

C2 
- SST = 11' = P X q unit matrix, 

C 2 
- STS = 10 = q X q unit matrix 

hold. (The superscript "T" denotes matrix trans
position.) The middle term V'is therefore not as 
simple as that derived in the present paper. Admittedly 
either form of factorization can be converted into the 
other by some similarity transformation of the middle 
factor. However, the method of proof that leads to our 
factorization scheme is also different from that of 
Ref. 4, and may serve as a useful alternative procedure 
if one contemplates a further generalization of the 
Euler angle concept to real Lie groups that preserve 
other types of bilinear forms, e.g., to Sp(p, q). 

In proving our Theorems 1 and 2, we have used the 
general ideas behind Naimark's derivation5 of the 
factorization of the general element g of the proper 
Lorentz group SO(3, 1) into the product ubv, where u 
and v belong to SO(3) and b is the Lorentz trans
formation along the x axis. 

Since the groups SV(3) and SV(2, 1) are very useful 
in physics, we have, in Sec. 4, written out their factor 
matrices explicitly. 

With regard to our notation, the following remarks 
are important: Throughout this paper, the Einstein 
summation convention is used for lower case subscripts 
that are repeated; Greek lower case subscripts oc,,8, •.• 
take the values 1, 2, ... , N; Latin lower case sub
scripts a, b, ... take the values 1,2, . ", N - I.Thus 
if we write ,8ij()ja rather than ,8ia, it would be because 
the object ,8i} is (for convenience) defined only for 
1 ~ i,j ~ N - 1. 

2. FACTORIZATION OF SOCp, q); PROOF 
OF THEOREM 1 

A. The Case q > 0 

Let the N X N matrix g be an arbitrary element of 
SO(p, q), and let g",. be its matrix elements. The 
following relations hold: 

gi,,'siigiP = ,Stm()ta()mP - ()Na()NP + gN"gNP' (2.1) 

gai,8ijgPi = ,8tm(jtiJmp - (jaN(jPN + gaNgpN' (2.2) 

where 
{Ji} = 15i} for 1::; i, j ::; P 

= -(jii for p < i, j::; N - 1. (2.3) 

K~ = K; - K2. 

Let us define N - 1 real (N - I)-component 
vectors oc; with components OC;j, such that 

OC~t = gtN for t :S p 

Hence 

Also let 

= - gtN for p + 1 :S t :S N - 1. 

rx~t'stsgsN = K; + K; 
= D2, say. 

Thus the general form of (2.5) is 

(2.5) 

(2.6) 

(2.7) 

Now, either D2 = 0, or D2 ¥= O. Suppose D2 = O. 
Then K~ = K; = O. It therefore follows from (2.1) 
and (2.2) that gNi = giN = 0, for all i < N. Hence 
g E SO(p, q - 1), and the theorem follows trivially 
if we put B = c = E, the unit matrix, and g = a. 

Having thus disposed of this trivial case, we shall 
assume in the following that D2 ¥= O. We may there
fore normalize the vectors rx; by putting 

Hence 

and 

(2.8) 

(2.9) 

(2.10) 

We now define an N x N matrix R with elements 

Hence 
(Rg)aA. = rxii,8iAagtA. + (jNagNA.· 

We note that, for ex ¥= N, 

(Rg)aN = (Rg)sN for some s 

= rxs;{J;tgtN 

= D{Js1' via (2.9), 

= ° unless s = 1. 

Furthermore, (Rg)NP = gNP' 

(2.11) 

(2.12) 

If we now consider R as an (N - 1) X (N - 1) 
matrix, that is, if we ignore the unity in the (N, N) 
position and the zeros in the rest of the Nth row and 
the Nth column, we find, after some calculation, 
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using (2.10), that 

(RT~R)t8 = ~ts' 

It follows that R E SO(p, q - 1) c SO(p, q). Hence 
Rg E SO(p, q). 

We now define (N - 1) real (N - I)-component 
vectors fi with components6 fii given by 

fj1 = D-IgNj , fji = (Rg)ii' I < i ~ N - 1. 
(2.13) 

With the aid of (2.2), (2.3), (2.9), and (2.10), one 
easily verifies the relation 

(2.14) 

We now construct another N X N matrix S with 
elements 

SafJ = hj~itbtijjfJ + bNabNfJ · (2.15) 

The matrix S satisfies 

(ST ~S)st = ~sj, 
i.e., S E SO(p, q - 1) c SO(p, q). 

Finally we construct the N x N matrix 

B = RgS. (2.16) 

Using (2.12) and (2.15), we have the elements of B as 

Ba/l = OCijJ,.p~jt~rsbiagjsbp/l + D~i1biabN/l 
+ bNa(gNsJ,.p~rsbp/l + gNNbN/J· (2.17) 

From (2.17) we obtain 

Bd = gNN~iIbifJ. + DbNfJ., 

BaN = D~i1bia + bNagNN, 

Btk = fJtk' t, k ¢ 1. 

Putting R-I = a and S-l = c, we have 

g = aB(e)c, 

where a, c E SO(p, q - 1), and 

B = B(e) has the form 

(2.18) 

(2.19) 

All ~ij are replaced by bij . We now put 

D = [1 - (gNN)21! ¢ O. (2.23) 

The case D = 0 is as trivial as in the case q > 0 of 
this proof, implying in this case that g E SO(p - 1). 

With the vector OCi defined by OClt = D-IgtN and 
OCjtOCkt = octjoctk = b jk' we find that the matrix P, with 
elements 

satisfies (pTp)st = bsj , i.e., P E SO(p - 1) c SO(p). 
It follows that Pg E SO(p). 

Equation (2.13) is now replaced by7 

fit = -D-lgNi , hi = (Pg)ii' 1 < i ~ N - l. 

(2.25) 
Then the N X N matrix Q defined by 

QafJ = hAabjfJ + bNAv{1 (2.26) 

satisfies (QTQ)st = bst , i.e., Q E SO(p - 1) c SO(p). 
Finally, we construct the matrix B = PgQ. Using 

(2.24) and (2.26), we have 

B./l = ocijbi.gjt!tmbrn/L + DbdbN/l 

+ 0N.(bN/lgNN + gNtftmbm/l)' (2.27) 

From (2.27), we have 

Hence 

Bal = blagNN - DON.' 

BaN = DOd + 0N.gNN, 

B ik = b jk , j, k ¢ 1. 

Bll = BNN = gNN = cos e, say, 

BIN = -BNl = D = sin e. 

(2.28) 

(2.29) 

Putting p-I = a, Q-l = c, we have g = aB(O)c, where 
a, C E SO(p - 1) and B is given by (2.28) and (2.29). 
This completes the proof of Theorem 1. 

3. FACTORIZATION OF SU(p, q); PROOF 
OF THEOREM 2 

Bn = BNN = gNN = cosh e, say, 

BIN = BNl = D = sinh e, (2.20) A. The Case q > 0 

B jk = ~ jk , j, k ¢ 1. If g is an arbitrary element of SU(p, q), the follow
QED ing relations hold: 

B. The Case q = 0 

The group is now compact. The preceding analysis 
holds provided we make the following adjustments. 
Equations (2.21) and (2.22) replace (2.1) and (2.2): 

(2.21) 

gja~jigi/3 = ~tmotabmfJ - oNi)N/3 + givagNfJ' 

ga~~ijgPj = ~tmOtaom/3 - 0aNOPN + g:NgPN, 

where 
for 1 ~ i,j~p 

= -bij for p < i,j ~ N - 1, giagifJ = bap - gNagNP' 

gaigpi = oaP - gaNgPN' (2.22) and the asterisk denotes complex conjugation.s 

(3.1) 

(3.2) 

(3.3) 
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Let 

As in the proof of Theorem 1, we see that D = 0 
implies K! = K! = 0, i.e., gNi = giN = 0 for all 
i < N. Hence g E SU(p, q - 1), and the theorem 
follows: B = v = E, the identity, and g = u. There
fore, let D ;t!: 0 in all that follows. 

We define N - 1 complex (N - I)-component 
vectors OC i with components OCii such that 

(ilj = D-Ig jN for j ~ p 

= _D-IgjN for p + 1 ~j ~ N - 1 (3.5) 

and such that 

OCji{3itOC:t = ocZ{3;tOCtk = {3 jk . (3.6) 

It follows that 

(3.7) 

We now construct an N x N matrix U with elements 

Thus 
Uap = octj{3j/JilJtp + CJN/JNp. (3.8) 

(U g)a/l = oc;j{3jAagt/l + bNagN/l. (3.9) 

Hence (Ug)m = D{3jI = 0, unless j =1. It follows 
from (3.9) that (Ug)Na = gNa and that (ut{3U)st = 
(3.I, i.e., U E SU(p, q - 1) c SU(p, q). Hence Ug E 

SU(p, q). 
Let us define N - 1 complex (N - I)-component 

vectors h with components lji given by 

fil = D-IgNj , Iji = (Ug)ij, 1 < i ~ N - 1. 

(3.10) 
It follows from (3.2), (3.6), and (3.7) that 

fij{3i1ftk = {3jk· (3.11) 

The matrix V defined by 

Yap = fi~{3itiAabjP + CJNaCJNP (3.12) 

satisfies (VtpV)st = Pst. Hence VESU(p,q - 1) c 
SU(p, q). From (3.9) and (3.12), the matrix B = 
UgV has elements 

Ba/l = ocijfr~{3jtfJrs~iagIAp/l + DbiafJilbN/l 

+ tJNa<gNsfr~{3rl)1J/l + gNNCJN/l)· (3.13) 

Equation (3.13) gives 

Bd = biafJiIg'Jm + DtJ Na' 

BaN = D{3i1bia + ()NagNN' 

B jk = {3jk' j, k ;t!: 1. 

(3.14) 

Thus 

Bll = Bim = exp (- iTl) cosh e, say, 

BIN = BN! = sinh e 

= exp (iT2) sinh e/'I'z=o. (3.15) 

Putting U-l = U, V-l = v, we have g = uBv, where 
u, vESU(p,q-I) and B=B(TI,T2=0,e) is 
given by (3.14) and (3.15). QED 

B. The Case q = 0 

The analysis is analogous to the immediately 
preceding one, with the following adjustments: In 
place of (3.1) and (3.2), we now have 

gi!giP = bap - gf.,agNP' 

g:'igPi = bap - g:NgPN· 

We then replace all Pii by bij and put 

D = (1 - /gNN/2)! ;t!: O. 

The case D = 0 is trivial, as before. Now let 

OCll = D-1gtN , OCj~OCk't = OCtjOCtk = bjk , 

(3.16) 

(3.17) 

(3.18) 

111 = -D-lgNi , fii = (Ug)ij, 1 < i,j ~ N - 1, 

(3.19) 

where U is given by (3.9), with the adjustments 
indicated above. The matrix B = Ug V then has the 
following entries: 

Ba/l = ocijftmbiagjtbm/l + DbalbN/l 

Thus 
+ bNa(gNt!/~mbm/l + gNNbNI')· (3.20) 

BaN = Dbd + gNN()Na, (3.21) 

Bjk = bik , j, k ;t!: 1, 

i.e., 

Bll = Bf.,N = gf.,N = exp ( - iTl) cos e, say, 

BIN = - B Nl = D = sin e 

= exp (iT2) sin e/'I'2=O. (3.22) 

It follows that g = uBv, where u = U-l, V = V-l, 
and B = B( Tl, T2 = 0, e) is given by (3.21) and (3.22). 

This completes the proof of Theorem 2. 

4. FACTOR MATRICES FOR SU(3) 
AND SU(2,1) 

It follows from (3.20)-(3.22) that if g E SU(3), then 

g = U12(TI, T2, ()l)U13(T, 0, e)U12(T~, T;, (}2), 

o ~ T S 27T, 0 S e S 7T, (4.1) 
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where 

-exp (iCP2) sin e 0) 
eXp(-i~l)COSe ~ , (4.2) 

UdIP1. IP2' e) 

_ ( exp (iIPl) cos e 0 -exp (iIP2) sin e) 
- 0 O. 

exp ( - iCP2) sin e 0 exp ( - iCPl) cos e 

If g E SU(2, 1), then (3.13,-(3.15) give 

g = U12(CPl, CP2, el)U~3(CP, 0, e)Ul2(cp~, cP;, (2), 

where U12 is given by (4.2) and 

U~3( IPl' IP2, 0) 

(4.3) 

(4.4) 

( 

exp (iCPl) cosh e 0 exp (iCP2) sinh e ) 

= 0 1 0 , 

exp (- iCPl) sinh e 0 exp (- iCPl) cosh e 

o ::; IP ::; 27T, 0::; e < 00. (4.5) 

From (4.1)-(4.5), we may obtain the factorization 
of the group SU(2, 2), which is locally isomorphic to 
the conformal group of space-time, another group of 
physical importance. 

5. CONCLUSION 

We have derived a factorization of arbitrary 
elements of pseudo-orthogonal and pseudo-unitary 
groups of any order in terms of parameters that 
directly generalize the Euler angle parameters of the 
rotation group. The method of derivation is applicable 
to a wider class of groups than is considered here. 
The results obtained are broadly similar to results 
obtained earlier by Wigner for the same problem, 
but differ from the latter in the following details. 
The Wigner factorization displays the group element 
as a product of three factors, the extremal factors of 
which belong to the subgroup SO(P) ® SO(q) [or 
SU(p) ® SU(q) as the case may be]. The present 

factorization displays the group element also as a 
product of three factors, the extremal elements of 
which, however, belong to the subgroup SO(p, q - 1) 
[or SU(p, q - 1) as the case may be]. The middle term 
then becomes much simpler than the corresponding 
factor in Wigner's scheme. The factorization of the 
present paper also seems to have the advantage of 
directly lending itself to a recursive breakdown into 
a product (ultimately!) of rotations in the plane. The 
factorization of SU(3) in terms of Euler angles makes 
the calculation of matrices for finite transformations 
of this group directly deducible from the correspond
ing matrices for SU(2), that is, from the well-known 
Wigner d~m' functions. 
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Energy transport is investigated in a model system for which exact analytic results can be obtained. 
Th.e system is an. infinite, .one-d!mensi.onal harmo~i~ crystal which is perfect everywhere except in a 
fintte segment whIch contaInS N IsotOPIC defects. InttIally, the momenta and displacements of all atoms 
to the left of the defect region are canonically distributed at a temperature T, and the right half of the 
crys~al is at a lo~er temperature. This !nitial n,:mequ~librium. s~a~e evolves according to the equations of 
motIon, and ultImately a steady state IS establIshed In the VICInIty of the region containing the defects. 
The ~hermal conduc(ivi~y is c~lculated .from ~xact expressio~s f?r the steady state energy flux and thermal 
gradIent. For a crystal III whIch the N IsotOPIC defects are dIstrIbuted at random but in which the overall 
defect concentration is fixed, we demonstrate that the thermal conductivity approaches infinity as least 
as !ast as N

1
/
2

• A M?nt~ Carl~ evaluation of t~e thermal conductivity for a given defect-to-host mass 
ratIO and concentratIOn IS carned out for a senes of random cpnfigurations of N defects for N in the 
range, 25 ~ N ~ 600. The thermal conductivity is proportional to Nl/ 2 within the statistical uncertainty 
except for slight deviations at the smallest values of N. 

1. INTRODUCTION 

In this paper we study the thermal conductivity of 
an isotopically disordered section of atoms in an 
otherwise-perfect, infinite, one-dimensional harmonic 
crystal. Since thermal conduction in solids proceeds 
via phonon transport, it is important to assess the 
effectiveness of various phonon scattering mechan
isms. It is well known that in a perfect harmonic crystal 
the thermal conductivity is infinite. In a one-dimen
sional crystal we determine the extent to which this 
divergence of the thermal conductivity is modified in 
the presence of isotopic defects. The model and 
techniques used are similar to those developed by one 
of US.1- 3 

The model used to evaluate the thermal conductivity 
K is an infinite harmonic chain with nearest-neighbor 
forces which is perfect everywhere except in a finite 
segment of length L containing N isotopic defects 
distributed at random. Initially, the momenta and 
displacements of all the atoms to the left of the defect 
region are canonically distributed at a temperature T, 
and the momenta and displacements of the remainder 
of the system are at some lower temperature which, 
for convenience, is assumed to be zero. This initial 
nonequilibrium distribution evolves according to the 
equations of motion of the system. Ultimately, a 
steady state is established in the vicinity of the region 
containing the defects. That is, there is a steady-state 
value for the energy current I N through the defect
containing region as well as a steady-state temperature 
drop t::.TN = Tright - 1J.eft across the same region. 
From explicit expressions for I N and t::.TN , we 
determine the value of the thermal conductivity /('" 

from the definition 

(1.1) 

Our main interest lies in the limiting value of K;v as 
N ~ 00, when the over-all concentration of defects 
C = N/L remains constant: 

K = lim KN = - lim (NJN/Ct::.TN ). (1.2) 
N ..... oo iV--+OO 
NL-l~C NL-l~C 

It will be shown that if N ~ 00, NL-l = C, then 
t::.TN ~ - T. Therefore, the limiting value KN can be 
written as 

KN = NJ.v/CT, N» 1 and NL-l = C. (1.3) 

The principal results obtained are of two kinds. 
First, we obtain a lower bound for N(JN)c of the form 

N(.!,,,,)c 2 ANi, (1.4) 
which implies that 

(KN)c 2 ANi/CT, for N» 1 and NL-l = C, 

where A is a constant and (IN)c denotes the average 
of the energy current for all configurations of N 
defects weighted according to the frequency of their 
occurrence in a particular ensemble. In the ensemble, 
the spacings "a" between adjacent defects are inde
pendent random variables with the probability 
distribution 

~(a) = C(I - C)a-l, a = 1,2,···. (1.5) 

Second, we obtain Monte Carlo estimates of NJN for 
25 :S N:s 600. In this range the following relation is 
approximately valid in the case Q = 1.0, C = 0.5: 

NJN = USN!, (1.6) 

1686 
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which indicates that the exponent! in the lower bound 
Eq. (1.4) may be the best possible estimate. 

2. MODEL AND FORMAL SOLUTION 

Consider a one-dimensional harmonic crystal with 
nearest-neighbor interactions. The particles are labeled 
consecutively by the index r, -x < r < X, and all 
particles have the mass m, except for N isotopic defect 
particles at random lattice positions r = A j , j = 
1, ... , N. The mass of each of the defect particles is 
M. It is assumed that Al = 0, that all other defects 
lie to the right of r = 0, and that the subscript j on 
Aj specifies the order of the defects, i.e., 0 = Al < 
... < Aj < ... < A.v = L« X. Thus L = Ax is 
the length of the defect-containing region, and 
C = N/ L is the overall concentration of defects in 
that region. The spacings between adjacent pairs of 
defects, Aj - A j _ I , are assumed to be independent, 
identically distributed random variables with a mean 
value 

(2.1) 

The nearest-neighbor force constant is assumed to be 
equal to f everywhere in the crystal. The equations of 
motion of the one-dimensional crystal are 

im[x(X - 1, T) - 2X(Jf, T)], 

r=X, 

im[x(r - 1, T) - 2x(r, T) (2.2) 

+x(r+l,T)], -X<r<X, 

im[-2x(-X, T) + xC-X + 1, T)], 

r= -X, 

where x(r, T) is the displacement of particle r from its 
eq uilibrium position and mr is the mass of the particle 
at lattice site r. In Eq. (2.2), each superscript dot 
denotes differentiation with respect to T, a dimension
less time such that T = 2(flm)i{, where f is the 
nearest-neighbor force constant and 2(f/m)~ is the 
maximum normal mode frequency of the infinite 
perfect crystal. The equations of motion (2.2) corre
spond to fixed boundary conditions, i.e., X(X + 
1, T) = X( -X - 1, T) = 0, and are chosen so that the 
potential energy matrix Y [the negative of the matrix 
of the coefficients on the right-hand side of Eq. (2.2)] 
is positive definite. The formal solution of Eq. (2.2) 
can be written in matrix notation as3 •4 

x(T) = M-!W-! sin (W!T) Mli(O) 

+ M-! cos (W!T)Mix(O) (2.3a) 
and 

i(T) = M-i cos (WiT)Mix(O) 

- M-iW! sin (WiT)M!x(O), (2.3b) 

where M is the diagonal mass matrix whose rth 
diagonal element is the mass of particle rand W = 
M-iYM-i. The rth components of the vectors X(T) 
and X(T) are respectively the position and velocity of 
particle r at time T. 

In the model, the configuration of the array of 
defects is specified, {A j }, j = 0, ... ,N, and we 
consider the ensemble of initial conditions in which 
(i) particle - R < 0 is held fixed, (ii) the initial 
conditions in the portion of the crystal -X < r < 
- R are specified by a canonical distribution at 
temperature T, and (iii) the initial conditions in the 
portion of the crystal - R < r < X are specified by 
the temperature T = O. This initial condition can be 
summarized as 

.Y 
X II {Mx(r, O)]o[x(r, Om, (2.4) 

r=-R+I 

where the vector X(O) is written as a partitioned vector 

in which the components of xh(O) are the initial 
velocities of particles in the hot region, the com
ponents of xc(O) are the initial velocities of particles in 
the cold region, and the single-zero component refers 
to the initial velocity of the clamped particle R. The 
matrices Mh and Yh are, respectively, the diagonal 
mass matrix and potential energy matrix of the 
initially clamped, hot region. In the ensemble, the 
velocities of lattice particles at time T are linear 
combinations of the initial conditions which have a 
multivariate Gaussian distribution. Consequently, the 
probability distribution of the velocity of each lattice 
particle is a Gaussian distribution with a time
dependent dispersion which we identify with the local 
time-dependent temperature. Thus in the initial 
ensemble the average value of (x(r, 0)2) is kTm;l, so 
that 

(2.5) 

It has been shown3 from the formal calculation of 
(x(r, T)2) that the time-dependent local temperature is 

TN(r, T) = mrk-I<i(r, T)2) = 2T&(r, T), (2.6) 
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where S(r, 'T) is the energy content of the initially hot 
region at time 'T in the case of the special initial 
condition x(O) = 0 and x(O) = m-;iar • All com
ponents of ar are zero except the rth which is unity. 
Thus, in order to determine the local kinetic temper
ature at r, we must evaluate the expression 

l(m) -R S(r, 'T) = - - ,Z {[M-i cos (Wi'T) Mi]r' ,r}2 
2 mr r =-.N' 

1 m -R-1 + - - I {[M-!W-i sin (W!'T)Mi]r'+Lr 
8 mrr'=-.N' 

- [M-iW-! sin (W!'T)Mi ]r'.r}2. (2.7) 

The potential energy contributions of the "springs" 
connecting particles -X' and X' to the fixed boundary 
particles have been omitted in Eq. (2.7). In the 
physically interesting limit X' ----+ 00 with r, R, and N 
fixed, this error of omission is negligible. 

The approach of the local kinetic temperature to its 
steady-state value can be described easily in a quali
tative way by referring to the connection between local 
temperature and the special initial value problem set 
forth in Eqs. (2.6) and (2.7) and Fig. I. Lattice 
particles r1' r2' and r3 are all located in the initially 
cold region, so that the initial energy content of the 
hot region S(ri' 0), i = 1,2,3, is zero. Subsequently, 
however, the initial localized excitation corresponding 
to the special initial condition at ri spreads. In the 
case of r1 , the portion of the initial disturbance which 
propagates to the right is partially reflected by the 
array of defects. This reflected portion and the pulse 
initially moving to the left contribute to S(r1' 'T), the 
energy content of the initially hot region. In the case 
of r3 , a fraction of the initial pulse, which propagates 
to the left toward the initially hot region, is transmitted 
through the array of defects and constitutes the only 
contribution to S(ra, 'T). In the case of r2' which is 
located approximately in the middle of the array of 
defects, roughly half the initial kinetic energy propa
gates to the left into the hot region. In the foregoing 
discussion we implicitly ignored the contribution of 
reflections from the fixed boundaries at ±X' to the 
time-dependent behavior of S(r i , 'T) because, as 
already mentioned, we are interested in the limit 
X' ----+ 00 with ri , R, and N fixed. In the next section 
we determine the asymptotic steady-state values of the 
local temperature required in the expression for the 
thermal conductivity, Eq. (1.2). 

FIG. 1. Crystal model showing location of initially hot region to the 
left of R and location of segment containing defects. 

In the model system, the energy current past 
particle r' is simply the rate at which work is done on 
particle r' by particles.6 r' - 1 

IN(r', 'T) = imx(r', 'THx(r' - 1, 'T) - x(r', 'T)]. 

(2.8) 

In the nonequilibrium ensemble (2.4), the ensemble 
average value of the energy current per second past 
particle r' > AN is (see Appendix A for details) 

(J N(r', 'T» 
-R 

= ikT I {[M-! cos (W!'T)M!]r'.r 
r=-JIj" 

x [M!W-i sin (Wi 'T)M-i]r.r'_1 

- [M-iW-i sin (Wi'T)M!]r'.r 

X [Mi cos (Wi'T)M-i]r.r'_l}' (2.9) 

The asymptotic, steady-state value of the energy 
current is obtained in the next section. As in the case 
of the steady-state local temperature, we set X' = 00 

in (2.9) and use the asymptotic formulas for the time
dependent factors which apply in this limiting case. 

3. STEADY-STATE VALUES OF LOCAL TEMPER
ATURE AND ENERGY CURRENT 

In this section we outline the evaluation of the local 
temperature and energy current expressions (2.6), 
(2.7), and (2.9) in the limit of large 'T. Equations (2.7) 
and (2.9) are quadratic expressions in the time
dependent coefficients which appear in Eqs. (2.3a) 
and (2.3b). In particular, the coefficients 

[M-i cos (Wi'T)Mi]r'.r and [M-!W-! sin (W!'T)M!]r'.r 

represent the velocity and position, respectively, of 
particle r' at time 'T for the initial condition in which 
all particles are at equilibrium positions and at rest, 
except for particle r whose velocity is one, i.e., 

Xr('T) = M-iW-i sin (Wi'T)M!ar (3.1a) 
and 

(3.1b) 

where all components of ar except the rth are zero 
and the rth component is one. Explicit expressions 
have been obtained for these time-dependent response 
functions2 in the form of Laplace transforms in the 
case where the system is infinite (X' = (0). In case 
r < 0, it is shown in Rl that 

(3.2) 
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and, ifr' > AN' 

Xr(r', T) = _1_ f e'PT 

217i Jc pel + 1)' 
[p + (p2 + 1)'r2[r'-rl 

x DN(P) dp, (3.3) 

where DN(P) is an Nth-order determinant whose (r, s) 
element is 

br.8 
+ Qp(p2 + lr'[p + (p2 + 1)'r2IAr-Asl, (3.4) 

where Q = (M - m)/m, and where I: is a contour 
parallel to and to the right of the imaginary p axis. 
The determinant D}P(p) is identical with DN(p) 
except that the elements of the jth column are 

[p + (p2 + 1)'r2(A i-Aj ), i = 1, ... ,N. (3.5) 

The expressions for X.(Ai , T) and Xr(r', T) contain an 
additional factor of p in the integrand. 

It is clear from the form of Eqs. (3.1a) and (3.1b) 
and the symmetry of W that 

and 

Xr(r', T) = Xr.(r, T), 

r:;6 Ai' j = 1, ... ,N and r':;6 A j , 

XA,(A k , T) = XAk(A i , T), 

XA/(r, T) = m-1MXr(Ai , T) 

= (Q + I)Xr(Aj, T), 

r :;6 Ak , k = 1, ... ,N (3.6) 

Now consider the expression for the energy current 
past particle r' > AN 

-R 
(J Mr', T» = ikT ! [X,(r', T)X.(r' - 1, T) 

r=-oo 

- X.(r', T)Xr(r' - 1, T)]. (3.7) 

In order to estimate the value of (IN(r', T» as T -- 00, 

we must estimate the asymptotic values of the factors 
in the sum in Eq. (3.7). It should first be noted that if 
one excludes the factor 1/ DN(p) in the integral 
representation of Xr(r', T), 

Xr(r',T) 

1 f e'PT dp 

= 217dC(p2 + 1)'[p + (p2 + 1)']2(r'-r) DN(P) , (3.8) 

then one is left with the integral representation of the 
Bessel function, J2Cr'-rJ(r). Consequently, the asymp
totic analysis of Xr(r', T) in Eq. (3.8) via the method of 
steepest descents will be identical with the asymptotic 
analysis of the analogous integral representation for 
J2Cr'-rl(T). In particular, when {J = 21r - r'I/T < 1 
and T » 1, there are saddle points at 

P± = ±i(l - (J2)f. 

The integration contour 1:', deformed to pass through 
the saddle points, is shown in Fig. 2. The only effect 
of the additional factor I/DN(p) in Eq. (3.8) on the 
asymptotic formula for Xir', T) is to multiply the 
Bessel function contribution from each saddle point 
by the value of 1/ DN(p) at that saddle point. The 
result is 

Xr(r', T) ,...., [- i(27T7')-'(1 - (J2)-! exp {iT[(1 - (J2)' 

- {J cos-1 {J] + ii17}]/DN(i(1 - (J2),) 

+ [i(217T)-'(1 - (J2)-! exp {-iT[(l - (J2)' 

- {J cos-1 {J] - !i17}]/ DN( -i(1 - (J2),) (3.9) 

or , 
Xr(r', T) ~ (:T) 

sin [r(1 - (J2)' - 2(r - r') cos-1 (J + il7 - fJI;({J)] x --~--~~--~--~--~--~--~~~ 
(1 - (J2)! IDN(i(1 - (J2)') 1 

(3.10) 

where DN(i(1 - (J2)') = IDN(i(1 - (J2)') 1 exp [ifJIN({J)]. 
The asymptotic formula for X,.(r', T) is 

Xr(r', r) ~ 1 - (:T)' 
cos [r(1 - (J2)' - 2(r - r') cos-1 (J + il7 - fJlN({J)] 

X (1 _ (J2)! I DN(i(1 - (J2)') 1 ' 

(3.11) 

where the leading term, unity, arises when the 
contour I: is shifted to 1:', on the other side of the pole 
of the integrand at p = o. 

The asymptotic formulas (3.10) and (3.11) are valid 

-i 

FIG. 2. Deformed path of integration C' through saddle points of 
integrand in Eq. (3.8). 
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for 'T» Nand (J = 21r - r'II'T, a constant less than Xr(r', 'T), in the immediate vicinity of the wavefront 
unity. Thus they describe the asymptotic response at {3 = 1 and ahead of the wavefront (3 > 1. The width 
r' which arises from an initial disturbance [Xr(O) = 0 of the transition region at the wavefront is of order 
and Xr(O) = ar] at r. As in the case of the Bessel 'Tt , and the asymptotic responses are exponentially 
function J(Jr('T) , different asymptotic formulas are small ahead of the wavefront. Consequently, the 
obtained for the asymptotic responses, Xr(r', 'T) and expression for the energy current (3.7) is 

(J N(r', 'T» = lkT -II {(~)l sin HI - {J2)l - 21~ - r'l cos-
1 

(J t 17T - 1JIN({J)] 
r=-[T /2]+r' 7T'T (1 - (J2) I D N( i( 1 - (J2) ) I 

X [1 _ (~)! cos ['T(1 - {J,2yi - 2 I r - r' + 11 cos-1 {J' + !7T - 1JIN({J')J 

7T'T (1 - {J'2)f IDN(i(l - (J'2)t)I 

_ [1 _ (~)t cos ['T(1 - (J2)! - 21r - r'l cos-1 {J + 17T - 1JIN({J)]J 
7T'T (1 - {J2)f IDN(i(l - (J2)t) I 

X (~)t sin ['T(1 - {3'2)l - 21r - r' + 11 cos-
1 

{3' + 17T - 1JIN({J')]}, (3.12) 
7T'T (1 - {J,~t IDN(i(l - (J'2)t)I 

where {3' = 21r - r' - 111'T and can be replaced by {J in the limit 'T ~ 00. The sum in Eq. (3.12) has been 
truncated because the summand is negligible for r < - (['T12] - r'), where ['T12] denotes the greatest integer 
less than 'T12. Rearranging the terms in Eq. (3.12), we obtain 

[r/2]-r' [ 2 1 

(J N(r', 'T» = tkT L - (1 - {J2)-1 IDN(i(l - {J2}2")\-2 
r=IRI 7T'T 

X {-sin ['T(1 - (J2)t - 2(r + r') cos-1 (J + 17T - 1JIN({J)] 

X cos ['T(1 - (J2)t - 2(r + r' - 1) cos-1 (J + t7T - 1JIN({J)] 

+ cos ['T(1 - (J2)t - 2(r + r') cos-1 (J + 17T - 1JIN({J)] 

X sin ['T(1 - (J2)t - 2(r + r' - 1) cos-1 (J + !7T - 1JIN({J)]} 

+ 1- (1 - {J2)-1\DN(i(1 - (J2)t) 1-1 {sin ['T(1 - {J2}~ - 2(r + r') cos-1 (J + 17T - 1JIN({J)] 
7T'T 

- sin ['T(1 - (J2)! - 2(r + r' - 1) cos-1 (J + t7T - 1JIN({J)]} ] 

= lkT[r!~-r'[-±' {J(l - {J2rt IDN(i(l - ,82)t)I-2 - (1-)t2(1 - ,82)1 IDN(i(l _ ,82)t)l-l 
r= I R I 7T'T 7T'T 

X cos ['T(1 - ,82)t - (2r + 2r' - 1) cos-1 ,8 + t7T - 1JIN(,8)]J. (3.13) 

The sum over r in Eq. (3.13) can be replaced by an 
integral over ,8. In the limit 'T ~ 00, only the first 
term in braces contributes to the energy current 

(3.14) 

where the arguments r' and 00 of I N and the brackets 
associated with the ensemble average have been 
omitted. The integrand in Eq. (3.14) has been studied 
extensively in Rl and R2. If a steady wave of unit 
amplitude and frequency w is incident on the array of 

defects, then IDN(iw)I-2 = 'bJv(w) is the square of the 
amplitude of the transmitted wave. 

A similar asymptotic evaluation of the local 
temperature at the right and left sides of the array of 
defects leads to the expressions (see Appendix B for 
details) 

TN(r, (0) = 7T-1T f(1 -w~-t IDN(iw)r2 dw, 

r> AN, (3.15) 

TN(AN, (0) = (Q + I)TN(r, (0), r > AN' (3.16) 

TN(Al' (0) = (Q + 1)7T-1T 

X f\1 _ w 2)-t I DW(iw) 12 dw, 
Jo DN(iW) 
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and 

T:v(-Irl, (0) 

= T(1 - 7T-1f(1- w2r! IDN(iW)r2dw). (3.17) 

If there are no defects, Q = 0, the square of the 
"transmitted" amplitude is unity, and one obtains the 
values for energy current and local temperature first 
obtained by Hemmer,7 

Jo = kT127T 
and 

To(r, (0) = T12. 

(3.18) 

(3.19) 

Clearly, the maximum value of the energy current is 
obtained in this case. In the special case of a single 
defect of mass M = 2m located at Al = 0, the 
expressions for energy current and local temperature 
reduce to values obtained by Kashiwamura and 
Teramoto,6 

J1 = kTI37T, (3.20) 

T(lrl, (0) = T14, (3.21) 

T1(O, (0) = T12, (3.22) 
and 

T(-Irl, (0) = 3T14. (3.23) 

4. A LOWER BOUND ON THE ENERGY CURRENT 
I N AND MONTE CARLO ESTIMATES 

OF C-WJN 

It was noted at the end of Sec. 3 that kT127T is an 
upper bound on J N' In this section, in an attempt to 
evaluate the limiting behavior of I N for N -+ 00, we 
obtain a lower bound on the configuration average of 
J N . In addition, we generate random configurations of 
defects and compute the values of the integrand and 
the integral in Eq. (3.14) for each configuration. The 
number of defects ranges from 25 to 600. 

The expression for the thermal conductivity in the 
model is obtained by combining Eqs. (1.2), (3.14), 
(3.15), and (3.17): 

k-1K N = - 1 - - (1 - w 2)-! IDN(iw)I- 2 dw N [ 211 J-1 

27TC 7T 0 

X fIDN(iW)r2 dw. (4.1) 

If this thermal transport coefficient were normal, then 
one would expect that· the limiting value of KN is 
independent of the number of defects at constant 
over-all concentration, or, what is equivalent, one 
would expect that the limiting value of the energy 
current, 

(4.2) 

is proportional to N-l. Such behavior for the energy 
current, in turn, would imply that the integrand 
IDN(iw)I- 2 is small over most of the frequency range. 
The principal conclusion in earlier investigations1.2 of 
the magnitude ofl)~ = I DN(iw) 1-2 may be summarized 
as follows: 

-lim {N-1 In (l)~)} = (X(w, Q, C) > 0. (4.3) 
l\T -+ 00 

NA N -
1=C 

In case w « 1, an explicit expression can be obtained 
for (X(w, Q, C) 

-lim {N-1 In (l)~)} 
N-+oo 

NA N -
1=C 

These conclusions should be approximately valid for 
large but finite N, provided that N(X(w, Q, C) is not 
too small. The estimates1.2 of (X(w, Q, C) indicated 
that (X(w, Q, C) -+ ° as w -+ O. Thus, the low fre
quencies make the hugest contribution to the energy 
current (4.2). Our present problem of estimating the 
value of J N at fixed N requires, first, the evaluation 
of I D N(iw )1-2 over the entire frequency range including 
such low frequencies that the associated wavelengths 
are comparable to or larger than AN and, second, 
the determination of the limiting behavior as N -+ 00. 

Thus the order of the limiting processes, w -+ 0, 
N -+ 00, is the reverse of the ~rder implied in (4.3), 
where N -+ 00 at fixed w > 0. 

Before proceeding to the exact calculations, assume 
that, for N large but finite,. 

'G~ = exp [-(1 - C)(l + QC)-IQ2
W

2N], (4.5) 

and ignore the difficulties involved in reversing the 
order in which the limits N -+ 00, W -+ ° are taken. 
Certainly Eq. (4.4) in no way implies (4.5).8 The value 
of the energy current obtained by substituting (4.5) in 
(4.2) is 

- _ kT( 1 + QC )!N-! I N - , 
4Q 7T(1 - C) 

(4.6) 

and the value of the thermal conductivity is 

k-1j( = _1 [1 _ N-!( 1 + QC )!J-l 
N 4CQ Q 7T(1 - C) 

X (1 + QC )!N!. (4.7) 
7T(1 - C) 

In obtaining Eq. (4.7), we assumed that 'G~ decreased 
so rapidly that the factor (1 - W2)-! in the integrand 
of the steady-state temperature difference could be 
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replaced by unity. The limiting value of k-lKN is 

k-lKN = _1_( 1 + QC )!N!' (4.8) 
4CQ 17(1 - C) 

a thermal conductivity coefficient which increases 
proportional to N!. The values obtained from (4.8) 
agree closely with the Monte Carlo estimates described 
below. 

A. Lower Bound on the Average Energy Current 

Now consider the problem of determining a lower 
bound for the configuration average of the energy 
current in a particular ensemble of configurations. In 
the ensemble, the spacings between adjacent pairs of 
defects, an = An - An-I, are assumed to be inde
pendent random variables with the probability 
distribution (1.5), 

(4.9) 

The transmitted amplitude, and therefore the energy 
current through a particular configuration of defects, 
depend explicitly on the set of nearest-neighbor 
spacings 

The ensemble average of IN({an}) is 

Although the configuration average of the reciprocal 
of IDN({an })12 cannot be carried out explicitly, the 
configuration average of IDN ({an })1 2 can be evaluated.9 

The following inequality between these configuration 
averages, 

(4.11) 

provides an explicit lower bound for (IN>c 

(4.12) 

The details of the evaluation of (IDN({an })12>;1 and 
(IN>c are given in Appendix C. In the limit of large 
N, the lower bound obtained for the ensemble 
average of the energy current is 

(IN>c ~ 0.856[1 + Q2C2j4(1 + QC)]-ljN' (4.13) 

wherejN is defined in Eq. (4.6). Thus the lower bound 

1.0 

rI 

o 
o 

I ~ 
-H 

" w 0.538 
FIG. 3. Computed values of ID,oo(iw)I-2 vs ware indicated by 

points on the irregular curve. The mass ratio M/m = 2, and concen
tration C = 0.5 in this case. The total frequency range covered is 
o ~ w ~ 0.538, and the number of intermediate values at which the 
calculation is made is 10". The smooth curve is a plot of the corre-
sponding value ofi~. 

on (IN>c is proportional to N-! and the corresponding 
lower bound on (KN>c increases proportional to N+!. 

B. Numerical Evaluation of I N in Eq. (4.2) for Different 
Random Configurations of Defects 

The determinantal integrand in the expression for 
the energy current I N in Eq. (4.2) can be transformed 
into a continuant. l Since the continuant satisfies a 
two-term recurrence formula, it is especially well 
suited for numerical calculations. The computing 
program, described and used in RI and R2, was used 
to generate random configurations of N defects and 
to evaluate the integrand at a suitable number of 
points so that the integral, and hence I N , could be 
evaluated. In all the calculations, the parameters Q 
and C were assigned the values I and t, respectively. 
The results of the calculation of ID1OO(iw)I-2 and 
ID600(iw)I-2 in typical cases are shown in Figs. 3 and 
4. The computed values of IDN(iw)I-2 are indicated by 
the points on the irregular curves. The corresponding 

values of iJ~oo( w) and 13:00 ( w) are plotted for com
parison. In all cases, the spikelike appearance of 
1 DN(iw) 1-2 is enhanced at the higher frequencies where 
the width of the peaks decreases and the number of 
large maxima decreases (and, consequently, the 
interval between maxima increases). The results of all 
our calculations are summarized in Fig. 5, a log-log 
plot of (kTC)-lNJN vs. N. The lower bound from Eq. 
(4.13) is plotted as the dashed line, and (kTC)-l Nj N 

is plotted as the dotted line. 

5. SUMMARY AND RELATED INVESTIGATIONS 

The expression obtained for the thermal con
ductivity of the isotopically disordered crystal model 
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QI51 

II 
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FIG. 4. Computed values of ID.oo(iw)I-2 vs ware indicated by 
points on the irregular curve. The mass ratio M/m = 2, and con
centration C = 0.5 in this case. The total frequency range'covered 
is 0 ~ w ~ 0.226, and the number of intermediate values at which 
the calculation is made is 3 X 10·. Successive thirds of the frequency 
range are covered in the three graphs. The smooth curve is a plot of 
the corresponding values ofb~. 

25 50 N 100 200 400 

FIG. 5 .. The averages of the computed values of (kTC}-lNJN are 
plotted vs N. The number of different random configurations on 
which each average is based is indicated above each plotted point. 
The range of values entering each average is indicated by the vertical 
line through each point. The dashed line is a plot of the limiting 
form of the lower bound, Eq. (4.13), extended to the small N range. 
The dotted line is a plot of (kTC)-WJN • 

treated in this paper is 

k-1KN = N(27TC)-1 

x [1- 27T-1f(1- w2)-1IDN (iw)I-2 dw r1 

x fIDN(iw)I-2 dw. (4.1) 

In the limit of large N, the principal contribution to 
the integrals in (4.1) comes from low frequencies where 
IDN (iw)I-2 approaches unity. If the thermal con
ductivity coefficient were normal, the energy current 
integral would approach zero proportional to N-l. It 
was shown in Sec. 4 that the energy current integral 
approaches zero no faster than N-l, thus indicating 
that the thermal conductivity coefficient of the model 
is abnormal and depends on the size of the defect array 
(at constant concentration of defects). The Monte 
Carlo calculations of the energy current in Sec. 4 
cover the range of values of N, 25 S N ~ 600, and 
in this range the energy current integral is proportional 
to N-t within the statistical uncertainty, except for a 
small systematic deviation for 25 ::;; N::;; 100. 

In the remainder of this section, we summarize some 
related investigations. The present N-defect model has 
also been considered by Allen and Ford,lo who evalu
ated the Kubo formula for the thermal conductivity 
and obtained the result [their Eq. (37) in our notation] 
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In the classical limit, their result reduces to 

k-1KN = N(27TC)-lf l DN(iw) 1-2 dw 

= (kTC)-lNJ N, 

the limiting form of Eq. (4.1) as N ~ 00. Allen and 
Ford speculated incorrectly that 

IDN (iw)I-2 = exp (-Ndw), w« 1, 

where d is a constant, and concluded that the thermal 
conductivity of the model was independent of N. 

As part of an investigation of anharmonic one- and 
two-dimensional isotopically disordered crystals, Pay
ton, Rich, and Visscherll have studied the thermal 
conductivity of an isotopically disordered harmonic 
crystal with fixed boundaries in which the end particles 
of the crystal interact impulsively with perfect-gas 
thermal reservoirs at different temperatures. For a 
number of different random configurations of isotopes, 
these authors integrate the equations of motion which 
include the random force terms arising from inter
actions with reservoir particles. The thermal con
ductivity coefficient of a particular configuration of 
isotopes is determined when a stable, or steady-state, 
value ofthe energy current is established. Payton et al. 
investigated the variation of thermal conductivity with 
concentration. They did not observe a significant N 
dependence of the thermal conductivity in their model. 
However, recently when they repeated their calcu
lations in a few cases with free-end boundary con
ditions, an N dependence of k-1KN was observed.12 

The question, does the N dependence in the model 
change with the boundary conditions and what is the 
physical explanation of such a change, remains to be 
answered. 

Matsuda, Miyata, and Ishii13 and Matsuda and 
Iship4 studied the localization of normal mode 
eigenvectors in isotopically disordered crystals. They 
obtained an estimate, Eq. (7),13 for the normal mode 
amplitude of particle Inl relative to particle zero in the 
limit Inl ~ 00 and w ~ 0, which, in the notation of 
this paper, is identical with Eq. (4.4), an estimate of 
1J~ obtained in R2 (if N is identified with In!). Using 
this estimate of the normal mode localization, 
Matsuda et al. reached the conclusion that the thermal 
conductivity in the Payton-Rich-Visscher model is 
proportional to Nt. However, their conclusion 
appears to depend upon having implicitly assumed 
free boundary conditions for the model.12 

More recently Casher and Lebowitz15 have investi
gated the steady-state energy flux through an iso
topically disordered section of haononic crystal 

whose end atoms are in contact with reservoirs at 
different temperatures. This model is one dimensional, 
and fixed boundary conditions are imposed on the 
crystal segment. Thus the model is similar to that of 
Payton et al. Except for the introduction of isotopic 
defects, the model treated by Casher and Lebowitz15 

is identical with the perfect lattice model investigated 
by Rieder, Lebowitz, and Lieb.16 Casher and Lebowitz 
found that the average heat flux approaches zero with 
probability one as the length of the disordered crystal 
increases. Their estimate of the rate of approach of the 
heat flux to zero, which is derived from a lower 
bound, is consistent with the numerical calculations 
of Payton, Rich, and Visscherll for a crystal model 
with fixed boundaries. 
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APPENDIX A: EVALUATION OF (IN(r', T) 

Consider the calculation of the ensemble average of 

IN(t',1') = imi(r', 1') [x(r' - 1,1') - x(r', 1')], (AI) 

where the initial values of the coordinates and 
velocities of the lattice particles are specified by the 
distribution function (2.4) 

'UJ [(Xh~O)), (Xh~O))] 
xcCO) xc(O) 

= zexp[- _1_Xh(O)TMhXh(O) - _I Xh(OfVhXh(O)] 
2kT 2kT 

.N' 
X IT {~[i(r, O)]~[x(r, O)]}. (A2) 

r=-R+l 

The calculation is identical with that in R3 for 
(x(r, 1')2). The expressions for the velocity of particle 
r' and the position of particle s at time l' are, from 
(2.3a) and (2.3b), 

iV, T) = A~[ M-l cos (WIT)M{'f) 

-' M-lwl s;n (WIT)MI(Xhf)] (A3) 
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and 

xes, T) = a~{ W'W-' sin (W'T)M.(ihr)) 

+ Wi cos (WIT)Mlr~O) J. (M) 

or 

xl', T) = a;[ nT)(,f) + n{r)] (A5) 

and 

X(S,T) = a; [fy(u)d{T) + n{T) J. 
(A6) 

whereY(T} = M-I cos (WIT)MI. The ensemble average 
<i(r', T)X(S, T}) is 

<iCr', T)X(S, T» 

= a+(TfT:;;' : :] (fy(a) dar 
o 0 

[

kTVl/ 0 0] ) 
+ yeT) ~ ~ ~ Y(T)T As 

= m;'{WICOS(W'T{: : :] 
x W-t sin (WIT)M-I- M-tW-1 sin (WIT) 

[

Wb
1 0 0] ) 

X W ~ ~ ~ cos (WIT)M-t As. 

(A7) 
If we recognize that the matrix W has the form 

then 

(W,' 0 

:) w 0 0 

0 0 

('h 
0 

D + (Wh~~' 
0 

:). = 0 0 0 

0 0 0 

Furthermore, the submatrix (vector)WbhWt"/ contains 
only one nonzero component. The contribution to 
(i(r', T)X(S, T» from this noniero component is 
negligible for T» 1 and .N' ->- 00; and, as a result, 
for r' > AN'S> AN, 

<i(r', T)X(S, T» 

= m-1kT J {[Y(T)Jr,.r[( ('y(a) da)TJ 
r---,N' Jo r.s 

- (fy(a) daL}y(T)T]r.s}. (A8) 

From the' form of Eq. (A8), it follows that 

<X(r', T)x(r', T) = O. 

Therefore, the final expression for (J NCr', T» is 

(J N(r', T» 
-R 

= !kT L {[M-I cos (WtT)MI]r'.r 
r=-.N' 

X [MIW-I sin (WIT)M-t]r.r'_l 
- [M-IW-t sin (WtT)Mi]r'.r 

x [Mt cos (WtT)M-tJr.r'_l}' (A9) 

APPENDIX B: ASYMPTOTIC FORMULAS FOR 
THE LOCAL STEADY-STATE TEMPERATURE 

The expression for the local temperature, as 
measured by the velocity dispersion of a defect 
particle, in Eqs. (2.6) and (2.7) can be written with 
the aid of (3.1) and (3.6) as 

r-1T.v(A j , r) 

= (Q + l)-lC~oo X~ir',r) 

+ !r.~}X.4ir' + 1, T) - XA/r', r)]2) 

= (Q + l)C~oo X;.(A;, r) 

+ !r.~}Xr'+l(Aj' r) - Xr.(Aj, r)]2). (Bl) 

The difference in the second sum of Eq. (BI) is 
simplified after substituting Eq. (3.2), 

Xr.+lA j , T) - Xr.(A j , T) 

2 1 eP
' [p + (p2 + 1)ir 2AI+2rHDW(p) 

=- dp 
27Ti C (p2 + I)! DN(P) , 

(B2) 
and this expression in turn leads to simplification of 
Eq. (Bl), 

T-1TN(A j , r) 
-2R+l (1 i ePT 

= (Q + 1) L -
8=-00 27Ti L (p2 + 1)! 

x [p + (p2 + 1)!]-2A1+BDW(p) d
P

)2. (B3) 

DN(P) 
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In the limit in which T» AN' the procedure for the asymptotic evaluation of the terms in Eq. (B3) is 
identical with the procedure used in treating Eq. (3.S). The result is 

1 i exp {pT - (2Ai + lsi) In [p + (p2 + l)tn D~)(p) 
- dp 
21Ti L (p2 + 1)t DN(P) 

,...." (~)t sin [T(l - (32)t - (2Ai + lsI) cos-1 (3 + i1T - tpN({3) + tpW({3)] I DW(i(1 - (32)t) I 
1TT (1 - (32)t D_~i(l _ (32)t) , (B4) 

where {3 = (2Ai + IsD/T. Substituting (B4) in (B3), we obtain 

[T] -1 I D(j)(i(1 (32)t) 12 t 
T-1TN(A i , T) = 1T -1(Q + 1) I T t N - t {I - cos [2T(1 - (32) - 21 cos-1 {3 

1=2r+2A;-1 (1 - (32) DN(i(l - (32) ) 
'+ !1T - 2tpN({3) + 2tpW({3)]}. (BS) 

As in Eq. (3.12), the upper limit on the sum in Eq. (BS) can be truncated and the'sum over I can be replaced by an 
integral over {3 (from 0 to I): 

T-1T~(Ai' (0) = 1T-1(Q + 1) (11 DW(i(l - (32)t) 12 d{3 = 1T-1(Q + 1) (11 DW(iw) 12 dw . (B6) 
Jo DN(i(1 - (32)t) (1 - (32)t Jo DN(iw) (1 - W2)t 

In Eq. (B6) the oscillatory cosine term makes a negligible contribution in the limit T - 00, and has been 
omitted. 

It is shown in RI that the determinant DN(iw) can be transformed into an N x N continuant 

1 + ill _e-2IAI-A.li sin-l w 0 

_e-2IA.-Allisin-lw 1 + ill + (1 _ ill)e-4IA2-Adisin-lw _e-2IAa-Azli sln-l w 

o _e-2IAs-A.li sin-1 w 1 + ill + (1 _ ill)e-4IAa-A2Ii sin-1 w 

• (NxN) 

(B7) 

and, further, that the determinant DW(iw) can be transformed into an (N - j + I)" x (N - j + 1) continuant 
differing from Eq. (B.7) only in the upper left-hand corner element 

DW(iw) 
1 _e-2IAi+1-Aili sin-l w 

_e-2IAi+l-Allisin-lw 1 + ill + (1 _ ill)e-4IAJ+I-Allisin-lw 

= 

where II = Qw(l - w2rt. Consequently, the expres
sion for T-1TN(A N , (0) is somewhat simpler than the 
one for T-1TN(A u (0):" 

T-1T(AN , (0) 

= 1T-1(Q + 1) f(1 -w2)-! IDN(iw)rt dw. (B9) 

Up to this point, we have dealt with the kinetic 

1 + ill + (1 _ ill)e-4IAN-AN-llisin-lw (N-j+1)x(N-j+1) 

(BS) 

temperature of defect particles. We now obtain a 
simpler expression for T-1T(A1, (0) and, in addition, 
obtain values for T-1T(r, (0) when r > AN and when 
r < AI' In order to proceed, we quote a useful result 
from R2. In the stationary state transmission problem 
where a wave of unit amplitude and frequency w is 
incident on the array of defects from the left, the 
transmitted wave amplitude b N and the reflected wave 
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amplitude 5tN satisfy the following relations: 

bN = IDN(iw)l-l, (BI0) 

5tN = 1-1 + DN(iw)/DN(iw)l, (B11) 
and 

5t~ + b~ = 1, (BI2) 

where DN(iw) == DW)(iw). Substituting (BI0) and 
(Bl1) in (B12), we obtain 

DN(iw) + [DN(iW)] * = /_1_/2+ / DN(iw) "2. 
DN(iw) DN(iw) DN(iw) DN(iw) 

(B13) 
Leave Eq. (B13) for the moment and consider the 
problem of obtaining an integral representation for 
XA/A;, T) analogous to the one quoted for Xr(A;, T) 
in Eq. (3.2). The procedure by which Eq. (3.2) was 
obtained in Rl can be repeated step for step in the 
case of XA,(A;, T). The result is 

X (A. ) = Q + Ii e
PT 

l>W(p) d (B14) 
A, "T 1 p, 

27Ti C (p2 + 1) DN(P) 

where the elements of l><J/(p) are the same as those of 
DN(p) except that thejth column of l><J/(p) is 

[p + (p2 + l)lr2IA,-A,I, i = 1, ... ,N. (BlS) 

In casej = 1, 

X· (A )'- Q + Ii e
PT 

l>W(p) d 
All' T - . 1 P 

27Ti C (p2 + 1)'2" DN(P) 

and l>W(p) = DW(p) == DN(P)' Since (BI6) 
explicit solution of the initial value problem 

X(O) = 0, X(O) = I1Al 

(BI6) 

is an 

which gives the velocity of particle Al at time T, we 
have the following identity from Eq. (BI6): 

1 _ Q + 1 (DN(P) dp 
- 27Ti Jc DN(P)(p2 + I)! . (B17) 

The elements of DN(p) and DN(p), given in (3.4) and 
(BlS), have branch points at p = ±i. If we define the 
functions involved by connecting the branch points 
with a cut drawn between them along the imaginary 
p axis and if we deform the path of integration so that 
it encircles the cut from -i to +i on the right and 
from +i to -i on the left of the cut, then we obtain 

1 = Q + I[JI DN(iw) diw 
27Ti -1 DN(iw) (1 _ ( 2)! 

(-1 (DN(iW»)* diw ] 
- )1 DN(iw) (1 _ ( 2)! 

Q + llI[DNCiW) (DN(iW»)*] dw 
= -7T- 0 DN(iw) + DN(iW) (1 - ( 2)!' 

(BI8) 

Now Eq. (B6) in the case j = 1 can be combined with 
Eqs. (B13) and (BI8) to give 

T-1TN(AI , (0) 

= 1 - 7T-
1(Q + 1) f(1 -w2r! IDN(iw)I- 2 dw 

= 1 - T-ITN(AN , (0) (B19) 
or 

7T-1(Q + 1) (1 1 DN(iw) 12 dw 
Jo DN(iw) (1 - ( 2)! 

= 1 _ 7T-l (Q + 1) (1 1_1 _12 dw . (B20) 
Jo DN(iw) (1 - ( 2)! 

Thus far,- we have obtained a relatively simple 
expression for the steady-state kinetic temperature of 
the right-most defect, T(AN' (0) in Eq. (B9), and we 
have expressed the kinetic temperature of the left-most 
defect, T(Al' (0) in Eq. (B19) in terms of T(AN' 00). 

For the sake of completeness, we now obtain 
expressions for the kinetic temperatures to the right 
of AN and the left of AI' In case r > AN' 

-R 
T-1T(r, T) = ~ Xr(r', T) 

1"=-00 

-R 
+ t ~ [X,(r' + 1, T) - X,(r', T)]2. 

1"=-00 

(B21) 

The asymptotic evaluation of (B21) is identical with 
that of (Bl) for the case j = N. The final result is 

T-1T(r, (0) = (Q + 1)-l T-1T(A N , (0) 

= 7T-
I f(l -(2)-! IDNCiw)r2 dw, 

r> AN' (B22) 

Rather than deal with determinantal expressions in 
evaluating T-IT(-Irl, (0), we use a simple physical 
argument. Equation (B22) is the fraction of the initial 
kinetic energy [for the initial condition X(O) = 0, 
X(O) = m-l l1r ] which crosses the array of defects and 
enters region h (Fig. 1). Equation (B22) also represents 
the fraction of the initial kinetic energy [for the initial 
condition X(O) = 0, X(O) = m-1!1_lrl] which crosses 
the array of defects from left to right. Consequently, 
the fraction of the initial kinetic energy (in this latter 
case) which enters region h gives the steady-state 
temperature at -Irl, 

T-1T(-\r\, (0) 

= 1- 7T-
lf(l- ( 2)-!\DN(iw)\-2dw. (B23) 
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APPENDIX C: EVALUATION OF (IDN/2)c AND 
LOWER BOUND OF (IN)c 

In this appendix we evaluate (/DN/ 2)c exactly and 
express it as the coefficient of ZN in the power serie!! 
expansion of a generating function F(z) which we 
obtain in closed form. Our method is based on an 
idea due to Bellman.17 Solutions valid for w « I are 
used to obtain an upper bound on the ensemble aver
age transmission coefficient (1J~(w)>C = (I/lDNI2)c. 

As shown in RI, the determinant DN satisfies the 
two-term recursion relation [see also Eq. (B7)] 

DN = [1 + ill + (1 - ill)e-2iKUN]DN_l 

- e-2iKaNDN_2' (C1) 

where 11 = Qw(l - w2r!, K = 2 sin-1 w, and 
aN = AN - AN- l and where Do = I and Dl = I + 
ill. Rewrite Eq. (CI) using the method of transfer 
matrices: 

[
1 + ill] 

xI' (C2) 

where ANand B N are defined to be 

In Eq. (C6), the elements of the Hermitian matrix 
are defined by the relations 

AN = /ANI2 AN- 1 + A~~A'-l + A:"'~N-l + .oN-I, 

~N = ~vB.~A;"_l + Bl~~;"-I' .oN = /BNI2 AN-I, 

with 
(C8) 

III = 1, ~l = 0, .01 = O. (C9) 

The elements AN' ~N' and .oN have been decom
posed into the functions AN-I, ~N-l' and .oN-l which 
do not depend on the defect spacing aN and into 
coefficients which depend only on aN' This separation 
is useful in forming the average of /DNI2 over all aj , 

j = 1,2, ... ,N, because the distribution function 
(al, a2, ... ,aN) is a product of independent distri-
bution functions, each of which depends on only one 
spacing [see Eq. (4.10)]. 

Perform the indicated averages over defect spacings 
and introduce the definitions 

R == </AN/
2
). 

= 2(1 + 112) + (1 - ill)IX* + (1 + ill)IX, 

S == (AN)c = 1 + ill + (1 - ill)IX, (CI0) 
IX == (e-2iKaN)c = C[e4iSin-l",_ 1 + Cr1 

and the identities 

(/BNI2)c = 1, 

(A~BN)c = -(AN)c· (Cll) 

DN is extracted by 

(C3) The average value of /DN/ 2 thereby becomes, from 
Eq. (C7), 

(C4) (I DNI2)c = (1 + t12)(AN)c + (1 - it1)(~;.,)c 

Combining Eqs. (C2) and (C4), we write /DNI2 as 

IDNI2 = (D~~r (~N) 

= (1 - ill)T(A! 1) ... (~~ 0) (1 0)2 
1 B2 0 BN 1 0 0 

X (~N B;) ... (~2 ~)C ~ ill), 
(C5) 

which simplifies to 

IDNI2 = e ~ it1f (~: ~:) e ~ ill) (C6) 

= (1 + /12)AN + (1 - i/1)l:~ 

+ (1 + it1)~N + .oN' (C7) 

+ (1 + it1)(~N)c + (.oN>', (CI2) 

From Eq. (C8) we find 

(AN). = R(AN_1). + S*(~N-l)C 
+ S(~;"-I)C + (.oN-I)., 

(~N)C = -S*(AN_1>. - IX*(~;"-I)C' 

(~t)c = -S(AN-1)c - IX(~N-I)C' 

(ON)c = (AN-I)c· 

(C13) 

Because the average values (AN>" (~N)c' and 
(ON)c of the N-defect lattice are constructed in a 
linear fashion from (AN-I)., (~N-l)~' and (ON_I)., we 
introduce the generating functionj(z) defined by 

(C14) 

and the auxiliary generating functions L(z), V(z), and 
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U(z) defined by 
00 

L(z) = ! zN(AN>c, 
N=1 

00 

V(z) = ! zN(,1:'N>C' (CIS) 
N=1 

From Eqs. (C13) and (CIS), the following four 
equations in four unknowns appear: 

L(z) - z = RzL(z) + S*zV*(z) + SzV(z) + zU(z), 

V*(z) = -SzL(z) - oczV(z), 

V(z) = -S*zL(z) - oc*zV*(z), 

U(z) = zL(z), (CI6) 

for which the solutions are 

U(z) = zL(z). (CI7) 

The generating function for <IDN I2>c is 

F(z) = (1 + Ll2)L(z) + (1 - ill) V*(z) 

+ (1 + iLl)V(z) + U(z). (CI8) 

By some algebraic rearrangement and from the 
definitions of Rand S in Eq. (CIO), the generating 
function becomes 

in which G(z) is a third order polynomial in z, 

G(z) = za - [w + loc1 2(2Ll2 + I)]locl-2z2 

+ (w + 2Ll2 + 1) locl-2z - locl-2. (C20) 

In Eq. (C20) w is defined to be 

w = (1 + iLl)2OC* + (1 - iLl)2OC. (C2I) 

In terms of the roots Z1' Z2' and Z3 of G(z), we write 

G(z) = (z - Z1)(Z - Z2)(Z - za), (C22) 

and we resolve F(z) into partial fractions 

F( ) (
1 + Ao ~ A; ) z =Z --+...:::,.--. 
1 - z ;=1 z - z; 

(C23) 

The numerators of each fraction,. Ai' j = 0, 1, 2, 3, 
are dependent, in general, on Q and w. The simul
taneous equations generated in the process are 

Ao = Al + A2 + Aa, 

AO(Z1 + Z2 + za) - (1 + Z2 + Za)A1 

- (1 + ZI + Za)A2 - (1 + ZI + z2)Aa = Ll2, 

AO(ZIZ2 + Z2Za + ZIZa) - A1(Z2Za + Z2 + za) 

- A2(ZIZa + ZI + za) - A3(Z1Z2 + ZI + Z2) = 0, 

AoZIZ2Za - A1z2Za - A2z1Za - AaZlZ2 = _Ll2 Iocl-2, 

(C24) 
and their solution is 

Ao = -t, 
(1 + zl)[Ll2 + t(1 + 2Ll2)(locl-2 - 1)] A1 = , 

ZtCZ2 + Za - ZI) - Z2Za 

A _ (1 + z2)[Ll2 + HI + 2Ll2)(locl-2 - 1)] (C2S) 

2 - Z2(ZI + za - Z2) - zlza ' 

Aa = (1 + za)[Ll2 + t(1 + 2Ll2)(locl-2 - 1)] . 

ZaCZl + Z2 - za) - Z1Z 2 

The average value of IDNI2 is the coefficient of ZN 
in the power series representation of F(z). Therefore, 
in terms of ZI , Z2' and Z3 and the four partial fraction 
numerators Ao, AI' A2, and Aa , we find 

a 
<IDNI2>c = t + !A;zjN. (C26) 

;=1 

At this point we could obtain explicit expressions 
for the three roots of G(z) by solving the cubic 
equation G(z) = ° analytically. These roots could be 
inserted in Eqs. (C2S) and (C26) to obtain an explicit 
solution for (IDNI2)c for arbitrary Q, C, and w. 
However, it is sufficient to seek a solution which is 
valid for very low frequencies. 

We solve for the roots of G(z) by rewriting Eq. 
(C20) , 

G(z) = (z - 1)3 + pZ2 + qz + r = 0, (C27) 
where 

P = 2 - W locl-2 - 2Ll2, 

q = -2 + w locl-2 + 2Ll2, 
and 

(C28) 

Substitution of y for (z - 1) in the preceding 
expression and use of the identity 

p + q + r = -2rLl2 (C29) 
yields 

G(1 + y) = ya -f py2 + (2p + q)y + 2Ll2r = 0. 

(C30) 

At this point we introduce power series in frequency 
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for all frequency-dependent terms in G(z): 
00 

P = 1 P2nw2n = 16C-1(Q + l)w2 + .. " 
n=l 

00 

r = ~>2nw2n = -16C-2(1 - C)W2 + .... 
n=l 

Because p, q, and r are even functions of w, only even 
powers appear in their Taylor expansions. 

Now expand the variable y = z - 1 in a power 
series in w, 

(C32) 

and determine the unknown coefficients Yn by sub
stituting Eqs. (C31) and (C32) in G(y + 1) = O. By 
equating coefficients of like powers of w, we obtain 
the following series expansions for the roots Zl' Z2' 
and Za: 

Zl = 1 - 2Q2(1 - C)(1 + QC)-lW2 + ... , 
Z2 = 1 + 4iC-l(l + QC)tw - [8C-l(Q + 1) 

- Q2(l - C)(1 + QC)]w2 + ... , 
Za = z: . (C33) 

From these z; the partial fraction numerators may 
be computed from Eq. (C2S). To lowest order, they are 

Ao = -t (exact to all orders), 

1 1( Q
2
C

2 
) 

Al = 2" + 8 1 + QC ' (C34) 

A _ A __ ~( Q
2
C

2 
) 

2 - a - 16 1 + QC . 

Assembling all the results, we have the following for 
a low frequency approximation to <IDN I2>c: 

2 1 [1 1 ( Q2
C

2 
)] -N <IDNI >c = 2" + 2" + 8 1 + QC Zl 

-=__ ( -N + *-N) 1 ( Q
2

C
2 

) 
- 16 1 + QC Z2 Z2 

=~+ D+~C~C~JJ 
[ (

Q\1 - C») 2J-N X 1 - 2 w 
1 + QC 

_!( Q
2
C

2 
) 

8 1 + QC 

x [1 + 2(1 _ C)(-; + Q2 )w2J-N 
C 1 + QC 

x cos [4NC-1w(1 + QC)t]. (C35) 

Note that <IDNI2>c = 1 if Q = 0, c = 0, or w = O. 
The configuration average value of IDNI2 having 

been explicitly determined in the frequency interval 
o < w < cO « 1, the lower bound of the configura
tion average of the energy current from Eq. (4.12) is 

(J N>c ~ kT N-t rU'NldX{! + [! + ! ( Q2
C

2 
)] 

21T Jo 2 2 8 1 + QC 

X [1 _ 2(Q2
(1 - C»)X~-N 

1 + QC NJ 
_!( Q

2
C

2 
) 

8 1 + QC 

X [1 + 2(1 _ C)(-; + Q2 )~~-N 
C 1 + QC NJ 

X cos [4NtC-1X(1 + QC)t]fl, (C36) 

where the substitution w2 = N-1X2 has been made. 
The integral in Eq. (C36) can be simplified, in the limit 
of large N, to 

kT roo{1 [1 1 ( Q2
C

2 )J 
(J N>c = 21TNf Jo :2 + :2 + 8 1 + QC 

X ex (2 Q2(1 - C) 2) _! Q
2
C

2 

p 1 + QC X 8 1 + QC 

X exp [-2(1 - C) (~ + Q2 )lJ 
C2 1 + QC 

X cos [4N fC-1X(1 + QC)f]f1dX 

~[! +!( Q
2

C
2 )J-1 

~ 21TNt 2 8 1 + QC 

X 100

[1 + exp (2 Q:(~ ~~) l) J-1dX. 

(C37) 
Finally, the value of the integral in (C37) is given in 
terms of the Riemann zeta function,l8 and 

(C38) 
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We investigate the steady state heat flux J in a large harmonic crystal containing different masses 
whose ends are in contact with heat baths at different temperatures. Calling AT the temperature difference 
and!: the distance between the ends,we are interested in the behavior of JfAT as !: -.. 00. For a per
fectly periodic harmonic crystal, JfAT approaches a fixed positive value as !: -.. 00 corresponding to 
an infinite heat conductivity. We show that this will be true also for a general one-dimensiqnal harmonic 
chain (arbitrary distribution of different masses) if the spectral measure of the infinite chain contains an 
absolutely continuous part. We also show that for an infinite chain containing two different masses, the 
cumulative frequency distribution is continuous and that the spectrum is not exhausted by a denumerable 
number of points, i.e., the spectrum cannot consist entirely of point eigenvalues with a denumerable 
number of limit points. Using a theorem of Matsuda and Ishii, we show that for a random chain, corre
sponding to the mass at each site being an independent random variable, the heat flux approaches zero 
as!: -.. 00, with probability one. This implies that the spectrum of a disordered chain has, with probability 
one, no absolutely continuous part. 

1. INTRODUCTION 
Equilibrium statistical mechanics as developed by 

Gibbs gives a prescription for calculating the free 
energy of an arbitrary physical system from its 
microscopic Hamiltonian. It is natural to ask whether 
this prescription really yields, for systems containing 
very many particles, free energy densities with the 
properties required of -them by macroscopic thermo
dynamic theory? While this question can be readily 
answered in the affirmative for idealized systems such 
as "ideal" gases and "ideal" harmonic crystals, it is 
only more recently that this and more was proven 
rigorously for systems with realistic interactions 
between their microscopic constituents.1 This puts 

equilibrium statistical mechanics in a sound mathe
matical position, notwithstanding the fact that actual 
computations on complex real systems can still only 
be done in approximate ways. At least we know that 
the quantities we are trying to compute really exist. 

The situation in nonequilibrium statistical mechanics 
is much less satisfactory. Results comparable to those 
obtained for equilibrium statistical mechanics are not 
yet in sight. In particular, there is no proof at present 
that it is possible, even in principle, to compute 
transport coefficients, e.g., heat conductivity, viscosity, 
etc., from the microscopic Hamiltonian of a system. 
(We are speaking here of a "proof" not of faith 
followed, or preceded, by approximate computations. 
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Such computations are very important, perhaps the 
most important thing to do, but they do not constitute 
a proof and might just be wrong.) These coefficients 
play the same role in macroscopic transport theory as 
the pressure, specific heat, etc., do in macroscopic 
equilibrium theory. All we can do rigorously at present 
is to study the nonequilibrium behavior of model 
systems with well-defined Hamiltonians. Even here we 
are, however, in a worse situation than in the equilib
rium case. It was discovered quite early that the 
nonequilibrium properties (unlike the equilibrium 
properties) of the ideal gas and the ideal harmonic, 
crystal differ qualitatively from those of real systems. 
In particular, it is impossible to define transport 
coefficients for these systems. We are therefore forced, 
in studying transport processes, to use more complex 
models than the ideal systems mentioned earlier. One 
such model system, which may have well-defined 
transport coefficients, is the random harmonic crystal 
which we shall study in this paper. 2 

To be more specific, we wish to find the "steady 
state" energy flux in a system in contact with heat 
reservoirs at different temperatures Ta. Following the 
general principles of statistical mechanics,3 we identify 
the observable properties of such a system with 
averages over a "suitable" phase space ensemble. To 
obtain such a Gibbs ensemble, we use a formalism 
developed in earlier papers4 •5 and look for the station
ary solution of a generalized Liouville equation having 
the form 

a/1~' t) + (/1, H) 

= ~ J[J\,a(X, x')/1(x', t) - J(,a(x', x)fl(x, t)] dx'. 

(Ll) 

Here x is a point in the phase space of the system, 
H(x) is the Hamiltonian of the system, (fl, H) is the 
Poisson bracket describing the motion of the isolated 
system, and J(,a(x, x') dx dt is the conditional prob
ability that when the system is at the point x' in its 
phase space it will, due to its interaction with the cx.th 
reservoir, make a transition to the volume element 
dx, about x, in the time interval dt. It is assumed here 
that the reservoirs are "stationary" so that the J(,a are 
independent of the time. Multiplying (Ll) by Hand 
integrating over x, we obtain 

a~~) = ~ JJea(X, x') 

x [H(x) - H(x')]/1(x', t) dx dx' = ! Ja, 

(1.2) 

where Ja is the energy flux from the cx.th reservoir. 
(We refer the reader to Refs. 4 and 5 for a detailed 
discussion.) 

The stationary ensemble density is obtained from 
(1.1) by setting the time derivative there equal to zero. 
When all the reservoirs have the same temperature, 
this will be an equilibrium canonical ensemble while 
for reservoirs at different temperatures this ensemble 
will represent a system in a steady nonequilibrium 
state through which heat is flowing. In the steady state 
we have, of course, ! Ja = O. Thus, if the geometry is 
set up in such a way that the system is in contact with 
only two reservoirs, one "on the left" at a temperature 
TL and "one on the right" at a temperature TR with 
T L > T R' and if the system has a uniform "cross sec
tion" S and "length" C, then we expect that in the 
stationary state the heat flux J = J L = -J R should, 
for macroscopic size systems, be related via Fourier's 
law to the average temperature gradient (TL - T R)/C. 
More precisely, J should have the property that the 
quantity K(L) == (JI S)I [(TL - T R)/LJ should approach 
a well-defined limit K when C -- 00. If this K exists, we 
would identify it with the heat conductivity of the 
system at temperature T when T L -- T R -- T. 

This formalism was applied in I to a harmonic 
crystal with some particular forms of interaction with 
the heat reservoirs. The stationary nonequilibrium 
ensemble density for such a harmonic system was 
found to be a generalized Gaussian. The covariance 
matrix of this Gaussian was obtained there explicitly 
for a one-dimensional chain of equal masses with 
nearest neighbor interactions whose end atoms are in 
contact with heat reservoirs at temperature TL and 
T R' Identifying the number of particles in the chain 
with its length L, it was found there that, in the station
ary nonequilibrium state, K(L) ""' L, i.e., the heat flux 
achieves a constant value, for fixed TL-TR, 
independent of the length of the chain L. A similar 
result obtains for any perfectly periodic harmonic 
crystal corresponding to an "infinite" heat conduc
tivity if one can speak of a heat conductivity in this 
case. 6 We therefore thought it of interest to investigate 
the case of a random harmonic crystal, i.e., what 
happens, in the same situation, to a crystal whose 
atoms are not all of the same mass, with the different 
masses distributed at "random." There seems to be no 
a priori way of deciding on what should happen in this 
case. On the one hand, it seems reasonable, and in 
apparent agreement with some machine compu
tations,7 that such a system would have, even in only 
one dimension, a well-defined heat conductivity; 
the reasoning is that the normal modes are scattered by 
the impurities inhibiting the flow of energy. On the 
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other hand, one can argue for a behavior similar to 
that found in the regular chain since the system is still 
harmonic. A computation by Matsuda and Ishiis 

suggests a compromise giving a K(L),....., .Jr, i.e., 
J ,-...., r-! for fixed T L - T R (cf. also Ref. 9). 

In this paper we describe our work on this problem. 
Unfortunately, we do not have a definite result for the 
asymptotic behavior of K(f:) but can show rigorously 
only that the heat flux J will not vanish as r ----+ r:I) if 
the spectral measure of the infinite chain has an 
absolutely continuous part. We also show, using a 
theorem of Matsuda and Ishii,s that, for a random 
chain, J ----+ ° as r ----+ r:I) with probability one with 
(J) ~ o (£.-!). This may suggest that the eigenfre
quencies of a disordered chain are all isolated, but this 
is not so, as we show that the spectrum of an infinite 
chain in which the masses can have only two different 
values contains a nondenumerable infinity of points 
and is thus, in particular, not exhausted by a set of 
discrete eigenvalues having a denumerable number of 
accumulation points. This result is based on a proof 
that the cumulative frequency distribution of such a 
chain is continuous. These results suggest that the 
spectrum of a disordered chain may be of the singular 
continuous type, i.e., its continuous spectrum may 
have its support in a kind of Cantor set. They also 
raise the possibility that in more realistic systems, too, 
the existence of transport coefficients may require the 
absence of an absolutely continuous spectrum, while 
tl1e irreversible decay of local disturbances requires 
the absence of localized bound states (corresponding 
to a'point spectrum). Our results are based on a new 
general formalism for expressing J which brings out 
its relation to the normal mode spectrum. This also 
yields some new results for periodic chains showing 
explicitly how their infinite heat conductivity arises 
from their having an absolutely continuous spectrum. 

2. FORMAL EXPRESSION FOR HEAT FLUX 
IN GENERAL HARMONIC SYSTEM 

We consider a harmonic crystal made up of particles 
of masses mi ,j = 1, . , . , A. (In I we assumed that all 
particles have the same mass.) Some of these particles 
are coupled to external heat reservoirs which are 
labeled by the same index as the particles. The 
particles of the jth reservoir, which interact via 
impulsive collisions with the jth crystal atom, have 
(prior to each collision) a Maxwellian velocity distri
bution with temperature Tj • Assuming that the 
masses of the jth reservoir particles are very small 
compared to mj , the integral operators on the right 
side of (1.1) become Fokker-Planck type differential 
operators4

•
5 and the generalized Liouville equation 

for flex, t) assumes the form, cf. Eq. (1.2.2), 

8fl(X, t) 2N { 8 1 82fl } -- = L - (aiixjfl) + 2dii --. (2.1) 
ot i.j~1 oXi oxiox j 

'Here Xi' i = 1, ... , N, N == sA (s the dimensionality 
of the space) are the Cartesian coordinates of the 
particles relative to their equilibrium positions. 
Xl' X 2 , Xs are the coordinates of particle one, etc., 
while Xj , j = i + N, is the momentum conjugate to 
Xi' a and dare 2N x 2N matrices made up of N x 
N matrices 

(0 _M-l) (0 0) 
a = ~ L ' d = 0 2MLT . (2.2) 

Here ~ is the positive-definite symmetric force matrix 
of the system, M is the diagonal mass matrix of the 
system (with Mll = M1 , ••• , Ms. = Ms, etc.), T is 
the diagonal temperature matrix of the reservoirs 
(with Tn = T1 , ••• , Tss = Ts, etc., and we have set 
Boltzmann's constant equal to 1), and L is a diagonal 
matrix with positive or zero elements which describes 
the reservoir system coupling; Lll = AI, , .. , Ls. = 
As' etc., with the Ai the Fokker-Planck friction 
constant between the ith crystal atom and the ith 
reservoir, Ai being zero if the ith particle is not 
coupled to any reservoir (cf. I, Sec. 2). 

The fundamental solution of Eq. (Ll) can be 
shown5 to be a generalized Gaussian. The time evo
lution of the moments of the distribution function fl 
may be obtained directly from (l.l) and are seen to 
satisfy the equations 

- = -a(x), (Xi) == Xifl(X, t) dx, d(x) f 
dt 

d(xx) 
-- = d - a(xx) - (xx)a, 

dt 

(XiX;) = f XiXifl(X, t) dx. 

The solutions of (2.3) and (2.4) are 

(x(t» = exp [-at](x(O», 

(x(t)x(t» = exp [-at](x(O)x(O» exp [-at] 

(2.3) 

(2.4) 

(2.5) 

+ fdS exp [-as]d exp [-as] (2.6) 

where a: denotes the transpose of a. 
The requirement that «It be positive -definite ensures 

that none of the eigenvalues of «It vanishes. The 
further requirement that if Q is an eigenvector of~, 
then LMQ =;I: 0 (i.e., there are no normal modes of 
the isolated system for which all the particles which 
are in contact with the external reservoirs are always 
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at their equilibrium positions10) insures that all 
eigenvalues of a have positive real parts. This can be 
readily seen by noting that if!; = (Q; P) is an eigen
vector of a with eigenvalue (1(, i.e., ~. = Q. for i < N 
~i+N = Pi' then we have "- , 

QtIlQ - (1(QLMQ + ex2QMQ = 0. (2.7) 

Since LM is a positive (diagonal) matrix, we see that if 
(I( is real, it has to be positive while; if 1m (I( y6 0, we 
find by taking the imaginary part of (2.7) that 

Re (I( = HQLMQ)/(QMQ) > O. (2.8) 

Returning now to (2.5) and (2.6), we see that 
<x(t» vanishes as t ~ 00 and 

lim (x(t)x(t» = roods exp [-as]d exp [-as]. (2.9) 
t-+oo Jo 

Hence the suitable stationary Gibbsian ensemble 
describing our harmonic system is a Gaussian with 
the covariance matrix (2.9) which thus contains all 
the information about the macroscopic properties of the 
stationary state. In order to obtain this covariance 
matrix in a more convenient form, we define the two 
N . X N matrices 

[F(t)]ij = [exp (-at)]i.N+i' 

[G(t)]ij = [exp (-at)]N+i.N+j, 

i,j = 1, ... ,N. (2.10) 

Using the explicit form of a in (2.2), we find that F(t) 
and G(t) satisfy the equations 

MF(t) = G(t); MF(t) + MLF(t) + tIlF = 0, (2.11) 

with the initial conditions F(O) = 0, G(O) = 1 (the 
unit matrix). 

It is now readily seen that 

(217r1 roo dwe-iwtZ-1(w) = {F(t) for t ~ 0 (2.12) 
J-ro ° for t < ° ' 

where Z(w) is an N x N matrix 

Z(w) = til - iwML - w2M. (2.13) 

Use has been made here of (2.7) and (2.8), which 
show that all the zeros of Z(w) are in the lower half 
of the complex w plane occurring at values of w = 
-i(1(, ex an eigenvalue of a. We may now express the 
stationary correlations (2.9) in terms of the impedance 
matrix Z(w). Decomposing (x( oo)x( 00» into four N X 

N matrices, we find 

(q(oo)q(oo» 

= 7T-1L: dwZ-1(w)LMTZ-1( -w), (2.14a) 

(q( 00 )p( 00 »M-1 

= 7T-1I: dwZ-1(w)[iwLMT]Z-r, 

M-l(p( 00 )p( 00 »M-1 

(2.14b) 

= 7T-1I: dwZ-1(w)[w2LMT]Z-1( -w). (2.14c) 

Equations (2.14) may be evaluated explicitly for the 
case when all the reservoirs have the same temperature 
Ti = T. We expect that in this case the stationary 
ensemble will be the canonical equilibrium ensemble 
with temperature T. This can be readily confirmed for 
(2.14c), for example. Noting that the matrix -wLM 
is just the imaginary part of Z(w), we find 

M-1(p( 00 )p( 00 »M-l 

= T(27Ti)-1L: dW[Z-l(W) - Z-1( -w)]w 

= 2T Re {(27Ti)-11: dw[wZ-1(W)]}. (2.15) 

Closing the contour of integration in (2.15) along an 
infinite semicircle in the upper half-plane yields the 
expected result 

.(p( 00 )p( 00») = M T, when Tz = T for alII. (2.16) 

Incidentally we have found the sum rule 

7T-11: dwZ-1(w)[w2MLJZ-l( -w) = M-1
• (2.17) 

When the temperatures are not all the same, heat 
flows into the system from the different reservoirs. 
Applying (1.2) to our system, we find at all times 

<fI(t» = 2 ,qTi - mjl<p~(t))] = 2 Jit). (2.18) 
j j 

For the heat flux in the steady state, we have, using 
(2.14) and (2.17), 

JI = ~ (TI - Tj))'lmlmjAj(7T-l) L: dww 2 1[Z-1(W)lz;12. 

(2.19) 

Note that due to the symmetry of Z(w) the sum over 
all JI vanishes as it should in a steady state. 

Henceforth we shall specialize to the case of two 
heat reservoirs of temperatures TL and TN' coupled 
with equal strength A to the first and last particles of a 
one-dimensional chain which consists of A particles, 
i.e., Tl=TL , TA=TR , A1 =AA=A, Aj=O for 
j y6 1, A. Designatin,g det [til - w 2M] by K, we note 
that the cofactor CIA of ZIA is equal to that of 
(til - w2M)1A and that det Z may be expressed as a 
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where Kz•m(w2) is det (w - w2M) for a chain which 
starts from the lth particle and ends with the mth one. 

Restricting the system further by assuming nearest 
neighbor forces of unit strength with particles 1 and A 
tied by springs to fixed positions 

<l>ii = 26ii - 6i+1.i - 6i .i+l, i, j = 1, ... , A, 
(2.21) 

(2.20) 

(2.22) may be written as a 2 x 2 matrix equationS 

Q _( K1•A -K2.A ) 

A = K1•A- 1 - K2.A- 1 

= (2 - mAw2 -1) (K1.A- 1 -K2.A- 1) 

1 0 K1•A- 2 - K2.A- 2 

= QIQA-l, (3.1) 

where K1•1 = 2 - m1w2, K1.0 = K2.1 = 1, K2.0 = O. 
leads to I CU l2 = 1. Moreover, both K1•A and K2•A now This leads immediately for A = NC to 
satisfy the same recursion relation, namely 

KI.A = (2 - mAw2)K;.A_l - K j •A- 2, j = 1,2, .. '. 

(2.22) 
Using Eq. (2.22) for A and A - 1 leads to 

Kl.AK2.A-l - Kl.A-1K2.A = const independent of A. 

(2.23) 
Evaluating (2.23) for A = 2 yields 

Kl.AK2.A-l - Kl.A-lK2.A = -1. (2.24) 

This .enables us to eliminate the cross terms in the 
denominator of Eq. (2.20) with the result 

JA = (TL - TR)m1mA ~ Joo dww2/[2m1mA),2w2 
7T -00 

+ (K~.A + ),2w2m~K~.A_l) 
+ ),2w2m~(Ki.A + ),2w2m~K~.A_l)] 

== (TL - TR) iOOdWjA(W), (2.25) 

Equation (2.25) is an expression for the steady state 
heat flux in a harmonic chain containing A particles 
with masses ml, m2 , ••• ,rnA' We shall be interested 
from now on in the behavior of the right side of (2.25) 
as A -- 00. 

3. PERIODIC CHAINS 

We shall now specialize the analysis of the last 
section to the case of a periodic chain with a unit cell 
containing C particles of masses rn1 ,"', me, 
me+! = rnl, etc. The chain contains N such cells, 
A = NC. It will be shown that for this system the heat 
flux in (2.25) does not vanish when N -- 00 (i.e., the 
"heat conductivity" grows proportionally to the 
length of the chain as discussed in Sec. 1). 

To proceed we note that the recursion relation 

(3.2) 

The behavior of the integrand in (2.25) depends on 
the eigenvalues of Qe. Since Qe is unimodular and 
real its eigenvalues have the form exp (±iq) with q 
real or pure imaginary. In fact q is real whenever W is 
such that 

-2 S tr Qe == K1•e - K2.e- 1 = 2 cos q S 2. (3.3) 

This corresponds to wave vectors q with which waves 
will propagate through the lattice with one of the 
frequencies in the band Wj(q) , j = 1, ... ,C. The 
w~(q) are the C roots of the polynomial equation 
tr QcCW2) = 2 cos q, tr Qo being a polynomial of 
order C in w2 and the w~(q) are positive for q real. To 
see that there is always some range of W for which q is 
real we note that, for W = 0, Qo has the form 

o _ (C + 1 -C) 
QcC ) - C -C + 1 (3.4) 

so that tr QcCO) = 2. The first-order correction to the 
trace is negative: 

a 
tr Qe = 2 - w2CLm. + O(w2

). (3.5) 
.=1 

There will thus always be some Wo > 0 such that 
Itr Qol S 2 for 0 S w S Wo. 

Returning now to (3.2),we may verify that 

QA = [Qo1N = [cos Nq] 11 

+ [(sin Nq)jsin q][Qo - (cos q) n], (3.6) 

where 11 is the 2 x 2 unit matrix. We now note that 
the denominator of the integrand in (2.25) can be 
written as IZAI2, where ZA is the matrix element 

ZA = (1, -i),mAW)QA(., I ). (3.7) 
IAm2w 
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Using (3.5), we find 

ZA = (1 + ).2w2mlmc) cos Nq + (sin Nqjsin q) 

x [zo - (1 + ).2w2mlmc) cos q], (3.8) 

where 

Zo = [K1.O - ).2mlmOw2K2.0_1] 

- i).w[m1K2.0 + mOK1.O- 1]' (3.9) 

By writing leN, C) for lA' Eq. (2.25) now assumes 
the form 

leN, C) = [(h - TR )m1mO).21T-l] 

X L: dww2 1(1 + ).2w2m1mc) cos Nq 

+ (sin Nqjsin q) 

x [zo - (1 + ).2w2mlmc) cos q]r2. 

(3.10) 

The dependence of the heat flux on N, the number 
of cells of the chain, is entirely explicit in (3.10), Zo 
depending on w (or q) but is independent of N. We 
note that as N -4- 00 only values of w (more properly 
intervals of w) for which q is reallK1.o - K2.0- 11 ::::;; 2 
will make a finite contribution to leN, C), since for 
imaginary q the integrand will decrease exponentially 
with N. Hence, to obtain leN, C) as N -4- 00, we may 
change variables from w to q and restrict the range 
over q to the interval [0,21T]. For large N the terms 
in the integrand of (3.10) which do not involve Nq 
may be regarded as constant while Nq changes by ~1T. 
Calling the integrand in (3.10) F(q, Nq), we may wnte 

[2" N-l [2"!iH)IN 
Jo dqF(q, Nq) =}~ J2,,}/N dqF(q, Nq) 

1 N-121T12"(J+1) (x ) 
=- L - dxF -,x 

21T }=o N 2,,} N 

1 i2" i2" ~ ~ dq F(q, 0) dO. (3.11) 
N-+oo 21T 0 0 

Carrying out the indicated inte~ration over Nq. in 
(3.10) and going back to the vanable w, we obtam, 
using also (3.9), 

lim J(N, C) 
N-+oo 

= (TL - TR )m1mO).1T-1J dw Iw sin ql 

X 1(1 + ).2w2mlmc)[mcKl.O_l + m1K2.a1r\ 
(3.12) 

the integration being over the region IK1•O - K 2•o- 11 ::::;; 

2 [i.e., over the frequency bands of w2: min w;(k) ::::;; 
w2 ::::;; max w;(k),j = 1, ... ,C, which are the solu
tions of (3.3), 0::::;; k ::::;; 21T; cf. discussion after Eq. 

(3.3)]. It is seen from (3.12) that 1 "'). for)' -4- 0 and 
l,....., ).-1 when). -4- 00. This was noted in I, where 1 
was computed for the case of a chain with equal 
masses, which corresponds to a special case of (3.12) 
where C = 1. In that case, setting m1 = m, we have, 
2 cos q = 2 - mw2 , K1•O = K2•1 = 1, and the inte
gration is over the interval 0 S w2 ::::;; 4jm. Changing 
the integration variable to q, we obtain, for the heat 
flow in an infinite chain with all masses mj = m, 

1 = (TL - TR»)'(21Trl 

x f" dq,sin2 q[1 + 2m).2(1 - cos q)r1 

= iCm2).3)-1[TL,- TR ] 

x [1 + 2m).2 - (1 + 4m).2)-!], (3.13) 

the same result as was obtained in (I.4.6). 

4. ASYMPTOTIC HEAT FLUX 
AND THE SPECTRUM 

In this section we shall return to the general formula 
(2.25) and investigate the connection between the 
behavior of lA as A -4- 00 and the nature of the 
spectrum of the semi-infinite chain. [For the periodic 
chain we have seen in (3.12) thatl 00 > 0 is given by an 
integral over the spectrum of the chain.] 

To this end, consider the semi-infinite diagonal 
matrix M, whose entries are the masses {m.}, 11 = 
1, 2, .. '. The proper frequencies squared of the 
associated harmonic chain are the eigenvalues of the 
semi-infinite Hermitian matrix 

H = M-!.z, M-!, (4.1) 

where .z, is the force matrix given in (2.21) with 
A = 00. Regarded as an operator acting on the 
Hilbert space of sequences with the L2 norm, H is 
bounded, nonnegative, and self-adjoint. In the usual 
Dirac notation, 

<vi H I'f") = -(m._1m.r!'!}'._1 + 2m;1'!}'. 

_. (m.m.Hr!'!}'.H' '!}'o == O. (4.2) 

0::::;; ('f"1 H I'f") ::::;; 411'f112jm', m' = min {m.} = 1, 
(4.3) 

and we are assuming that the {m.} have a lower 
bound which we set equal to unity. We see from Eq. 
(4.3) that the spectral support of H is contained in the 
interval [0, 4]. The spectrum is characterized by the 
family of spectral projections E().) satisfyingll 

H = {dE(A»)., 

E(O) = 0, E(4) = 1. 

(4.4) 

(4.5) 
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Let H operate on the sequence 'Y: 

1jJ. = .jm • . K._1(W2), 1jJo = 0, (4.6) 

where K.(w2) is the determinant K1 •• defined in Sec. 2 
which satisfies the recurrence relation (2.22), Ko = 1. 
It is seen from (4.2) that 

H'Y = w2'Y. (4.7) 

It follows from this that the matrix elements of E(J.) 
can be written in the formll 

t[A (vi E(J.) Iv') = (m.m.,) Jo dp(x)K._1(x)Kv'-1(x), 

Ko = 1, (4.8) 

where p(x) is the spectral measure of H with respect 
to the vector 11). Since for cyclic vectors the different 
spectral measures of Hare "equivalent," we shall refer 
to p simply as the spectral measure of H. The spectrum 
of H is the support of the measure p(x). It follows 
from (4.5) and (4.8) that 

p(x) = ° for x < 0, p(x) = mIl for x > 4, (4.9) 

fdp(X)K~(X) = m;-~l ~ 1. (4.10) 

[For a chain with all m. = m, p'(x) = 7T-l(x(m)i(1 -
x(4)t for ° ~ x ~ 41. 

It is seen from.(4.10) that if p(x) has an absolutely 
continuous part with support in a set X of Lebesgue 
measure (j > 0, then 3 B, B < 00, such that dp(x)j 
dx > B-1 for x E X and thus 

(4.11) 

Furthermore, the determinants K2•V(W2) which also 
occur in Eq. (2.25) play the same role with respect to 
an identical chain except for the first mass which is 
set equal to 00. The operator H associated with this 
chain differs from H in (4.1) by a 2 x 2 matrix. 
Hence the absolutely continuous parts of their spectra 
coincide,u We now find, on assuming that the masses 
m. have also an upper bound, that the integral of the 
reciprocal of the integrand in (2.25) over a set X' c X 

J dwI;/(w) ~ B' < 00, (4.12) 
x' 

where X' is the set X - [0, (j12] and B' is a constant 
independent of A. It therefore follows by the Schwartz 
inequality that fA is bounded below, i.e., 3~ > ° 
such that 

fA ~ ~(TL - TR ) for all A (4.13) 

for fixed J. =;6- O. Hence we conclude that if the spec-

trum of the infinite chain with bounded masses {m.} 
has an absolutely continuous part, then the heat con
ductivity of a segment containing I: particles has a 
lower bound K(I:) ~ ~(I:) and thus a priori goes to 
infinity as I: -+ 00. 

We shall now use a theorem of Matsuda and Ishii,s 
which they derived on the basis of a theorem by 
Furstenberg, to show that for almost all random chains 
the heat flux fA -+ ° as A -+ 00. By a random chain 
we mean a chain whose masses ml, m2 , • •• are a 
sequence of independent positive random variables 
with a common distribution p(m) which gives a non
vanishing probability for at least two different masses. 
A weak form of the Matsuda-Ishii theorem states 
that for such a chain 

KJv(1]) -+ 00 as N -+ 00 for all 1] =;6- 0, (4.14) 

with probability one. 
It follows from our previous discussion that when 

m. ~ 1 for all possible chains, only the interval ° S w ~ 2 can make a finite contribution to the 
integral in (2.25). We therefore have 

JA = (h - TR) fdWjA(W)' (4.15) 

Taking the average of fA over the probability distri
bution of the masses m., we have 

<fA) = (TL - TR ) fdWUA(W»' (4.16) 

It follows from (4.14) that 

(jA(W» -)-° for ° < W ~ 2. (4.17) 

We also have from (2.25) that 

jA(W) ~ (27T)-1 for all w; (4.18) 

hence, by the Lebesgue theorem,12 

(4.19) 

Since fA ~ 0, it follows from (4.19) that for any 
(j>0 

Prob (fA ~ (j, for all A) = O. (4.20) 

Combining (4.20) with our previous result (4.13), we 
find that the probability that the spectrum of an 
infinite random chain has an absolutely continuous 
part is zero. 

It will be shown in the next section that the spectrum 
of a chain containing two different masses cannot 
consist entirely of a denumerable number of points. 
Since it will also with probability one not contain an 
absolutely continuous part, it will "generally" either 
contain a singular continuous part or have a point 
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spectrum with a nondenumerable number of limit 
points. 

5. FREQUENCY DISTRmUTION FUNCTION 
AND SPECTRUM OF A BINARY CHAIN 

We shall be concerned in this section with the 
simplest type of chain containing unequal masses, i.e., 
the mass of the vth atom mv can take on only two 
values, 

mv = 1 or M, M> 1, v = 1,2, ... ,00. (5.1) 

The "average" properties of this system when the {m.} 
are assumed to be a set of independent random 
variables have, as mentioned earlier, been extensively 
investigated.z We recall this here only to emphasize 
that the main discussion in this section is not con
cerned with any probability distributions or averages 
but pertains to a specific chain with specified {mv} for 
al/ positive integer v. 

As was done in the last section, we let H denote the 
semi-infinite matrix M~lcJlM~I. We also let HA denote 
the A x A matrix consisting of the first A rows and 
columns of H. The eigenvalues of HA , which are the 
squares of the normal frequencies of the chain 
containing A atoms with masses m., v = 1, ... , A, 
are the zeros of the equation KA('YJ) = 0 and will be 
designated by 'YJ~, i = 1, ... , A. As is well known, 
o < 'YJ~ < 4 and all the 'YJ~ are distinct for M finite. 
Let AGA('YJ) be the number of eigenvalues of HA 
which are smaller than 'YJ. GA(n) is a monotonic step 
function, 

. GA('YJ) = A~I ~ 1, GA(O) = 0, GA(4) = 1, (5.2) 
'1,/<'1 

i.e., G A ('YJ) is the integrated normalized density of 
states. Since a set of uniformly bounded monotonic 
positive functions is compact, it is always possible to 
choose a subsequence of GA('YJ) which will converge 
to a function G( 'YJ) as A - 00. 

G('YJ) need not be unique as may be seen by con
sidering a chain for which m. = 1, v::;; N, m.= M, 
N < v ::;; NZ, mv = I, NZ < v ::;; N4, etc., with N > 
1. Lederman's theorem [cf. Ref.2(a)] asserts that the 
change in the number of eigenvalues of HA in a given 
interval ['YJ1' 'YJz] when a given number, say T, of the 
masses m. are changed is bounded by T. It is thus 
readily seen that we may choose sequences GA(n) 
which will converge to either G(l)('YJ) or G(m)(n), 
where G(mJ('YJ) is the frequency distribution of the 
infinite chain, all of whose masses are equal to m. 

We shall now show that 

G(rJ) is continuous, (5.3) 

the spectrum of the infinite chain, i.e., of H, 
contains a nondenumerable infinity of points. (5.4) 

Following Rubin,7 let AI, Az , • •• designate the 
positions of the heavy mass particles, mA. = M, and 

let av = A. - A'~1 with Ao == O. Define the variable 
k and the quantity ~ by 

w = 2 sin (k/2), ~(k) = (M - 1) tan (k/2), (5.5) 

and note that 0 ::;; w::;; 2 corresponds to 0 ::;; k::;; 7T. 
It may now be verified that the determinants KN 
satisfying the recurrence relation (2.22) can be 
expressed, for A. ::;; N < Av+l' as 

KN = IR.I (sin k)~1 sin [iO(N)], (5.6) 

where (suppressing the dependence on w or k when
ever possible) 

Ro = 1, R. = r.Rv~I' 

r. = 1 - i~ + i~ei8v, v ~ 1, (5.7) 

O(N) = 0'+1 - 2k(A.+I - N - 1), 

(5.8) 

The Ov(k) are continuous functions of k with 0(0) = 0 
and satisfy the recurrence relations 

exp [i(0V+1 - 0.)] = exp [2ikav+I ](i'./r.) 

for v ~ 1, 01 = 2kAI , (5.9) 

with tv denoting the complex conjugate of rv' It can 
be verified that these Ov(k) and the O(N, k) are mono
tonic functions of k for real k whose derivative with 
respect to k is given by 

dO v+! _ 2(A - N - 1) 
dk v+l 

d 
= dk O(N) 

= 2(N + 1 - Av) + IR.rz 

X l~ (aIIR:_II + 2~1 sin
z 

k IK~I_I\))' 
Av ::;; N < Av+l' (5.10) 

where 
~/(k) = (M - 1)/[2 cosz (k/2)]. (5.11) 

Using the recurrence relation (5.7) yields the bounds 

o < C-v
::;; IRvl ::;; [(1 + ~2)1 + ~r == CV (5.12) 

so that the zeros of KN , i.e., the eigenvalues of H N, 

occur at those values of k for which ()(N, k) = 27Tj, 
with j a positive integer. Since there are altogether N 
such zeros in the interval 0 < k < 7T, we must have 
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O(N,1T) = 21T(N + 1) [we have here (N + 1) rather 
than N to take care of the zeros of sin k in the de
nominator of (S.6)]. In general GN (1J) = jlN in the 
interval 2j1T < k ::;; 2(j + l)1T, j = 0, ... , N (with 
the relation rJ = 4 sin2 kI2). 

To prove (S.3), we write KN(rJ} in (S.6) as a product 
over its zeros 

N 

KN = M V IT (rJ~ -1}), 0 < 1}~ < 4, 
i=l 

Av ::;; N < Av+1' (S.13) 

A discontinuity at the point fJo :;6 0 or 4 (rJo = 0 or 4 
is excluded by Rayleigh's theorem) in the integrated 
density of states G( rJ) means that rJo is an accumulation 
point for a finite fraction of the zeros 'YJ~, i.e., if 
feN, E) is the fraction of zeros of KN in the interval 
1= [rJo - lE, rJo + lE), then N -)- 00, followed by 
E -)- O,f(N, E) -)- p > O. We thus have 

IKNII/N::;; M[4(1-fIEf) for 1] in I, (5.14) 

where f = f (N, E). On the other hand, Isin [lO(N)]1 
must, according to (S.lO), take on the value 1 at Nf 
points 'YJ~ inside I. At those points 

IKNII/N = (IRvlllsin klilN 2 C-vIN 2 c-1 (S.15) 

by (S.l2). It is clear that (S.l4) and (S.lS) cannot be 
satisfied simultaneously for arbitrary E and M < 00 

if feN, E) -)- p > 0 independent of E. We thus con
clude that 

GN('YJ + E/2) - GN('YJ - E/2) = feN, E} -)- 0 
as 

[(1 - b)21T-1M-iw, w] = [w', w) for a chain contain
ing A atoms of masses land M has a lower bound 
which may be put in Cle form 

GA(1]) - GA(rj') 2 bl1T for 1] = w2 < 4, 

0::;; 0 ::;; 1. (S.19) 

Eq. (S.4) now follows if we can show that every point 
of increase of G(rJ) for 0 < 'YJ ~ 'YJo, 'Y)o > 0, is in the 
spectrum of H. 

To prove this, assume that the point ij is not in the 
spectrum of H. Then 3 E > 0 such that, for any 
sequence of normalized vectorsll 4>(nl, 

II(H - 'YJ)4>( nl ll 2 E, 114>( nl ll = 1 (S.20) 

whenever 'YJ E 1= [ij - E/2, ij + E/2J. The norm here 
is the L2 norm in the space of sequences. Let 4>(n) be 
the sequence obtained by cutting off the sequence 'F 
in (4.6) after n terms and normalizing it 

{m~Kj_l('YJ)/cn' (n-l)! 
4>~n) = 1 ~j::;; n, Cn = I~K7ml+1 , 

0, j > n. (5.21) 

Substitution of the explicit matrix elements of H 
given in (4.2) into (S.20) yields 

II(H - 'Y)4>(n) II 

= (m-;;-lK! + m-;;!lK!_1)/'I1K7ml+1 2 E, (S.22) 
l=O 

or, since mv 2 l, we have for Av ~ N < AV+1 
N 

N -)- 00 and E -)- 0, (S.16) ~ K7 ~ (1 + E-l)[K~ + K~_d 
for all rJ, and thus that G( 1]) is continuous. This will be 
true for each limiting frequency distribution G('YJ) if 
there is more than one for the infinite chain in question. 

A similar analysis can also be applied to the average 
cumulative frequency distribution of a random chain2 

(G('YJ» = lim (GN('YJ»' (5.17) 
N-+oo 

Taking the logarithms of Eqs. (5.l4) and (S.1S), we 
again find that 

lim lim (f(N, E» = 0 (S.18) 
£-+0 N-+ 00 

and hence (G('YJ» is continuous. The average frequency 
distribution (G(rJ» determines all the equilibrium 
thermodynamic properties of the random chain2 and 
has been shown elsewhere to be unique.13•14 

It follows that since G('YJ) increases continuously 
from 0 to 1 as 'YJ goes from 0 to 4 that the points of 
increase of G('YJ) in the interval [0,41 are nonde
numerable. Indeed it follows from Rayleigh's theorem 
that the number of normal frequencies in the interval 

1=1 

::;; 2C2(sin k)-2(1 + E-
1
) IRvI2, (S.23) 

where the last inequality follows from (5.6) and (5.12). 
On the other hand, it follows from Eqs. (5.6)-(5.9) 

that 

IRvl2 = {sin2 kjsin2 HO(N) - O(N - I)]} 

x IKN - exp {ti[O(N) - O(N - 1)]}PN KN_112, 
(S.24) 

where Av ~ N < AV+l and 

PN = {
l, if Av < N, 

Irvl, if Av = N. 
(5.25) 

Moreover, we find from (5.6)-(5.9) that, for any mass 
M, 3 ko(M) > 0 such that, for k S ko(M), {sin2 kj 
sin2 HO(N) - O(N - I)]} < M. Hence, we have, 
using (5.l1), that 

dO(N) ::;; 2(N 4- 1 - Av) + (j I K~ 2 ' 

dk 1=0 IRvl 
k < ko, Av S N < Av+!, (5.26) 
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where (f < 00 is independent of N. Combining (5.26) 
with (5.23), we obtain an upper bound on the number 
of 1]:V in the interval! whenever ij ~ 1]0 < 4 sin2 (ko/2). 
This upper bound shows that ij cannot be a point of 
increase of G( n) if, in the sequence of chains of length 
Nfor which GN(n) --+ G(n), we can find a subsequence 
in which the distance from the end of the chain to the 
nearest atom with mass M, (N - Av) is of o(N). 
For such chains then (5.4) is true. It seems clear that 
we can always choose our first sequence H N so that 
this is true unless all the masses mv for Y > AI' I < 00 

are equal to unity, in which case G(n) will equal 
GW(n), corresponding to a chain all of whose masses 
are unity, and the spectrum of H will have the samell 

absolutely continuous part as the chain whose mv = 1 
for all v, i.e., its support will be the interval [0,4]. 
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APPENDIX: LOWER BOUND ON THE AVERAGE 
HEAT FLUX 

Although we have no way of directly averaging the 
expression (2.25), a crude lower bound on JA may be 
obtained when the m's are independent random 
variables by averaging the denominator of the 
integrand in (2.25). 

To this end, we note that K~.A is the (11) entry of 
the (4 x 4) matrix obtained by taking the direct 
product of the (2 x 2) matrix QA with itself. It is 
readily established that 

QA X QA 

-/A 
o 

-1 

o 

-/A 
-1 

o 
o 

-/1 
o 

-1 

o 

-/1 
-1 

o 
o tJ 

(AI) 

where Iv == 2 - mvw2. Averaging QA X QA thus 
reduces to taking the average of a 4 x 4 matrix and 
raising it to the Ath power: 

-/ 
o 

-1 

o 

-/ 
-1 

0 

0 ~r == (F)A, 

(A2) 

wheref= 2 - (m)w2 , g2 = «m - (m»)2)w4 • A direct 
check of the characteristic equation associated with 
the matrix F shows that its eigenvalues are of the form 

7 7 7 7! ia 1 _ , -! -ia 
/1.1 = /I., /1.2 = /1.- e, /1.3 - /I. e , ,14 = 1, (A3) 

where A > 1. Evidently the dominant term in (K;'A) 
is the one associated with AI' An explicit calculation 
involving the solution of the third-order characteristic 
eq uation as w 2 --+ 0 leads to the result 

(A4) 

where (f == <em - (m»2) and c is a numerical co
efficient. Using the estimate (A4) in (2.25) gives9 

(A5) 
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The mathematical structure of the simplest nontrivial hidden variable theory is derived. The core 
of the resulting theory is an essentially unique nonlinear differential equation which gives a causal 
description of the continuous collapse of the wavefunction during a measurement. It is shown that the 
simplest collapse equation is the same as the equation given ad hoc by Bohm and Bub. 

INTRODUCTION 

The many papers written since von Neumann's 
initial paper on the subject of the possible existence of 
hidden variable theories of quantum mechanics have 
been thoroughly reviewed and criticized by several 
authors.1 In this paper I do not intend to either attack 
or defend ideas expressed by previous authors on the 
subject of hidden variables. Instead I will derive the 
explicit mathematical structure of what I believe is 
the simplest nontrivial hidden variable theory. The 
core of the resulting theory is an essentially unique 
nonlinear differential equation which gives a causal 
description of the continuous collapse of the wave
function during a measurement. The simplest collapse 
equation turns out to be the same as the equation 
given ad hoc by Bohm and Bub.2 

DERIVATION OF THE FORM OF THE SIMPLEST 
HIDDEN VARIABLE THEORY 

In my previous papers on this subject3.4 I have tried 
to explore the mathematical consequences of the 
Bohm-Bub theory with the intent of helping to bring 
it to an experimental test. Due to the complexity of the 
equations I was not entirely successful. I feel that no 
real experimental tests of the theory have been 
conducted or proposed. for the following three 
reasons. 5 First the nonlinearity of the collapse equation 
makes the theory very difficult to analyze. Secondly 
the theory is not fully interpreted by Bohm and Bub. 
The main collapse parameter y is left practically 
arbitrary, as are the hidden variables themselves. 
Since the theory was introduced primarily as a 

counterexample to various theorems claiming that 
such a theory could not exist, this lack of completeness 
is understandable.6 The third, and perhaps most 
significant, reason for the lack of experimental tests is 
the ad hoc and artificial way in which the theory was 
originally introduced. I will show that a combination 
of very general and reasonable requirements con
cerning quantum mechanics, physical measurement, 
and mathematical simplicity leads inescapably to an 
equation of the Bohm-Bub type and to a corre
sponding set of hidden variables. I had previously 
hoped that a simpler hidden variable theory might 
exist, but it seems that this hope was false. 

If quantum mechanics is interpreted as a statistical 
theory of quantum ensembles and not as a physical 
theory concerning individual quanta, then there is no 
need to introduce the idea of the collapse of the 
wavefunction during measurement. However, in
dividual quanta do exist experimentally; thus many 
physicists would like to believe, lacking any other 
theory, that quantum mechanics applies to the 
individual. The problem one then faces is that of 
explaining how the probabilities are changed to 
certainties by the process of measurement. The so
called projection postulate, first introduced by von 
Neumann, is the standard explanation of this process; 
yet, due to its almost metaphysical character, its 
validity cannot be taken seriously by most physicists. 

In classical physics, probabilities enter due to our 
lack of knowledge of a large number of classical 
parameters, and not as intrinsic properties of the real 
world. Furthermore, the probabilities are generally 
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it to an experimental test. Due to the complexity of the 
equations I was not entirely successful. I feel that no 
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Since the theory was introduced primarily as a 

counterexample to various theorems claiming that 
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is understandable.6 The third, and perhaps most 
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the ad hoc and artificial way in which the theory was 
originally introduced. I will show that a combination 
of very general and reasonable requirements con
cerning quantum mechanics, physical measurement, 
and mathematical simplicity leads inescapably to an 
equation of the Bohm-Bub type and to a corre
sponding set of hidden variables. I had previously 
hoped that a simpler hidden variable theory might 
exist, but it seems that this hope was false. 

If quantum mechanics is interpreted as a statistical 
theory of quantum ensembles and not as a physical 
theory concerning individual quanta, then there is no 
need to introduce the idea of the collapse of the 
wavefunction during measurement. However, in
dividual quanta do exist experimentally; thus many 
physicists would like to believe, lacking any other 
theory, that quantum mechanics applies to the 
individual. The problem one then faces is that of 
explaining how the probabilities are changed to 
certainties by the process of measurement. The so
called projection postulate, first introduced by von 
Neumann, is the standard explanation of this process; 
yet, due to its almost metaphysical character, its 
validity cannot be taken seriously by most physicists. 
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parameters, and not as intrinsic properties of the real 
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arrived at by averaging over the "hidden" parameters. 
A similar scheme can be made to work in quantum 
mechanics if the collapse process is given a realistic 
and physical description. There are, however, im
portant differences in the averaging methods. 7 

In the standard presentation of the quantum theory 
the individual and the ensemble are mathematically 
indistinguishable. To facilitate the understanding of 
my results, I will try to carefully explain my view of 
the relationship of the individual and the ensemble to 
each other and to the act of measurement. Consider a 
pure ensemble of quanta at t = to, each individual 
described by the ensemble wavefunction IfP(to))' 
Suppose there are N quanta. Then, as long as properties 
of the individual quanta are not being measured, the 
wavefunction of the jth quanta will be assumed to 
be IfPj(t)) = IfP(to)) exp [-iE(t - to)/Ii], where j = 
1, 2, ... ,N. If a measurement of A is made at 
tl > to,thenl~(t > 11)) ¥= IfP(to))exp[-iE(t - to)/Ii]. 
(As usual, assume, without loss of generality, that A 
is represented by a Hermitian operator with a discrete 
finite spectrum and that A is nondegenerate with 
eigenvectors {IAi)}~') The measurement changes the 
pure state into a mixed state. The original wavefunction 
of the ensemble can be expanded as IfP(to)) = L~ Ci IAJ. 
The Ci are not changed by the measurement, but 
instead are determined by the measurement. For each 
j we can also expand IfPi(t)) = L~ fPI(t) IA i ), where 
fPf(to) = fP7(to) for allj, k ~ N. During the individual 
measurements the fPt(t) change, and 

N 

Ici l
2 = L IfP~(ooW/N = IfP!(toW 

1 

for all j ~ N. Ordinary quantum mechanics is con
fusing because it is an incomplete description of the 
individual. In fact, there is no way to distinguish the 
individual quanta. There is no ''j.'' I claim the j should 
be determined by the values of the hidden variables. 
In the ordinary theory c; is confused with fPI(t). The 
former must be constant during the measurement on 
the ensemble while the latter must change during the 
individual measurements. I will, in deference to the 
usual notation, drop the superscript j and suppress 
the dependence of the individual's complete state on 
the hidden variables. Instead of writing IfPi(t)), I will 
write I fP) and, instead of writing fPf(t) , just fPi' Unless 
otherwise stated, one may assume I am discussing 
measurements made on individual quanta. If the 
components of the wavefunction of the individual 
quanta actually change in time during a measurement, 
then the relevant variables are 

where 
n n 

IfP) = L fPi IAi) and LXi = 1 
1 1 

for all t. I assume, of course, that the apparatus is 
insensitive to the relative phase differences between 
components of the wavefunction. I now assume that 
the collapse is described by a law which takes the form 
of a nonautonomous system of differential equations. 
It seems reasonable to suppose that any causal 
description of the collapse process must take such a 
form. The simplest such system of equations would be 
a first-order system. Let X = (Xl' ... ,Xn). So, for 
each t, X ERn. The collapse law, in normal form, is 
then 

x = l(t, X, iX, A). 

It should be noted that since a particular observable A 
is being measured, I will depend on A. The equation 
can be written in a representation-free form, by using 
projection operators,4 but it is easiest to use the form 
given. Also, as we will see later, I depends on some 
other parameters, represented by IX. For the sake of 
simplicity, I will use the notation I(t, X) instead of 
I (t, X, iX, A). Since X is a vector, I must be a vector 
also. Furthermore, I assume that the nature of the 
interaction of the individual system with the particular 
measurement apparatus can be represented by a 
separate factor which must involve t and A and that I 
is a polynomial function of the Xi' The second 
assumption is justified purely on grounds of mathe
matical simplicity while the first may be justified on 
both physical and mathematical grounds as follows. 
If we write 

I(t, X) = y(t)G(X), 

then yet) is the factor which describes the turning on 
of the measurement apparatus. It is the interaction 
term. yet) should involve neither the individual quanta 
nor the ensemble (i.e., neither the hidden variables 
nor the Xi) but should involve the observable A 
which is being measured, and the time t. It is assumed 
that, d~ring the measurement, yet) is large enough to 
allow X to be nonzero but that yet) is zero when no 
measurement is being made. Again, to simplify the 
notation, I write G(X) rather than G(X, iX, A). 

If a measurement theory is to be realistic, the Xi(t) 

should, in some sense, be irreversible. That is, during 
a measurement one of the Xi should always increase 
toward one while the rest decrease toward zero. The 
measured value of the observable being measured 
should not depend on when the experimenter turned 
off the apparatus, and results should be reproducible. 
Consequently, I will assume that the collapse process 
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is irreversible in that at least one of the Xi must be a 
monotonic i~creasing function of t. The following 
assumptions have been made so far. 

(1) I~ xi(t) = 1, Xi ~ 0 for all t. 
(2) The experiment has n distinct outcomes. 
(3) The collapse law satisfies : 

(i) X = J(t, X), where X = dXjdt; 
(ii)J(t, X) = y(t)G(X); 
(iii) G(X) is a polynomial function of the Xi' 

(4) The collapse is irreversible. . . 
(5) None of the Xi or hidden variables are dIstIn

guished by the form of the theory. 

As X changes during the measurement, it describes 
a path in Rn. Let the possible pat?s in R~, de~cribed 
by X(t), be called orbits. Ass~mptlOn (~).Imphe.s that 
the orbits lie in a hyperplane In the posItIve regIon of 
Rn. Call this finite hyperplane the probability plane. 
The combination of assumptions (2) and (4) implies 
that for each i it must be possible, for some initial 
conditions, that xlt) i 1 while Xj(t) ! 0 for all} ~ i 
as t i during a measurement. Given assumption (3), 
this means that the points of intersection of the 
coordinate axies with the probability plane, 

{(Xl"" ,Xn) I Xi = 1, Xj = 0 for all} ~ i, 
i=l,"',n}, 

must be asymptotically stable critical points of the 
system of differential equations.s Furthermore, by 
assumption (4), it is easy to see that the n(n - 1)/2 
straight lines between these n points must be orbits. 
Now., because the end points of these straight line 
orbits are stable points, there must be a point on each 
of these lines that is an unstable critical point. Finally, 
assumption (5) reflects the fact that physically none of 
the Xi or hidden variables are distinguished. Mathe
matically this assumption serves to limit the possible 
collapse equations. 

(0,0,1) 

(0,1,0) 

" 
FIG. 1. Bare probability plane, n = 3. 

" 

(0,0,1) 

(0,1,0) 

~----~--------~~-
or 

FiG. 2. A possible partition for n = 3. 

The necessary topological characteristics of the 
simplest possible flow field described by X = y(t)G(X) 
are difficult to envision in the general case. Hence, at 
this point, I will particularize the discussion to n = 3. 
The appropriate generalization to the higher dimension 
cases will become obvious after the following dis
cussion. Figure 1 is the probability plane for n = 3. 
I have let Xl = X, X2 = y, and Xa = z. The six critical 
points discussed above are shown. Assumptions (2), 
(3), and (4) imply that the probability plane must be 
partitioned, in this case, into three regions of asymp
totic stability. A possible partition, along with some 
possible orbits, is shown in Fig. 2. Since there is no 
reason to suppose otherwise, we can assume that the 
flow field is a continuous one with singularities but no 
holes. Now consider a simple closed curve jU&t inside 
the boundary of the probability plane. The index of 
the flow field on this curve is + 1 so that the interior 
of the probability plane contains at least one unstable 
critical point. By simplicity, assume that it contains 
exactly one. (The next simplest case would be the case 
of two unstable critical points, each of index + 1, and 
a s:a,ddle point of index _1. 9) Let the one unstable 
critical point be called P. 

The next question is: What is the simplest possible 
partition which will not conflict with assumptions 
(1)-(5)1 A "simple" partition should easily be 
described both geometrically and analytically, and 
should involve the smallest number of new parameters 
in its description. Consider Fig. 2. It is clear that we 
need two independent parameters to locate the point 
P. If the curves connecting P to CI , C2 , and Cs are 
not straight lines, we will need additional parameters 
to describe these curves. Furthermore, since the 
locations of C1 , C2 , and Ca are arbitrary at this point, 
we will need more than two independent new param
eters even if the boundaries of the three regions are 
straight lines, unless the points (1,0,0), (0, 1,0), 
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(0, 0, 1) and P serve to locate C1 , C2 , and C3 • Suppose 
this last condition is true and that the curves are 
straight lines. If P has coordinates (1/(/.1' 1/(/.2, I/(/.a), 
where 1/(/.1 + 1/(/.2 + I/(/.s = 1, let 

C1 = (0, K1/OC2, Kl/OCs), C2 = (K2/OCl' 0, K2/(/.s), 

Cs = (Ka/(/.I' KS/(/.2, 0), 
where 

K; = (/.;/«(/.; - 1), i = 1,2,3. 

More independent parameters would be needed only 
if there were an asymmetric treatment of x, y, or z. 
Consequently, two seems to be the smallest possible 
number of new parameters involved in the simplest 
partition if n = 3. The three regions of asymptotic 
stability, called R1 , R2 , and Ra, are given by the 
following sets: 

Rl = {(x,y, z) !OCIX) (/.2Y, (/.aZ, X + y + z = I}, 

R2 = {(x,y, z) IOC2Y) OCIX, (/.aZ, x + y + Z = I}, 

Ra = {(x,y, z) I(/.az) lXIX, (/.2Y, X + y + z = I}. 

The generalization of these regions is obvious. I now 
make assumption (6): 

(6) The ith region of asymptotic stability is given by 

R; = {eXl'···' Xn)llXiX;)(/.jXj, 

j = 1, ... , i - 1, i + 1, ... , n, ~ Xi = 1}, 

where i = I, ... , n. It is clear that these regions form 
an open partition of the probability plane and 
furthermore that the boundaries are straight line 
orbits. 

Definition: A collapse equation is said to be simple 
if it leads to no conflicts with assumptions (1)-(6). 

The relationship between the ensemble and the 
individual must be dealt with again at this point. The 
hidden variables must at least individualize the quanta, 
explain the outcomes of the individual measurements 
in a causal fashion, and explain the statistics of the 
ensemble. If the hidden variables are 1/(/.i' i = 
I, ... ,n, then by assumption (6) they serve to 
partition the probability plane into n regions of 
asymptotic stability. This really means that G depends 
on «(/.1, ... , (/.n) as well as on (Xl' ... , Xn) as noted 
earlier. In this sense G is a family of transformations. 
Each individual quanta, characterized at time to by 
the ensemble state X(to), will ultimately end up in the 
state ei , where {ei}~ is the standard basis in Rn, if 
and only if X(to) E R;. Each individual starts out 

represented by the same point in the probability plane, 
X(to) , but due to the fact that the partition may be 
different for each individual, that is, for each choice 
of «(/.1,···, IXn,) the individuals belong to various 
regions of asymptotic stability. To explain the 
quantum statistics, we must require: 

(7) The standard measure of the part of the hidden 
variable space corresponding to the fth outcome, 
normalized by the standard measure of the entire 
hidden variable space, must equal Xi(tO). 

The choice of the standard measure on the hidden 
variable space is made in accordance with assumption 
(5) and for reasons of simplicity. 

It should be noted that assumptions (1), (2), (4), 
and (5) are rather minimal conditions concerning 
quantum mechanics and measurement, and are quite 
general. These should be easy to accept. Assumptions 
(3) and (6) are related and are also easy to accept 
provided that one believes that physical processes can 
be described by differential equations. Acceptance of 
assumption (7) depends on what one expects of a 
hidden variable theory. The term "hidden variable 
theory" means different things to different people, of 
course. By a hidden variable theory I will mean a 
theory which at least does not conflict with assump
tions (1)-(7). 

I will now derive the precise form of what I believe 
is the simplest collapse equation. The problem 
essentially is to determine the lowest possible degree of 
G(X) and the corresponding coefficients. 

Theorem 1: Given assumptions (1)-(4), G(X) must 
be nonlinear. 

Proof" The n stable critical points in Rn are just the 
standard basis vectors in Rn, e1 , ••• , en. Suppose G 
is linear; then, since G(e;) = 0 for i = 1, ... , n, we 
have G(X) == o. 

The standard form of nonrelativistic quantum 
mechanics is a linear theory. It is simply postulated 
that while the system is not subjected to any obser
vation the linear superposition of states is preserved 
in the course of time. lo.n In other words, the evolution 
operator must be linear if no measurement is involved. 
Consequently, we should expect that the idea of 
measurement is closely tied with nonlinearity as shown 
by Theorem 1. ~ nonlinear theory of measurement 
will not violate the presently held superposition 
principle since this principle is only required to hold 
while no single observations are being made. 
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Although the nonlinearity of G is a rather obvious 
consequence of the requirement of dynamic stability, 
few physicists seem to have realized this. Many theories 
of measurement proceed as follows. It is assumed that 
the apparatus can be described by a wavefunction 10) 
and the system by another wavefunction Is). Assume 
further that there is a finite orthonormal basis in each 
space, and suppose that the total situation is repre
sented by a vector in the tensor product space. Then 
the measurement process is characterized by a unitary 
operator which carries lao) Isll ) -+ lOll) Isll ) and has the 
form exp (-iHt/Ii), where H is the Hermitian inter
action Hamiltonian. Now it should be noted that, 
even though theorem one was proven for the state 
vector of the quanta, it can be applied to the state 
vector of the apparatus if one chooses to describe a 
measurement as a change in the latter rather than the 
former. Assumptions (1)-(4) apply to the apparatus 
state. Theorem 1 then says that such a linear operator 
as exp (-iHI/Ii) cannot describe the desired stability 
of the outcomes. Generally it is not realized that such 
theories cannot work because the actual construction 
of H is not attempted. Furthermore, no one has ever 
written down an actual lao) or lOll)' Such explanations 
of the measurement process serve only to assure one 
that the standard interpretation of quantum mechanics 
is sufficient and that there is nothing really mysterious 
or 'nonquantum mechanical about measurement. We 
are led to believe that measurement is just compli
cated, since macrosystems are involved, but basically 
understandable within the framework of the present 
theory. I think Theorem 1 shows this belief to be a 
false one. Requiring the operator which characterizes 
the measurement to be unitary is too much. We need 
only require [assumption (1)] that it be norm pre
serving. (A unitary operator is a norm preserving 
linear operator.) 

In the n-dimensional case the Schrodinger equation 
is iii let) = H lIP), and the associated equation for the 
evolution operator is iIiO(/, (0) = HU(t, (0)' where 
IIP(t) = U(t, to)I9?(to». Here U(t, to) is a linear 
transformation from en to en. Also U(s, to) = 
U(s, t)U(I, to), where the product is simply matrix 
multiplication. This is called the group property. If 
H is Hermitian, then U(t, to) is unitary, and hence 
preserves the probability sum 2~ Xi = 1. Now, if the 
collapse equation has the form X = y(t)G(X), then 
the associated equation for the evolution operator is 
F(t, to) = y(t)G 0 F(t, to), where X(t) = F(I, to) X 

[X(to)J. If G is nonlinear, then F(t, to) must be non
linear also and, if we require that solutions to the 
collapse equation be unique, by requiring y(t)G(X) 
to be continuous, bounded, and Lipschitzian12 in 

some appropriate region of Rn+l, then F(t, to) will 
possess the group property, with composition replacing 
matrix multiplication. That is, F(s, (0) = F(s, t) 0 

F(t, (0)' The collapse process could be thought of 
algebraically as well as analytically. 

Theorem 2: Given assumptions (1)-(4), the degree of 
G(X) is greater than or equal to 3. 

Proof' By assumption (4) the line given by Xi + 
Xj = 1 is an orbit. X -+ ei near ei and X -+ ej near ej; 
therefore, there exists at least one saddle point on 
Xi + Xj = 1 between ei and ej. On the line, G(X) = 
G(Xi)' Hence each component of G has at least three 
zeros on Xi + Xj = 1. Therefore, G(X) is at least 
cubic. 

Theorem 3: Given assumptions (1)-(7), the degree 
of G(X) is equal to 3. 

Proof: If the hidden variables are to describe the 
ensemble statistically, then the position of P must be 
allowed to vary randomly corresponding to the 
random collection of individuals. The monotonicity 
involved in assumption (4) implies that the straight 
line between P and ei given by OCjXj = Ki(l - Xi), for 
all j =;6 i, is an orbit. Now, on this line G can be written 
as a function of Xi only, and it is equal to zero at the 
three points Xi = I/oci , I, O. Since this line must be 
allowed to sweep out the entire probability plane, G 
must be cubic everywhere in the probability plane. 
G should be thought of as a family of transformations 
indexed by (ocl , ... , ocn). As a family, G is cubic. 

The next thing to consider is the explicit form of 
G(X), together with its possible uniqueness. Again, I 
will do the derivation for the n = 3 case and then 
generalize. The simplest partition of the probability 
plane is pictured in Fig. 3. Consider the following 
theorem. 

(0,0,1) 

FIG. 3. The simplest partition for n = 3. P is the point (1/(1,1' 
1/(1,2' 1/(1,.). 
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Theorem 4: Given assumptions (1)-(7), the collapse 
equation, in the n = 3 case, is unique up to a multi
plication factor. 

Proof: Since x + y + z = I for all t, it is enough 
to consider x = yG1(x, y) and y = yG2(x, y), where, 
by Theorem 3, G1 and G2 are cubic. Let 

GI(x, y) ::: 00 + a1x + allY + aax2 + 04XY + a5y2 

+ as.x3 + a7x2y + osxy2 + a9r, 
G2(x,y) = bo + bly + bax + bay2 + b4xy + b5x2 

+ b6r + b7y 2X + hsyx2 + bsr. 

... The lines y + z = 1 and x + z = 1 are orbits, so that 
G1(0,y) == O:::? ao = O 2 = a5 = a9 = 0 and G2(x, 0) == 
o :::? bo = b2 = br. = bl} = O. The line OCIX = oclly is 
also an orbit so that OCIGt(X, OCIX/(/.2) == OC2G2(X, (/.lX!(/.,) 
or (01 - h1)x + higher order terms == O. Therefore, 
a1 = b1 • 

Now G2 = Oat (0, K1/(/.2' K1!OCa) and (0,1, 0) implies 

hI + h3 + h8 = 0, (1) 

hI + baKl/OCa + ho(K1/OC2)2 = 0, (2) 

while G1 = 0 at (K2/(/.I' 0, K 2/(/.a) and (1,0,0) implies 

01 + Os + 0 6 = 0, (3) 

a1 + aaK2/(/.1 + a6(K2/ocl)2 = 0, (4) 

G1 = G2 = 0 at (1/OC1> 1/(/.2, 1/fX3) 

0 1 0 0 0 0 

0 (Kt / rx t)2 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 KI/rx, 0 

1M l/rx l rx, l/rx~ l/rx:rx3 l/rxIOt~ 0 0 

K8frx~ Ka/rxlrx 'l. K:M K:10t~rx2 K:/rx1rx: 0 0 

0 0 0 0 0 1M l/rx2rx l 

0 1 0 0 -2 1 

1 -1 0 1 -2 -1 

0 0 -1 0 0 

A particular solution to this nonhomogenous linear 
system of equation is 

- (2 + ocl/iXa) 
-2 

1 + (/.l/OCS 

2 

1 + a2/as 

-(2 + (/.2/(/.3) 

-2 

so that 

al/(/.1 + aa/a.~ + a4!(a.1f'J.2) + a6/oc~ 
+ a7J(a.~f'J.2) + a8J(ocl~) = 0, (5) 

b1/OC2 + b3/oc; + b4/(OC2(/.1) + b6foc~ 
+ b71«(/.~a.I) + bs/(ocll(/.D = 0, (6) 

G1 = 0 at (KS/OCl' KS/OC2, 0) 
so thai 

a1/oc1 + a3K3!11.~ + a,Ka/(a.l I1.2) + a6K:Ia.~ 
+ a7Ki/(oc~a.2) + aSK;/(a.l(/.i) = O. (7) 

The line x + y = 1 is an orbit so Gl(x, 1 - x) + 
G2(x, 1 - x) == O. 'This gives 

hI + ba + be = 0 (which is not new), 

(8) 

03 - a, + a1 - 2a8 + hs - b4 + 3b6 - 2b7 + hs = 0, 
(9) 

a6 - a7 + as - be + b7 - bs = O. (10) 

Now change variables. Let Am = am/al and Bm = 
bmlal' m = I, 3, 4, 6, 7, 8. (Recall that al = hI') We 
then have ten independent conditions and ten un
knowns. Writing equations (1)-(10) in matrix form, 
we have 

0 0 0 

0 0 0 

0 0 

(KI/rx2? 0 0 A, i -1 

0 0 '0 As 
I 
. -1/rxl 

I = 
0 0 0 Ba ' -1/Otl 

J/Il: l/ot:rxt l/rxlloti .. 

-3 1 0 

3 -2 
-1 

Now v" is unique if and only if the row vectors of 
the matrix are linearly independent. By inspection, one 
can see, without too much difficulty, that no row is a 
linear combination of the preceding. Hence the rows 
are independent and vp is unique. 

Initially we had twenty unknowns. Eight are 
necessarily zero, two are equal and arbitrary, while 
the other ten are uniquely determined. Substituting 
the above values for ai and bi , i = 0, ... , 9, into the 
expressions for G1 and G2 gives 

GI(x, y) = -(atx!a.3)[y(OCIX - OC2Y) + Z(OCIX - ocaz)], 
(11) 

G2(x,y) = -(alY/l1.a)[X«(/.llY - OCIX) + z(ocllY - ocaz)1· 
(12) 
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It is easy to see, from Eqs. (11) and (12), that 

so that the conditions which would be imposed by 
setting the coefficients of the x, X2, and .x3 terms 
equal to zero are automatically met. Furthermore, 
these coefficients do not involve al so that it is still 
left arbitrary. Finally, it is also easy to see that 
CX:1X = cx:3z and cx:2y = cx:3z will automatically be orbits 
and that the corresponding equations will not deter
mine al either. 

Corollary: If n = 3 and J(t, X) is a cubic poly
nomial in the Xi' then J( t, X) is necessarily separable 
in t. 

Proo/' Consider h(/, X) to be given by G;(x,y), 
i = 1,2, where the coefficients ao, ... , a9 , bo, ... , b9 

are functions of t. The argument leading to Eqs. (II) 
and (12) goes through as before and all of the nonzero 
coefficients are proportional to al(t); hence J(t, X) 
is separable in I. 

If one starts with G2(x, z) and Gs(x, z), then the 
coefficient corresponding to al/a.a would be alia., but, 
by assumption (5), the final result would have to be 
the same. Hence we can assume a l is proportional to 
a.3 • If y is assumed to be positive, then we must take 
a l = -Ka.s with K> ° since near (1,0,0) we must 
have x > 0. A natural choice for K is K = 2 because 
K is then eliminated from the equation for ¢i' This 
choice turns the collapse equation into the one given 
by 'Bohm and Bub. 

The obvious generalization of Eqs. (11) and (12) 
(with a l = -2a.n) is 

n 

.f; = 2yx; 2 Xk(IX;X; - a.kXk), i = 1, ... , n. 
k=l 

These are just the Bohm-Bub equations. Conse
quently, the following theorem has been proven: 

Theorem 5: The simplest collapse equations are 
those given by Bohm and Bub. 

Theorem 5 is more general than it seems. It has 
been proven assuming the regions of asymptotic 
stability are given by the R;. More general regions are 
homeomorphically equivalent to these (i.e., con
tinuously deformable into the R i ) so that more 
general collapse equations must reduce to the Bohm
Bub equations under an invertable change of variable. 
Hence the Bohm-Bub equations are the simplest in a 
very general sense. 

Though assumption (7) has gone into the proof of 
Theorem 4, it is not obvious how the hidden variables 
are related to the statistics. If the hidden variables 
are 1/a. i , i = 1, ... , n, then the condition 2~ l/oc; = 
1 means that they form a plane isomorphic to the 
probability plane. Call this plane the hidden variable 
plane. The partition used in the probability plane 
induces a corresponding partition on the hidden 
variable plane given by 

.k = {(! ... l) I !.. < xlto) 
, a.l ' , CX:

n 
CX:; [cx:jxlto)] , 

j = 1, ... , i - 1, i + 1, ... , n, i l = 1}. 
1 CX:; 

Now the area of Ai is the standard measure of the 
part of the hidden variable space corresponding to 
the ith outcome. When this area is normalized by the 
area of the entire hidden variable plane, it is equal to 
xJto) as required by assumption seven,13 In other 
words, the partition given by the R; induces a partition 
of the hidden variable space which implies the usual 
statistical results if the distribution of the hidden 
variables is the simplest one possible. 

For example, consider the n = 3 case. In Fig. 4 we 
have the probability plane where P is chosen so that 
(x (to) , y(to) , z(to» -+ (1,0,0). It is clear that if P is any 
point in the shaded triangle labeled AI, then (1, 0, 0) 
will be the outcome. Now it is easy to see that the 
area of Al is proportional to x(to), the area of A2 is 
proportional to y(to), and the area of As is proportional 
to z(to). By assumption (5) the constant of pro
portionality must be the same in each case. Call it S. 
Then x(to) + y(to) + z(to) = 1 => Al + A2 + As = 
S so that S is just the total area of the probability 
plane, h/3. Hence AIlS = x(to), A 2/S = y(to), and 
As/S = z(to), as desired. 

FIG. 4. The hidden variable plane superimposed on the probability 
plane. 
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It should be noted that there are a few mathe
matical restrictions imposed on the hidden variables 
by assumptions (1)-(7) but that the physical interpre
tation of these variables is rather arbitrary at this 
point. In order that the condition of irreversibility is 
met, we must assume that the hidden variables are 
constant at least during the measurement. If we are 
to use the simplest theory, that is, where there is only 
one point of unstable equilibrium in the interior of the 
probability plane, then there must be n hidden 
variables and they must satisfy the normalization 
condition. Furthermore, since the probability plane 
lies in the first quadrant, the hidden variables must all 
be positive. Possible physical interpretations of these 
new variables will be discussed in future papers. 

CONCLUSIONS 

It is clear that if the collapse process in quantum 
mechanics is to be described by differential equations, 
then the form of these equations is quite well deter
mined by very general considerations. The description 
of the collapse leads, in a general and natural way, to 
the necessary introduction of new variables, at present 
hidden from observation. These new variables must be 
given a physical interpretation before their existence 
can be tested by experiments. 
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Ily(t)G(X1) - y(t)G(X2)1i S C IIX1 - Xzll· 

13 This fact is demonstrated in Ref. 4, p. 1124. 
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Connectivity of products of many-particle operators is investigated. Connected products of compact 
and Hilbert-Schmidt operators are in the same class as their factors. However, even in the simplest 
case of rank-one many-particle factors, the connected products are not necessarily in the trace class, 
but simple sufficiency conditions are established. 

INTRODUCTION 

Connectivity of a product of operators is mainly 
a concept of the nonrelativistic quantum theory of 
many-body systems. It has appeared in the equations 
proposed for their study, such as those of Weinberg,1 
or in the analysis of their iterations, as is done, for 
instance, in Ref. 2 for those of Faddeev and Yaku
bovsky. In the Dirac bra and ket formalism, many
particle operators such as potentials, transition 
amplitudes, or Green's functions for subsystems are 
expressed as singular kernels involving Dirac measures 
associated with noninteracting particles or conserved 
quantities; a product of such operators is said to be 
connected if its kernel does not contain any 0 functions 
except those associated with dynamical variables of 
the center of mass of the system. It is then often· 
conjectured and sometimes proved (see, for example, 
Refs. 1 and 3) that such a product inherits some 
properties of its factors such as compactness and 
analyticity. Our aim is to supply the basis of this hope 
by studying connected products of compact, Hilbert
Schmidt, and trace-class operators in a more general 
context. The theorems concerning Hilbert-Schmidt 
and compact operators are shown to be true (Theorem 
5). For trace-class operators, explicit counter
examples show that even in the simplest case of rank
one factors the connected product is not necessarily 
a trace-class operator; however, rather simple suffi
cient conditions can be found ensuring that it is 
(Theorem 6). 

We shall use for this study the so-called "twisted
convolution" formalism, which has been introduced4 

for the description of the free boson field; its particu
lar relevance for systems with a finite number of 
degrees of freedom has been stressed in Refs. 5 and 6. 
This formalism does not depend on any particular 
representation of canonical commutation relations. 
It associates a tempered distribution on phase space 
with any bounded linear operator on the irreducible 
representation space of the system. Various simple 
analytic characterizations of classes of distributions 
associated with ideals of compact operators or with 
dense subsets of them are given in Refs. 5 and 6; this 

is, in fact, one of our main reasons for choosing this 
framework described in Sec. 1 rather than the kernel 
formalism, where apparently the knowledge of such 
analytic features is rather poor. Section 2 contains 
elementary results of sympletic geometry needed for 
later computations. In Secs. 3 and 4 we first state our 
theorems in their most general form. In Sec. 5 we 
return to the usual framework of quantum mechanics 
and apply the results to some common situations 
found, for example, in the study of the Weinberg 
equations7,3 or in a time-dependent treatment of 
multichannel scattering.s We do not know whether 
a possible version of results of Secs. 3 and 4 in the 
Fock representation of a free boson field presents 
some physical interest, and we shall not state it here. 

1. THE TWISTED CONVOLUTION 
FORMALISM 

All results of this section are derived from theorems 
stated in Refs. 4-6. Let E be an Euclidean 2n-dimen
sional vector space. Let a be a regular, bilinear, and 
anti symmetric (in short, symplectic) form on E. Let 
F be a 2p-dimensional, p ~ n, subspace of E. It will 
be said to be regular if, for each 1] in F, there exists an 
1]' in Fsuch that a(1], 1]') = 1. IfF' is the a-orthogonal 
complement of F, that is, the regular subspace of E 
consisting of vectors 1] with a(1], F) = 0, then E can 
be decomposed in a direct sum 

E = F IJ)" F'. (1) 

We shall again denote by a the restriction of a to F 
or F'. Let JeF be an irreducible representation space 
of the canonical commutation relations on F '{in 
short, CCR's on (F, a)]: 

't1F (1])'t1F {'YJ') = e -iu(M')'t1F (1] + 1]'), 1],1]' E F, (2) 

where 't1F ( 1]) is a unitary operator on JeF . Up to a 
unitary equivalence, this representation is unique.4 

Let us consider then the *-algebra :F(F) of bounded 
finite-rank operators on JeF and the *-algebra :F(F, a) 
of complex-valued functions on F consisting of the 

cp(A)(1]) =jall Tr [A't1F(1])], A E :F(JeF ), 

-1 n dim F 
aF = --

2 
(3) 

1719 
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with 

Tr(A) = I (h:1 A Ih!), (4) 
n 

(h!') being an orthonormal basis in JeF . 

In particular, if A is a rank-one projection operator 
Ih)(hl, hE JeF , then 

91Ih)(h/(17) = aF1(hl 'lLF(17) Ih). 

The algebraic law on :F(F, a) is given by 

91*( 17) = if( - 17), (5) 

where the bar stands for complex conjugation, and 

(911 x 912)(17) = Le-i<1(~'~)911(17 - ~)912(~) d~, (6) 

where d~ is the Lebesgue measure on F. One has then 

91(.04.)·('1) = 91(.04.·)(17), (7) 

where A * is the adjoint of A, 

(91(.04. 1 ) X 91(.04. 2»(17) = 91(.04.1.04.2 )(17). (8) 

Property (8) results from the orthogonality relations 
satisfied by the coefficients Wk.II(17) = (hi 'lLF(17) Ig), 
h, g E JeF , of the representation 'lLF (Ref. 5): 

LWh.II(17)Wh,.II'(17) d17 = aF(h I h')(g I g'). (9) 

Then the correspondence between :F(F) and :F(F, a) 
is a *-isomorphism. Furthermore, (9) indicates that 
:F(F, a) consists of square-integrable functions on F 
and that the relation 

I/91w lll' = I/AI/JeS(F) (10) 
holds, where 

II 9111 [ = (aF f) 91(17)1
2 

d17t (11) 

and the Hilbert-Schmidt norm IIAI/Jes(F) is given by 

(12) 
n 

(h!') being an orthonormal basis in JeF . 

In fact, the above isomorphism can be extended as 
follows5 : 

Theorem 1: The closure of :F(F, a) with respect to 
the norm (11) is a Banach *-algebra L2(F, a) consist
ing of the space of square-integrable functions on F 
equipped with the involution (5) and the product law 
(6). There exists a *-isomorphism IIF from £2(F, a) 
to the algebra JeS(F) of Hilbert-Schmidt operators 
on Je F, and one has 

IIF is given on the dense sub-*-algebra J\,(F, a) of 
£2(F, a), consisting of infinitely differentiable func
tions on F with compact support, by 

ITF( 91) = L91(17)'lLF(17) d17· (14) 

The inverse of ITF is given on :F(F) by (3). 

By the well-known fact that the algebra b(F) of 
trace-class operators on JeF consists of products of 
two Hilbert-Schmidt, ITF is also a *-isomorphism 
between the algebra of square-integrable functions of 
the form 911 X 912' with 911, 912 E £2(F, a), and b(F). 
Owing to (3), one has 

Tr [IT F( 911 X 912)] = aF( 911 X 912)(0); (15) 

With the norm II 1/1)(F) induced by b(F), this set 
of functions is a Banach *-algebra denoted by b(F, a); 
the elements of b(F, a) which can be written as 
<l> = 91 X 91*, 91 E £2(F, a) are called a-positive
type functions on F. Their image by IT F is positive 
trace-class operators. For any set (ci ) of complex 
constants and any set (17i) of vectors in Fi , they satisfy 
the relation 

Conversely, any continuous function having this 
property is a a-positive-type function. The set of a
positive-type functions on F with aF<l>(O) = 1 con
stitutes a closed convex subset in b(F, a) whose 
extremal points consist of the functions 91Ih)(h l, h E JeF • 

The functions 91 1h)(111 will be said to be elementary; 
each element <l> in b(F, a) admits a "spectral decom
position" into a sum of elementary functions which 
corresponds to the spectral decomposition of ITF(<l». 

A remarkable fact proved in Ref. 6 is the dense 
topological inclusion of S(F, a) in b(F, a), the 
algebra of Schwartz's test functions on F. As a result, 
the dual space ofb(F, a) is a Banach space of tempered 
distributions on F. Then, from the fact that the dual 
space ofb(JeF ) is $(JeF ), the von Neumann algebra of 
bounded operators on JeF , this Banach space turns 
out to be an abstract von Neumann algebra whose 
elements are the tempered distributions 

d(.o4.)(<l» = aFl Tr [AITF(<l»], <l> Eb(F, a), A E B(F). 

The algebraic law on b'(F, 0) is defined by 

d(.o4.)· = d(.o4.·~, 
d(.o4.) X d(B) = d(.o4.B). 

(5') 

(6') 

The absolute value and the square root of a distribu
tion in b'(F, a) are defined by Id(.o4.)1 = d(lAi) and 
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Idtdll! = d(\AI!). Owing to Theorem 1 and (14), one 
has d(I1p(tp» = cp, if cp E £2(F, 0'). Hence 'b'(F,a) 
contains £2(F, 0') as a weakly dense sub-*-algebra on 
which (6') coincides with (6), so that we shall again 
denote by IIF the representation of 'b'(F,a) as 
$(JeF). From d('tL(II»(<I» = <1>('1]), <I> E S(F, 0'), it 
results that d(U,p(II» = bF'I], the Dirac measure on F 
concentrated at '1], and from (2) and (6) that 

(bF'I] X cp)(~) = e-i"(II.slcp(~ - '1]), cp E [J(F, 0'). (16) 

The norm on 'b'(F, 0') is defined by 

IliAlIIF = sup ITr [AIIF(<I»]I . 
O»e1J(F.O"l 1I<I>II1JIF) 

Since 'b(F, 0') consists of bounded continuous func
tions and aF 1<1>(0)1 ~ 1I<I>1I1J(F)' it can be shown that 
the algebra [for the product law (6)] of absolutely 
integrable functions on F is contained in 'b' (F, 0') and 
that its closure with respect to the above norm is a 
C*-algebra C(F, 0') mapped by II F onto the compact 
operators on JeF • 

Let us now consider the irreducible representation 
cu,F ® cu,F' of CCR's on (E,a) in JeE = JeF ® JeF, 
and the representation IIE of 'b'(E, 0') in this space. 
We define II?)(dF) = IIF(dF) ® [;rep" dF E 'b'(F, 0'), 
and D'l) = II:1ilII}f'. Since 'b(JeE) contains product 
operators IIF(<I>F) ® IIF,(<I>F')' <l>F E'b(F, 0'), and 
<I> F' E 'b(F', 0'), as a total set, the mapping D<J') can 
be shown to be simply the natural extension to E 
of distributions in 'b'(F, 0') obtained by taking their 
tensor product with br. In fact, DIj)('b'(F,a» 
consists of all distributions in 'b'(E,O') having the 
form of a tensor product dF ® br, where dF has 
support in F. Hence all the mappings D'll, when F 
varies over all regular subspaces of E, are compatible 
in the sense that if dF1 and dF • denote the extensions 
to Fl and F2 of some distribution in 'b' (Fl n F2 , 0') 
(this is an equivalence relation), then D'll)(dF,) = 
Dlj'a)(dF.); we shall then write DE (d) to denote the 
extension to E of a member d of an equivalence class. 
As a result, if d and d' have supports contained in 
a-orthogonal regular subspaces of E, then the product 
DE (d) x DE(d') is commutative. As a simple example 
of a possible explicit calculation of a twisted convolu
tion product of two distributions in 1:)'(E,a), we 
consider two elementary functions on the regular 
subspaces F and F', respectively. Then, owing to (3), 
(6'), and definition of D!:), we have 

DE(cplhl(h l) x DE(cp1h')(h'l) = cpIM8W)(M9h'l 

= cp1h)(hl . cplh')(h'l. 

By linearity and continuity we also get this product 
form for arbitrary distributions in 'b'(F,a) and 
b'(F',a). 

2. CONNECTED REGULAR SUBSPACES OF E; 
GEOMETRICAL STUDY 

Let Fl and F2 be regular subspaces of E. We shall 
say that the pair (Fl' F2) is E-connected if E is 
spanned by linear combinations of elements of this 
pair; in general, E is not a direct sum like (2). Let 
D = Fl n F2 , which is regular if nonreduced to 
zero; let us denE>te by P F the projection operator on 
the regular subspace F along the a-orthogonal 
complement F' of FIn E. We consider then the linear 
operators on E, 

M; = PFlF• - PD , 

M~, = PFlPFi e" D, 

(17) 

(18) 

where Fi e" D is the a-orthogonal complement of D 
in F i • The linear operators M~ and M~, can be con
sidered as some of the matrix elements of the trans
formation which give the components '1]2 and '1]2', 
along F2 e D of a vector 'I] E E, as linear functions of 
its components '1]1 and '1]1' along Fl e D and F~. All 
results stated in the following lemmas remain valid by 
exchanging indices 1 and 2. 

Lemma 1: Let the pair (Fl' F2) be connected. Then 
M~, is a bijective linear map from Fl e" D on F~. 

Proof: If '1]2' E F~, there exists a ~ in E with 
0'('1]2" ~) = 1. Let us write ~ = ~l + ~2' where 
~l E Fl E?O" D and ~2 E F2 • This is allowed by the E
connectedness of (Fl' F2); then 0'('1]2" ~l) = 1. On 
the other hand, one has ~l = M~~l + M~'~l' so that 
a(1}2', M~'~l) = 1. This implies on the one hand tha.t 
the range of M~, in F~ is regular and on the other hand 
that its a-orthogonal complement is empty; hence 
this range is all ofF~: NOV\l\/by the relation 

we have dim (F'J.e" D) = dim F~, so that M~, is 
bijective. 

Let us now define the following linear transforma
tions on E for i -:/:j: 

wHere M~: = P F;'P FJ' ' 
(19) 



                                                                                                                                    

1722 J. M. COMBES 

Lemma 2: .ALr is a bijective linear map from F{ to 
F 2 8" D. 

Proof' Since .ALr = (Mi + Mi,).ALL a simple 
calculation shows that 

l' l' iT .AL2 = -.ALI EEl PFl ,. (21) 

The operators on the right of (21) have a-orthogonal 
ranges so that Ar 'YJl' = ° if and only if 'YJl' = 0, 
'YJi' E F{. Since, on the other hand, F{ and F2 8" D 
have the same dimension, the lemma is proved. 

We shall denote by K; the kernel of AL (i,j) = 
(I, 2). Owing to definition (19), one has K; = F/ (') Fi 
and also the following. 

Lemma 3: Kl is the a-orthogonal complement in 
F1 8 D of the range of .ALr, 

The proof results easily from (21). 

Finally, one has the following decomposition of E: 

E = D EEl" K1 EEl" K2 EEl" C(Fl' F2)' (22) 

C(Fl , F2) reduces all operators defined above, and 
these have bijective restrictions to C(F1' F2)' If D, 
Ki , and K2 are empty, we shall say that (Fl' F2) is an 
irreducible E-connected pair. 

We shall say that a linear mapping S between two 
subspaces is a-symplectic, if it is bijective and satisfies 
a(S'YJ, S$) = 0'('1'}, $). We observe that the inverse ofa 
a-symplectic transformation also is a-symplectic. 

Lemma 4: Let (F1' F2) be an irreducible E-connected 
pair. Let a be another symplectic form on E obtained 
from 0' by a = - 0' on F1> a = 0' on F{, and 
a(Fl , FD = 0. Let si, and S;, be two symplectic 
mappings from Fl to F; and F2 to F{, respectively. 
Then the linear mappings on Fl and F{, respectively 
defined by 

Sl'YJ1 = ArS~''YJl + S~,.AL~' S~''YJl' 'YJl E F1, (23) 

S~'YJl' = Ar1'Jl' + Si,Ai''YJl'' 'YJl' E F{, (24) 

are a-symplectic. Their ranges are subspaces HI and 
H{ , regular with respect to a and a-orthogonal to each 
other. They satisfy HI EEl~ H{ = E. Furthermore, 
(Fl' HI), (F1' H{), (F{, HI)' and (F{, HD are irre
ducible E-connected pairs. 

Proof' Simple calculations using (20) lead to the 
three first assertions. Let us prove that HI EEl" H{ = E; 
for this, we show, for instance, that F{ c HI EEl" H{ . 
Let 'YJ1 E F1 and 'YJ1' = (MD-lSi''YJl' Then addition 

of (22) and (23) yields 

Sl'YJl + S{'YJl' = Si,MrcMD-lsi''YJl' 

Since the operator on the right of this equality is a 
bijective mapping from Fl to F{, we obtain the 
desired inclusion. One can find in the same way that 
Fl c HI EEl" H{ , which completes this result. 

As to the last assertion, it is an immediate conse
quence of the fact that each of the operators involved 
in definitions (23) and (24) is bijective. 

3. CONNECTED PRODUCTS OF DISTRIBUTIONS 
IN L2(F, a) AND C(F, a) 

We shall say that a product of distributions on E 
is connected if it_has the form DE(fPl) X DE(fP2), 
where fPi E 'D'(F;, 0') and (Fl' F2) is E-connected. 

Theorem 2: Let (Fl , F2) be an E-connected pair and 
DE( fPl) and DE( fP2) be two distributions concentrated 
on Fl and F2 , respectively, whose restrictions to their 
associated subspace are square-integrable functions 
fP1 and fP2' Then the twisted convolution product 
DE( fPl) X DE( fP2) is a square-integrable function on 
E, and one has 

II DE( fPl) X DE( fP2)11¥ 

~ (aFlaF2r
1aE(det Mn!(det M~,rl IIfPlllfl IlfP211f2, 

(25) 

where the equality holds if D = Fl (') F2 is empty. 

Proof' Let 'YJ = (rJi' 'l'}i" 'l'}n) be the decomposition 
of rJ along the a-orthogonal subspaces Fi 8" D, F; , 
and D. Then one has 

[DE(fPl) X DE(fP2)](rJ) 

= Jexp {-i[a(rJl' $1) + a('YJl' , $d + a(rJn, $n)]} 

X fPlrJl - $1; rJn - $n) 

X b["('YJl' - $1,)b[2'($2')fPl$2; ~n) d$1 d$l' d$n' 

If we define, together with M~ and Mi" the opera
tors Mr = PF ,PF , and Mi' = PF PF " we get the 
transformation2for~ulas 2 1 

$2 = M~$l + Mr$I" $~ = Mi,$l + Mr$I' 

whence 

[D E( fPl) X DE( fP2)](rJ) 

= f exp [- ia('YJn, $n)] exp [- ia('YJl' $1)] 

X fPrC'YJl - ~1; 'YJD - ~D)b(Mi'~l + Mi;~I') 
X fP2(Mi~1 + M~''YJl'; ~D) d$l d$D' 
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Now by Lemma 1, M~, can be inverted so that the 
change of variable ~1 --+ M~'~1 gives 

[DE (IPI) x DE (IP2)1(17) 

= (det M~,)-1 exp [- iO'(171, .;\(,r17d1 

x f exp [- iO'(17D, ~D)1 

X IPI(171 + .A(,r171; 1'/D - ~D)' IP2(.A(,~'1'/I'; ~D) d~D' 
(26) 

In order to estimate the L 2-norm of this function, we 
remember that square-integrable functions on D 
form a Banach *-algebra for the twisted convolution 
product. Hence 

fl [DE (IPI) X D E (IP2)](1'/)1
2 

d'rJ 

~ (det M~,r2(aD)-2 

X d1'/1 d1'/dll IPI( "PI + .;\(,1 "PI'; ')112 ] f l' D 2 

X [II rp2(.;\(,r "PI'; .) II f]2. 

Another change of variable 171' --+ .;\(,r 1'/1" which is 
allowed by Lemma 2, together with (11) gives (25). 

Corollary 1: Let rpl E (:(F1 , 0') and rp2 E C(F2 , 0'). 
If (F1 , F2) is an E-connected pair, then DE ( rpl) X 

DE (rp2) is in C(E, 0'), and one has 

IIDE (IP1) x DE (rp2)II E ~ IIIP111Fl Ilrp211 F2. (27) 

Proof: It results immediately from the norm 
density of V(F, 0') into C(F, 0') and from Theorem 2. 
As to (26), it is a consequence of the isometry of DE 
and of 

4. CONNECTED PRODUCT OF DISTRIBUTIONS 
IN li(F,O') 

One could hope at the sight of the preceding results 
that if (F1 , F2) is an E-connected pair and rpi E 

b(Fi,O'), i = 1,2, then DE(IPI) x DE(rp2) Eb(E, 0'). 
This is, unfortunately, not the case, as we shall see, 
in the simplest situation, where IPI and rp2 are ele
mentary O'-positive-type functions on Fl and F2 , 

respectively. Our counterexample is based on the 
fact that elementary O'-positive-type functions on Fare 
not necessarily absolutely integrable on F,' a fact 
stated in Ref. 6 of Ref. 6. It will be possible, however, 
to get sufficient conditions ensuring that a connected 
product of O'-positive-type functions is in beE, 0'). 

We begin with some auxiliary results. 

Lemma 5: Let a be a symplectic form on E and Fa 

subspace of E regular with respect to ii. Let cfLF 

(resp. 91F ,) be an irreducible representation of CCR's 
on (F, a) [resp. (F', a)1 in a Hilbert space :reF (resp. 

:reF')' Let 'U,E = %F ® 91F, be the irreducible 
representation of CCR's on (E, a) in :reE = :reF ® 
:reF" Let rp1h)(h l ( 1'/), 1'/ E E, h E :reE , be an elementary 
a-positive-type function on E. Denote by <l>F (resp. 
<I> F') the a-positive restriction of <I> to F (resp. F'). 
Then h can be written as a sum 

such that 
<l>F = aF 21Anl 2 rp1hn}/')(h,/1 (28) 

n 
and 

n 

are the respective spectral decompositions of <l>F 
and <l>F" 

Proof: Let us write the spectral decomposition of 
<l>F in the form (28) and let P: be the projection 
operator in :reE given by Ih:)(h:1 ® Ix

F
" where Ix

F
' 

is the identity operator on :re}/',. Then 

P:h = IIP!'hll h!' ® h!", 
where h::' is a vector in :reF' with norm equal to 1. 
We then have 

n.m 

n.m 

F'I F' F F X (h n hn )(h n I 'l1F('rJF) Ih m ). 

Comparison with (28) gives 

( ) -1 F' I F' F F 2 aE (hn hm) IlPnhllllPmhll = 6n.m IAnl . 

Hence the set (h::,) is orthonormal, and 

(aE)-1 IIP:hI12 = 11.,,12. 
We then have 

<l>F'(1'/F') = (aE)-I.2 (P!'hl Ix}/, ® 'l1F'(1'/F') \p!'h) 
n 

since the P!' commute with 'l1F" Hence 

<l>F'('fJF') = .2 aF' IAnl 2 (aFTl(h:'1 'l1F.('fJF') Ih::'), 
n 

and this is the spectral decomposition of <l> F' owing to 
the orthonormality of the h~". 

Lemma 6: Let 'l1F C'l) be a representation of CCR's 
on (F, 0') in the Hilbert space :reF' Let J be some 
anti-unitary operator on :reF [that is, satisfying 
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(Jh I Jh') = (h' I h)]. Then (J-l'l.LF( 'YJ)J) * is a repre
sentation of CCR's on (F, - 0') in :reF' 

The proof is obvious and will be omitted. 

Theorem 3: Let (F1' F2) be an irreducible E-con
nected pair. Let <1>1 and <1>2 be elementary a-positive
type functions on F1 and F2 , respectively. Then one 
has 

[DE(<<I>l) x DE(<<I>2)] x [DE(<<I>l) x DE(<<I>2)]*('YJ) 

= (det M~T2<1>l('YJ1) . «I>Fl.('YJ1')' (29) 

where <l>F,' is the a-positive-type function on F; given 
by 

<l>F,·(rh·) = <l>1(.A({t}1·)· <l>z{.A(,rt}l·), t}l' E F~. (30) 

As a result, DE(<I>l) x DE(<I>2) is in beE, 0') if and 
only if the square root of «I>Fl' is in b(F~, 0'). 

Proof: Under the conditions of the theorem, 
formula (26) reads 

[D~«I>l) X DE(<<I>z)]('YJ) 

= (detM~T1exp [-ia(t}I, .A(,i't}I')] 

X <l>tCt}1 + .A(,ft}1') . <l>2(.A(,f'YJ1·)' (26') 

Since DE(<I>F.) is idempotent, the distribution on the 
left of (29) is equal to DE(<I>l) x DE(<I>z) x DE(<I>I) , 
so that equality (29) fo]]ows from an easy calculation. 

The fact that <l>Fl'( t}1') is a O'-positive-type function 
on F{ results from the property of the left member of 
(28) being a O'-positive-type function on E, owing to 
the fact that, by Theorem 2, DE(<<I>l) x DE(<I>2) is in 
L2(F, 0'). Hence its restriction to F~, which is 
proportional to <I> F/ 171'), is also a a-positive-type 
function on F~ . 

Now according to (29) and owing to the fact that «1>1 
is a a-elementary positive-type function on F1 , which 
implies <1>1 X <1>1 = <1>1 (in b'(F1 , 0')], one sees, using 
(6) and Fl (fJ" F~ = E, that 

IDE(<I>l) x DE(<I>2)1 (t}) = (det MP-l<1>l('YJ1) . <I>~l.(t}d, 
where <l>j\, is the square root of <l>F

l
', that is, the 

square-integrable function on F; such. that «l>i
" 

x 
<l>i

l
, = <l>F

1
' [in b'(F{, 0')]. Now DE(<I>l) x DE(<I>z) 

is in beE, 0') if and only if its absolute value 
IDE(<I>l) x DE(<I>JI is in beE, 0'), or equivalently if 
it is a a-positive-type function on E. But this obvi
ously holds if and only if <I>.t\, is a a-positive-type 
function on F~ . 

Corollary 2: Let (F1' F2) be an irreducible E
connected pair. Let <1>1 and <1>2 be elementary 0'-

positive-type functions on F1 and Fa, respectively. 
If <1>1 i V(F1 , 0') or if «1>2 i Ll (F2' 0'), then 

fDE(<<I>l) X DE(<I>a)] i beE, 0'). 

Proof' Let J1 be some anti-unitary operator on :reF1 
and 6 the symplectic form on E defined in Lemma 4. 
Let 'l.LFl (resp. 'l.LF1') be some irreducible representa
tion of CCR's on (F1' 0') [resp. (F~, a)J in the Hilbert 
space :reF1 (resp. :reF1,). Then we define in :reFl ® :reF1, 

an irreducible representation c[i,E of CCR's on (E, 6) 
by 

c[i,E('YJ1) = (JI 191F1('YJ1)Jl)* ® I:rep " 'YJl E F1, 
1 

c[i,E('YJ1') = I:reP1 ® 'l.LFl('YJ1')' t}1' E F~. 
On the other hand, if S~, is a a-symplectic transforma
tion from Fa to F~, then <l>2«S~,)-1'YJ1') is an elementary 
a-positive-type function on F~; then one can write 

«I>l.A(,f'YJ1') = (aFl,)-1(h1'1 'l.LFI.(S~,.A(,r'YJ1') Ih1') 

where hI' E :reFl ,. We then get with the notations of 
Lemma 4 and, using aFar = aE' 

<l>FI.(t}d = (aE)-I(h1 ® h1'I'l.LF/.A<,ft}r) 
CI J 2 l' 1 l' 

® WFI,(Sl·.A(,2 'YJ1') Ih ® h ) 

= (aE)-l(Jil ® hI'I cU,E(S~'YJ1') II? ® hI'), 

where iiI = Jl lhl. Let 'YJ = 'YJl + 'YJ1" 'YJ1 EF1, and 
'YJl' E F~, and let us define on E the a-symplectic 
transformation 

Then 

<I>(t}) = (aEr1(1'z1 ® hI', 9l,E(S1j) IJil ® h1'), 'YJ E E, 

is an elementary a-positive-type function on E, whose 
restriction to F~ is precisely <l>F

1
" We can now apply 

Lemma 5 with F = Fl' Writing <I>('YJ) = 9',11
)(11

'
(17) 

with h E :reE , we see that a necessary and sufficient 
condition in order that <l>i

" 
E b(F{, a) [= b(F{, 0')] 

is that the coefficients An of the decomposition of h 
satisfy In An < 00. Let us show that this implies 
absolute integrability of <l>Fl on Fl' Dne has 

aE<I>l('YJ1) = (li1®hl"liLE(sS-1'YJl)lli1®hI'), 'YJ1 EFl' 

= (hi iLE(S-1171) Ih) 

= (hi iL~PFlS-11jtY:i1E(PFl,S-1'YJ1) Ih) 

x IAnAm(Ji~1 'l.LFl(PFlS-1171) IJi~) 
n,m 

x (h!,;1 'l.LF1,(P Fl,S-1171) Ih~) 

with li~ = Jlh~. ~ow, owing to the last assertion of 
the Lemma 4, the linear mappings 171 ---+ PF1S-1'YJl and 
'YJl ---+ PF1,S-1'YJ1 are regular. Then, by Theorem 1 
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and Schwartz inequality, 

r (Ii!.. 1 'l1Fl(PF1S-lr/I) 11i~) 
JFl 

x (h!,;1 'l1F1.(PF1,S-I1']I) Ih~) d'YJl = C < 00, 

and we get 

r 1<1>1(1']1)1 d'YJl ~ C! AnAm < 00. 
JFl n,m 

This corollary provides the counterexample an
nounced above since there exists nonabsolutely 
integrable elementary a-positive-type functions on 
Fl and Fa. It will then be necessary to look for 
additional conditions ensuring that 

We shall see (Theorem 4) that a kind of absolute 
integrability on the irreducibly connected subspaces 
[(33)] is, in fact, a sufficient condition. We now turn 
to a description of the general situation where (Fl , Fa) 
is an arbitrary E-connected pair. The regular subspaces 
D, K1 , and Ka are defined in Sec. 2; we introduce the 
regular subspace Fi of E by the relation 

(31) 

To simplify the notation, we shall write C for C(Fl' 
Fa); then 

Lemma 7: Let (Fl' Fa) be an E-connected pair. 
There exists an elementary a-positive-type function ° = m1col)(co'l Wi E Je on F. such that if 'Yl = F/ T , F; ., 'IF; 
('YJi' 1']D' Ki) is the decomposition of 'YJF; E Fi along 
the a-orthogonal subspaces Fi , D, and K i , then one 
has 

where 0" 0D' and OK; are a-elementary positive
type functions in S(Fi , 0'), S(D,a), and S(K, , 0'), 
respectively. 

Proof: It is sufficient to prove separately the exist
ence of Oi' OD' and OK; since a tensor product of 
rank-one projection operators on Jep;, JeD' and JeK ;, 

respectively, is a rank-one projection operator on the 
representation space Jep ; ® JeD ® JeKI of CCR's on 
(Fi' 0'). In order to construct Oi' we choose a linear 
operator Ii on Fi satisfying Iia = -1 and 

a(I,'YJ .. Ii~i) = a('YJi' ~i); 

let Si be the real bilinear symmetric form on Fi 

defined by SiC'YJi' ~i) = a('YJi,J~i)' Then 0i('YJi) = 
(ap)-1 exp [-lsi(1']i' 1']i)] is in S(Fi' a} and is easily 
shown to be idempotent; since, in addition, it 
satisfies ap/Oi(O) = 1, 0i is an elementary a-positive
type function on Fi • Choosing in the same way forms 
SD and SKI on D and Ki provides us with 0D and 
OK;' The function 

0F/(1']F) = (aF)-l exp [-ls( 'YJF/, 'YJF)], 

S(1']F/' 'YJF) = Si(1'];. 'YJi) + SD(1']D, 'YJD) + SK/Ki , Ki ), 

enjoys all properties requested. 

Theorem 4: Let (Fl' Fa) be an E-connected pair. 
Let <l>i = cplf/)(h\ fi, hi E JeF " be an elementary 
function on Fi , i = 1, 2, such that 

r d'YJi( r d'YJD dKi 1 <P;('YJi , 'YJD, Ki)12)t < 00. (33) 
Jp/ JDXK/ 

Then, for any gi E JeF , ' the distribution DE ( cplgl)(h11) X 

DE( cplh2)(g21) E bee, 0'). 

Proof' Let 0F/' i = 1,.2, be an elementary 0'
positive-type function cp1co')(coil on Fi satisfying the 
conditions of Lemma 7. We first show that if (33) 
holds for some P E JeF;, it also holds for p = Wi. 
In fact, one has, owing to (8), 

OF; X cplP)(hil = (Wi /fi)cpiCOi)(hij, in b'(Fi , a), 

Since there always exists an 'YJF. E Fi such that 
(wil 'l1F,('YJF) IP) ~ 0, owing to th~ irreducibility of 
the representation 'l1Fi ' we can suppose, without 
restricting, the generality that (Wi IP) ~ O. It is then 
sufficient to prove that twisted convolution by OF; 

leaves the property (33) invariant, and this results 
easily from (32) and Schwartz inequality. 

Let us no~ ~rove that DE(<I>I) x DE(<I>:> E bee, 0') 
if <l>i = cp1CO')(h I. Owing to (8) and (16), one has 

<PMF.) = r d'YJFi<l>I('YJFJ 
JF/ 

whence 

DE(<P1) = r d'YJF;<P1('YJF;)DE(OFJ X b~i' JF; 
We get then 

DE(<P1) x DE(<P:) 

= r d'YJFl d'YJF2 <l>1(1JF1)<P:(1JF2) 
JFIXF2 
x DE(OF1) X bE1JFl X' ~E'YJF2 x DE(O;z)' 

As is observed at the end of the first section, one has 
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Let us define 

TKlYJl,'YJD) = r dKlPl('YJl,'YJD' Kl)OKI X bKI . JKl 
Then, owing to the relation 

IIOKI X «I>KIlh')(KI,O') ~ II0KIII'b(Kt.0') II«I>Klllf\ 

T K,('YJl , 'YJD) is in b(Kl' a) for almost all ('YJl' 'YJD) and 

II TK1('YJl, 'YJD)II'b(KloO') ~ (aKI JKldKl l«I>l('YJl' 'YJD' Kl)12} 

We define in the same way TK2('YJ2, ~D)' 
Finally, observing the identity OD + b'YJD X OD = 

exp [-!s( 'YJD' 1]D)]OD and remembering the last 
remark of Sec. I concerning distributions with a

orthogonal complementary supports, we get 

DE(<<I>l) X DE(<<I>n 

= r d1]l d1]21 d'YJDd~Dexp [-ia('YJD' ~D)] Jp'XP2 DxD 

X exp [-!S('YJD + ~D' 'YJD + ~D)] 
X 0D' T K,('Y}l, 'YJD) . T~h2' ~D) 
X De(Ol X be'YJl X be'YJ2 X O2), (34) 

Let F/ be the a-orthogonal complement in C of F; . 
Then since Pi n F2 is empty, (F;, F;) is C-connected, 

so that 

o~ X o~ = exp [-ia('YJl,'YJ2)] 

X exp [ia('YJl" 'YJ2')]O~, X b~" 

with 1]1' E F;, 'YJ2' E F;, and 'YJl + 'YJ2 = 'YJl' + 'YJ2" 
Then 

De(Ol) X b~ X b~ X De(02) 

= b~, X De(Ol) X De(02) X b~,. (35) 

Owing to the fact that S(C, a) C b(C, a) and to 
formula (26'), one has De(Ol) X DcC02) E b(C, a) 
and 

IIDcC0l) X b~ X b~ X De (02)11'b(C.0') 

= IIDe(Ol) X De(02)11'b(C.0') = b. 

Returning then to (34), we see that DE(<<I>l) X DE(<<I>2) 
is an integral over PI X P2 X D X D of elements in 
beE, a) whose beE, a)-norm is equal to 

bexp [-tS(1]D + ~D,1]D + m IITKl(1]l,'YJ~)II'l>(KI.O') 
X II Tici'YJ2 , ~D)II'b(K2.0'). 

Since a norm-convergent integral of a Banach-space
valued function is in this Banach space, we get that, 
under condition (33), DE(<I>l) X DE(<<I>2) E beE, a) 
and 

II DE(<<I>l) X DE(<<I>nll'b(E,O') 

~ b J d1Jl d1J2J d1JD d;D 

>< exp [-is('YJD + ;D' 'YJD + ;D)] 

X IITKIC'YJl,'YJD)II'b(Kt.O') II TKi1J2 , ;D)II'b(K2.0'). 

Using the above estimate of liT K/ 'YJi' 'YJD)Ii'b(Ki'O') ' 
together with tRe fact that ordinary convolution by 
the function exp [-Js( 'YJD' 'YJD)] is a bounded linear 
mapping in V(D, 0') and with Schwartz's inequality, 
we get 

IIDE(<<I>l) X DE(<<I>2)11'b(E.0') 

~ b ir (aKJ r d1Ji(l d1JD dKi 1«I>;(1Ji' 'YJD, K;)/2)!. 
i=l Jpi DiXKi 

To conclude the proof of Theorem 4, we use 

DE(!pIUi)(Qil) X DEC!plwi)(hil ) = DE(!pli)(hil ) 

and the fact that beE, 0') is a two-sided ideal in 
b' (E, a). Hence DE(lg 1 )(hll) X DE( !plh2)(g21), being ob-

tained by left convolution of DEC«I>l) X DE(<<I>2) by 
D E ( !plgl)(coll) and right convolution of the result by 
DE ( !pl(2)(g21), is in beE, 0'). . 

Corollary 3.' Let (Fl' F2) be an E-connected pair. 
Let 

N i i 
«I>. = "" A mlfn )(hn I 

I £.., n, , 
n=l 

where (f~) and (h~) are orthogonal sets of vectors .. in 
JeFi , be the spectral decomposition of «I>; E :F(Fi' a). 
Then, if «I>i satisfies condition (33), the distribution 

DEC~l ,un!PIUnl)(hn11 ) DE(itm!Plhm2)(gm21) E beE, a) 

for any sets (,un), (Am) of complex constants and any 
sets (g;), (g!) of vectors in JeFl and JeF2 , respectively. 

Proof: It is sufficient to prove that each !plroi)(hnil 

satisfies (33) if «I>i does, since in this case Theorem 4 
can be applied to each of these elementary functions 
separately. One has 
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As was observed in the proof of Theorem 4, the left 
member of (36) satisfies (33). Since the set ()'nf~) is 
linearly independent and the set ('l1F ,(17i)Wi

) spans 
Jez,', when 17i spans Fi (owing to the irreducibility of 
'l1;,), there exist N possible choices for 17; giving 
independent linear combinations (36). Hence this set 
of equations can be solved and g)(J)')(hn'! expressed as a 
linear combination of functions satisfying (33). Using 
the triangle inequality, one then shows that TI(J)I)(hn ll 

also satisfies (33). 
In order to obtain results for arbitrary elements 

in b(F, a), we observe that any function in b(F, a) 
is the restriction to F of an elementary function in 
some bet, a), where t is any finite-dimensional space 
containing F and equipped with simplectic form a 
whose restriction to a is a. In fact, let t = F 8:)u G 
satisfy these conditions; let us write the spectral 
decomposition of <DF E b(F, a): 

<DF(1)F) = I AnaFl(h~\ 'l1F(1)F) If~), 
n 

1)F E F, An ~ 0, 

where (j~) and (h~) form an orthonormal basis in JeF . 

Let 'l1a be an irreducible representation of CCR's on 
(G, a) in .rea; let h~ be an arbitrary orthonormal 
basis in .rea. Then defining 

hF = I IAnlf(aF)-fh~ @ h~, 
n 

IF = I \An\f(aFr!I~ @ h~, 
n 

which are vectors in .reF @ JeG , we see that the 

restriction of TifF) (h;ol to F is <D F' Now let (F1 , F2) be 
an E-connected pair and E' an arbitrary finite
dimensional space equipped with a symplectic form 
0"; then, if (Gl , G2) is an E' -connected pair, the pair 
(FI 8:)u GI , F2 8:)u G2) is E-connected, where E = 
E 8:)u E', a = a' on E'. If <l> i is some elementary 
extension of <DF• E b(Fi' a) to Fi 8:)6' G;, then Theo
rem 4 gives conditions on <D1 and <D2 ensuring that 
DE(<Dl) x DJi)(<D2) E beE, a). If these conditions are 
satisfied, then the restriction of DJi)(<DI) x DJi)(<D2) to 
E is in bee, a) since it can easily be shown to be a 
finite linear combination of a-positive functions on E. 
But, returning to formula (26), we see that if G1 n G2 

is empty, this restriction is proportional to DE(<DF) x 
DE(<DFJ This provides us with various corollaries to 
Theorem 4, owing to all possible choices of spaces 
(E, a) and of E-connected pairs having the restriction 
(F1' F2) to E. As examples, we consider the two 
simplest cases for a given E', that is, either (G l , G2) 

is an irreducible E'-connected pair or G1 E8a
' G2 = E'. 

Any choice evidently depends upon a particular 
situation. 

Corollary 4: Let (F1' F2) be an irreducible E
connected pair and <DF; E b(Fi' 0'), i = 1,2. If there 
exists a finite-dimensional space E' equipped with a 
symplectic form a' and an irreducible E' -connected 
pair (Gl , G2) such that <l>F., i = 1,2, is the restric
tion to Fi of an absolutely integrable elementary 
function on Fi 8:)u Gi , then DE(<DF1) x DE(<l>F

2
) E 

bee, a). 

Corollary 5: Let (Fl' F2) be an E-connected pair 
and <DF; be in b(F;, a), i = 1,2. Suppose there 
exists a finite-dimensional space E' equipped with a 
symplectic form 0" and a pair (Gl> G2) of a'-orthog
onal subspaces of E' such that <DF;, i = 1,2, is the 
restriction to F; of an elementary function on Fi 8:) Gi 

satisfying the condition 

r d1)i( r d17D dK; dy; \ <D;(1);, 1)D' K;, y;W)! < 00. 
JF; JDXK;XG; 

(33') 

In the case of an irreducible E-connected pair 
(F1' F2), this last corollary gives the following kind 
of results; let 

<DF.(1)F.) = (aFTl L An(h~\ 'l1F l1)FI) \I~), 1)F, E Fi , 
n 

be the spectral decomposition of <l>F' E b(F;, a). 
Then, if • 

L,d1)F{ ~ \An\2\(h~\ 'l1F ;C1JFi) \I~)\2r < 00, 

the distribution DE(<DF) x DE(<l>F.) E bee, a). 

Corollary 6: Let (F1' F2 , ••• , Fn) be a set of regular 
subspaces of E such that Lf=l Fi = E and each Fi is 
a-orthogonal to F j , i::;f j, except possibly for j = 
i ± l. Let Dt =:= F; n Fi±! and K; = F; n (F;±1)" 
Then, if <Dlh_i)(h+'I, h~ E JeF;, is an elementary function 
on Fi , a sufficient condition in order that 

n 

XDE(<l>i) E beE, a) 
i=l 

is that Tlhi)(hil satisfies (33), with D = D;± and 
Ki = K;. 

This could be proved using Corollary 5 and a 
recurrence process, but that would involve too many 
notations. We just give here a sketch of a direct proof. 
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Let aj.; = ai • aD; . aK;± be as in Lemma 7, and let 
w~ be the associated vector in X F ;; Let ell; (resp. eIlt) 
be the elementary function on Fi associated with 
Ih~)(w~1 (resp. Iw~)(h~l). We shall also have to con
sider .:l, = tpIOl_%O/I. We then have, owing to 
DE(eIli ) = DE(eIli) X DE(.:li) X DE(eIlt) , . 

DE(eIlt) X DE(eIlZ) X ... X DE(eIl-;;) 
n-l 

= X ([DE(eIlt) X DE(eIlH.l)] X DE(.:li+l»' 
;=1 

We first indicate how to show that 

,,-1 
X«(DE(eIlt) X DE(eIlH.l)]) Eb(E, a). 
;=1 

Owing to our hypothesis and Theorem 4, each term 
DE(eIlt) X DE(eIli+l) is the extension to E of an 
element in b(F; + FH1 , a). This· element can be 
expressed as an integral with summable trace-norm. 
In fact, its integrand is the product of a positive 
summable function by a b(F, + FH1)-valued function 
which can be shown, via (34) and (35), to have the 
form 

where IK; is bounded in b(Ki ) and eIli •i+! is, owing to 
(26') and (35), a test function on the a-orthogonal 
complement in Fi + Fi+! of Di+l EEl" Ki+l EEl" Kt, 
with constant trace-norm. Since Ki+l and aD;+ = 
aD. - (resp. Kt) are a-orthogonal to all F;,j < i (resp. 

>+1 

j> i + 1), the function 

n-l 

X (DE(eIlt) X DE(eIlH.l» 
i=l . 

can be expressed as an integral whose integrand is the 
product of a positive summable function by the 
function (on E) 

where ell is in 

S(E e" (~:[DH.1 EEl" KH.l EEl KtJ)) 

and can be shown, as in (35), to have a constant 
trace-norm. Hence this integrand has summable beE) 
norm and the integral defines an element in beE, a). 
We now claim that each A; is absolutely summable 
on Fi and that since 

DE(.:li) = f A;(17)DE (J:i), 

one can express 

n-1 

X ([DE(eIlt) X DE(eIlH.l)] X DE(.:li+l» 
i=1 

as a trace-norm summable integral of such elements; 
consequently, it is itself, and also 

n-l 

X DE(eIli ), in bee, 0'). 
i=l 

5. SOME CONNECTED PRODUCTS IN 
QUANTUM MECHANICS OF 

N-PARTICLE SYSTEMS 

The symplectic space is here the 6N-dimensional 
phase space E{N} of an N-particle system. The sym
plectic form a on E{N} is defined as follows: Let 'f/ be a 
vector in E{N} describing the system when the co
ordinates of the position and momentum of particle 
(i) in a given reference frame are x! and p~, IX = 
(I, 2, 3); if 'f/' corresponds to another state (x'!, 
p'!), then one defines 

a('f/,'f/') =i~ ctx;p'; - x';p;). 
We shall say that a basis S = an, TIn), n = 1,2, ... , 
3N, of E{N} is symplectic if it satisfies a(TIn' TIm) = 
a(~n' ~m) = 0 and a(lln' ~m) = ~nm' We define 
a particular symplectic basis S{N} = (~!, TI!) as 
the basis in which the above vector 'f/ is expressed 
as ~~1 (2:=1 x!~ + p!ll~. For later purposes we 
first describe some connected subspaces appearing in 
three-particle systems. Let Ei be the regular subspace 
of E{3} generated by (~!) and (ll!). Then E{3} = 
El EEl E2 EEl E3 (we shall henceforth omit the symbol 
a on EEl). In El EEl E2 we introduce the new symplectic 
basis 

mi = mass of particle i. 

Let E~~ (resp. E12) be the regular subspace generated 
by the sets (~!2) and (TI!2) [resp. al2 ... ) and (ll12.a)]. 
We then have 

El EEl E2 = E12 EEl E~:) , 

E~~ is the phase space for the relative motion of 
particles 1 and 2; E12 is the phase space for their 
center of mass motion. Decomposing in the same way 
E12 EEl E3 , considering this center of mass as a particle, 
we get 
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We obtain other decompositions of E by permutation 
of (123). We define 

E{3} = E12 'l? E(12.3) 
rei rei W • 

This is the phase space for the relative motion of the 
three particles. In addition to the O'-orthogonal com
ponents of Erel , another irreducible E~l-connected 
pairs are provided by (E;;I' E~:I) and those obtained 
by permutation of (123), as can be seen from simple 
calculations performed on the previously defined 
symplectic bases. In these bases the matrix form for 
the operators .A(,r and .A(,1', when Fl = E2~ and 

12 . re 
F2 = Erel , IS 

.A(,r = (vIi3'YJ
0
12(I) 0) 

'f}alI ) , 

.A(, l' = (VIii I) 0 ) 
2 0 (1)' 

where 'YJii = mi!(mi + mj), V123 = 1 - 'f}12'f}32 , and 
(1) is the 3 X 3 identity matrix. 

We now consider general N-particle systems. Let 
C be some p-particle cluster contained in the system 
{N}; we define EO as the regular subspace of E{N} 
generated by the set a:, n:), i E C, IX = I, 2, 3. Let 
Eo be the regular subspace of EO generated by the set 

( 
,,

7T
l i) ~O.«=k -~« 

ieO mO 
and 

IX = 1,2,3, 

where mo = ~ieO mi ; let E~I be its O'-orthogonal 
complement in EO; one then has 

(37) 

It is easily verified that vectors of E~I describe states 
of the system {N} in which the (N - p) particles not 
belonging to C rest at the origin and particles in C 
satisfy the center of mass condition ~. 0 m ·x· = 0 
~ieO Pi.tZ = O. As to Eo, it can be id~~tifi;d";s th; 
phase space for a particle with mass mo' If C and C' 
are disjoint clusters, we can perform, on Eo EB Eo" 
the canonical reduction to the center of mass system 
described above for two-particle systems; for this, 
we introduce the canonical symplectic basis (~<o.o') 
n<o·o'» 'f CdC' . I . I '" , 

IX as 1 an were SlOg e partlc es; one has 
then 

Eo EB Eo' = Eovo' EB E<O·o'). (38) 

We derive then from (37) and (38) that 

EOVO' = E<O'o') 'l? EO 'l? EO' 
rei· W rei W rei' (39) 

Iterating (39), we can decompose E~~o' as a direct 

sum of O'-orthogonal two-body (particle or center of 
mass) relative phase spaces. The union of the canoni
cal symplectic bases of each of these O'-orthogonal 
components is a symplectic basis for E~r' 0'; we call 
it again canonical although it is not unique, owing to 
the various possibilities of decomposing Efe'(c'. The 
subspace of some E~I or E<O·o') spanned by the ; 
vectors (resp. n vectors) of a canonical basis will be 
called the configuration (resp. momentum) subspace 
of E~I or E<O' 0'); if 'YJ0 E E~I' we shall denote by 
° dO' x an p Its components on these subspaces. 
We now briefly describe the usual representation of 

CCR's on (E~l' 0') or (E<O'o') , 0'). Let Je,o be the 
Hilbert space of square-integrable functions with 
respect to the Lebesgue measure on the configuration 
subspace of EO. Then we define, for h E JeP, 

(CU,o('YJ0)h)(ao) = e-la(",C,pC)e+ia(pC.aC)h(aO _ xc). 

(40) 

The canonical commutation, relations for cu,o are 
easily verified. In the same way one defines a repre
sentation cu,<O.C'l of CCR's on (E<O'O') , 0') in the 
Hilbert space .re<O'o') of square-integrable functions 
on the configuration subspace of E<O·o'). If we denote 
by (x~), (p~), n = 1, ... , 3(p - 1), the coordinates 

f ° dO' . o x a~ p lo some canoOical symplectic basis, 
then O'(x ,pO) takes the Cartesian form 2n x~ • p~. 
We prove in the Appendix the following tensor 
decompositions: 

.re0VO' = .reo @ .reo' @ ,Je<O,O') (41a) 
and 

cu,ovo' = cu,o ® cu,0' @ cu,w.o') (41b) 

for any pair of disjoint clusters C and C'. Let AO be 
some bounded (or at least self-adjoint) operator on 
.reG; then we shall again denote by A ° the operator 
on .re0vo' obtained by ampliation of AO to .re0vo' 
Relations (41) allow to give some explicit formulations 
of results stated in the preceding sections in some 
situations commonly encountered in quantum mechan
ics, which we now specify. 

Lemma 8: Let (CI , Ca,'" ,Cn) be a set of clusters 
~hose union is {N} and such that (Ur=l C i ) (] CHI 

IS nonempty. Then E~:;) is generated by the set of 
subspaces (E~t , C~~ , ... , E~i). 

Proof' It is sufficient to consider the case n = 2. 
We define C = C1 (] C2 and C/ = C j - C = {N} -
Ci , (i,j) = (1,2). We derive then from (39) that 

J 
E~:l + E~:I = (E~:; EB Efel EB E~~fl) 

EB (E<O·01') + E<O·o.». 
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From the above study of three-particle systems, there 
results that E(O'O,') + E(O,02') = E(O'O,') EB E(O,02'); 

then two other applications of (39) give the desired 
result. 

Theorem 5: Let (C1, C2 ,'" ,Cn) be a set of 
clusters whose union is {N} and which can be rear
ranged in an order for which they satisfy conditions 
of Lemma 8. Then, if AO, is a Hilbert-Schmidt (resp. 
compact) operator on ;reo" the product IIf=1 A O

, is 
a Hilbert-Schmidt (resp. compact) operator on ;reIN!. 

We omit the proof which involves a simple recur
rence process, Theorem 2, Corollary 2, and Lemma 8. 

In order to get such an explicit formulation of 
Theorem 4 and its corollaries, we now look for 
sufficient conditions ensuring that elementary func
tions associated with rank-one operators in ;reo 
satisfy (33) in the simplest situation of an E{N} 
connected pair (E7ol , E7on. We first introduce some 
definitions: Let (n) denote a multi-index (n1' n2,"', 
n3(1)-1l)' where each ni is a positive int~ger; we de~ne 
l(n)1 = Ii ni • We consider then on;re the followmg 
self-adjoint operators 

(xO)(n) = (xft' , ... , (Xfc1>_l)t3(P-') 

and 

(~ivO)(n) = (-iajaxft' , ... , (-iajaxfc1>_1»n3(p-I) 

and the dense subspace of ;reo : 

Df = n D«XO)(I\ -iVO)(m». 
1(1) 1:S2 
l(m)IS2 

One introduces on nf the norm 

Ilfllf = sup II(xo)(o(-iVO)(mYliO 
1(1) 1:S2 
l(m)ls2 

(remark that with this norm the natural embedding 
of nf into ;reo is compact). We then have the 
following. 

Lemma 9: Let (E7et, E70n be an E{N}-connected 
pair. In order that <l>i = q)f,)(hd ,J;, hi E ;reO" i = 1,2, 
satisfy condition (33) it is sufficient that J; and 
hi E~~i. 

Proo!' Let us consider the quadratic forms on the 
subspaces E~l given by 

° " Ipjl2 d (0) " I 12 T(p ) = k - an Q x = .k mj Xj , 
JEO mj 1EO 

where, for example, Ip,1 2 = L~=],2,3Ip" <x12, Then, if 
C and C' are disjoint clusters, one verifies easily that 

writing 'fj0uo' = rF + 'fj0' + 'fj(O,O'); one has 

I W,O')12 
ouo' ° 0' P 

T(p ) = T(p ) + T(p ) + mW,O') (42) 

and 

Q(XOuo') = Q(xo) + Q(xo') + mW,O') IxW,O')12, (43) 

where mW,O') is the reduced mass mcmc,j(mc + mo'). 
We now look at formula (33) in the above situation. 
It results from the proof of Lemma 8 that, by defining 
C; = {N} - Ci and C = C1 n C2 , (39) gives the 
decomposition (31) of E~il with n = E~l' Ki = 
EO! and F. = EW,O,'). Using Schwartz's inequality rel' t 

(42) and Eq, (43), one has then 

J d1)W,Oi')(J d1)° d1)c;, /<1>(1)0')1 2)1:::;; (IIIi, 

with 

II = f dr/c,O;') 

X ((1 + IPW'Oi'~12)(1 + mW,Ci') IxW,C;')12»-2 
mW'o, ) 

and 

12 = f d1)c, 1[1 + T(pci)][1 + Q(xo'»)<I>(rFi)12
, 

Since d'fjw,C,) = d3xW,O,) • d3pW,C;') , the integral II 

is finite. Let us estimate 12 , For this, we now omit 
the index Ci ; owing to (40), one has 

1<1>(1)12 = if ei~(1),a)h(a - ix)f(a + iX) d3a r; 
using the Cartesian form of a(p, a) = In an' Pn and 
the Parseval equality, we get 

12 = (2II)3(1>-1l f d3xd3a{[1 + Q(x)][l + P( -iVa)] 

X h(a - lx)f(p + ixW, 

where Va is the gradient vector with respect to a. For 
the last part of the proof we only need to use explicitly 
the fact that Q and P are quadratic forms; this allows 
us to decompose suitably Q«!x - a) + ax + a» 
and P( -!i(Va- 1x + Va+!x» in order that the hypothe
sis can be explicitly used. 

Theorem 6: Let C1 , C2 , ••• , Cn be a set of clusters 
whose union is {N} and such that Ci n C j is empty 
(resp. nonempty) for j'=F- i ± 1 (resp. j = i ± 1). 
Let 

AC; = L IA1>llf~)(h~1 
1> 

be the spectral decomposition of a trace-class operator 
on ;reOi. Then, if, for all i = 1,2, ... ,n, the sums 

L IA"I (IIf~"fi)2 and 21A1>1 ("h~"f'>2 
1> 1> 
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are finite; the operator I1~1 A C
; is in the trace class 

on JeN}. 

Proof: To prove this theorem, we use the method 
described in Sec. 4 for the treatment of general trace
class operators which consists in introducing ele
mentary extensions of the functions gy(A;O) to larger 
symplectic spaces in such a way that our results on 
connected products of elementary a-positive-type 
functions can be used; these larger spaces must be 
chosen in such a way that the restriction to E!£r} of the 
connected product of extensions is precisely 

XD E{N}( gy(AC';». 

i=l reI 

Actually, we want to apply Corollary 6 to our situa
tion. We consider then the set {IV} of particles obtained 
by adjoining to the system {N} a set {N'} of fictitions 
particles which is the union of disjoint clusters Ci , 

i = 1,2, ... , n, where Ci contains the same number 
and species of particles as Ci • The symplectic form 
6' on E!~) is the canonical one. We consider then the 
following elements in Jeci UOi: 

P = L IApl! f~ @ h~ @ Si' 
P 

hi = L IAi h~ @ h~ @ Si' 
p 

where h~ E Jeo; = JeGi and Si is a Schwartz-test func
tion in Je <Gi.Ci). Then the restriction of gylfi) (hi I to 
Efei is gy(AC;) , so that by (26) and a recurrence process 
the restriction of 

to E~i'[l is 

Furthermore the subspaces EGiU(J; i = 1 2 '" n , reI'" " 
satisfy the conditions of Corollary 6. It remains to 
show then, in order to use the result of this corollary, 
thath and hi are in ~~iUCi (Lemma 9). But this results 
from the estimates 

Ilfill~iuci S C(~ IApl (1If~ll;i)2)t (~IApl (1Ih~ll;i)2)~ 
Ilhill~iUCi S C(t IApl (1Ih~II~J, 

obtained with the help of Schwartz's inequality. Since 

XD E{N)( gy(ACi» 

i=l reI 

is the restriction to E!~} of a function in 1'J(E~~} , 6'), 
it is itself in 1'J(E~} , a). 
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APPENDIX 

We want to prove tensor decompositions (41a) 
and (4lb) for any pair of disjoint clusters C and C'. 
Let us first prove (41a). If hO E Je0 , hC' E Jec', and 
hW ' c') E Jew,C'l, we define their tensor product as 
the element of Je0uo' given by 

(hO @ he' @ hlO·O'I)(aouo') 

= hO(ao) . hO'(ao') . hw.o')(aw,o'»; (A1) 

here aO, aO', and aW'o') are the components of aOuo' 
in the configuration subspaces of E~l' E~;, and 
£(0,0'>, respectively. The scalar product (II g) = 
S J. g daouo' on Je0uc' defines a pre-Hilbertian struc
ture on the space of linear combinations of these 
vectors such that 

(hO @ hC' @ hW,O') I gO @ gC' @ gW,O'I) 

= (hc I gC) . (hC' I gC') . (hw,C') I gW.o'», 

where, for example, (fo I gO) = S fOgO da{C). This is 
obvious since with our choice of'canonical symplectic 
basis one has dacuc' = dac dao' daw,C'l. Hence the 
closure of this pre-Hilbertian space is the right tensor 
product Jeo @ Jec' @ JeW. Co.) , which is consequently 
contained in :recuc'. But, owing to (43), this 
tensor product contains the set of translates of 
exp [- Q(acuc,)], which is a total set in Jecuo' owing 
to Wiener theorem. Hence one has the equality (41a). 
Now, in order to prove (4Ib), it is sufficient to verify 
it on the total set of vectors hC @ hO' @ hW ' c'), where, 
owing to (39) and definition (40), it is immediate. 
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It is show~ that the polynomial bases ~or representations of a semisimple Lie algebra are just the various 
terms of typIcal concomitants of the LIe algebra. Consequently, the construction of polynomial bases 
reduces to a problem in the theory of invariants. 

INTRODUCTION 

In the evaluation of Wigner coefficients, fractional 
parentage coefficients, matrix elements of operators 
such as angular momentum, etc., it is useful to realize 
the Lie algebras that one comes across as differential 
operators in certain indeterminates and their repre
sentation spaces as homogeneous polynomials in 
these indeterminates. I The construction of a basis set 
of polynomials which is suitable to the problem at 
hand is often required. The aim of this article is to 
show that the problem is closely related to the theory 
of invariants2 which was developed long ago by 
mathematicians. 

I. ABSOLUTE, RELATIVE, AND 
SEMI-INVARIANTS 

Following.Weyl,3 we give definitions of the absolute 
and relative invariants of a semisimple Lie algebra I: 
as follows: Let {A} be the set of matrices representing 
I: in a certain irreducible representation (IR). We 
denote the vectors in its carrier space by x = 
(Xl' ... , x ll ). A homogeneous polynomial4 [(Xl' ... , 
x ll) is said to be an absolute invariant of L with respect 
to the representation {A} if 

of 
d(A)f = 2 dXi - = 0 for all A E {A}, 

oXi 

where dx = (dXI' ... , dxn) = AxT. [(Xl"··' Xll) 

is said to be a relative invariant of I: if d(A}[ = k(A)[ 
for all A E {A}, where k(A) is a real number. 

We define semi-invariants of C as follows: A homo
geneous polynomial [(Xl' ... ,xll) is said to be a 
semi-invariant if d(A)[ = k(A)fwhenever A represents 
an element a E Je and if d(A)f = 0 whenever A 
represents an a E L,where C = Je + L+ + L- is the de
composition of L into the Cartan subalgebra Je, the 
positive root algebra L+ and negative root algebra (-. 

These three definitions enable us to state and prove 
Theorems 1-4. 

as a polynomial in them. The finite set is called the 
finite integrity basis for the absolute invariants. 

Proof" It is easily seen that (i) the operators 
d(A) = 2 dxiJ/ oXi when acting on a space of poly
nomials in Xl"" 'X ll span a Lie algebra d(l:, x) 
which is isomorphic to I: with the multiplication 

[d(A), deB)] = deB) d(A) - d(A) deB). 

(ii) The space of polynomials {d[} , where [ is a 
homogeneous polynomial in Xi' ••• , X ll and d's are 
polynomials in the operators d(A), A E {A}, is finite 
dimensional. 

By the Hilbert basis theorem5 there exist a finite 
number of absolute invariants II, ... ,Ik such that 
every absolute invariant I may be written 

1= Fill + ... + Fklk , 

where FI , ••• , Fk are homogeneous but not neces
sarily invariants. Consider the spaces Vi = {dFi }; the 
d's are polynomials in the operators d(A) , A E {A} 
and i = I, ... , k. These are invariant under d(£., x), 
and each space is completely reducible with respect 
to d(l:, x). 

The space of an IR of d(l:, x) is determined by an 
extreme weight vector P, i.e., one such that d(A)P = 
A(A)P for each A corresponding to an a E Je and 
d(A)P = 0 for each A corresponding to an a E 1:+, in 
other words, an extreme weight vector and a semi
invariant are identical. The numbers A(A) arranged 
in a fixed order are called the weight of P. If P is 
extreme and of weight zero, then it can be shown that 
P is an absolute invariant. 

Let Vii ,j = 1,2, ... , be a basis for all the extreme 
vectors of Vi' Let ~l' ••• , ~m be a maximal linearly 
independent set of vectors picked out from all the 
extreme vectors -VUIl' V12l 1 ,"', vk1l k , vk2Ik,···. 

Then the spaces Up, P = 1, ... ,m, determined by 
~l' ••• , ~m' are linearly independent,6 and the vectors 
in each Up have one of the II, ••• ,Ik as a factor. 

Theorem 1: There exist a finite set of absolute Consider the direct sum UI + ... + U m = V. Then 
invariants (with respect to {A}) such that every FIll E V because FIll belongs to the direct sum of the 
absolute invariant (with respect to {An can be written spaces determined by VuII' V12II'···. Similarly, 

1732 
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F'I.Iz, ... , FkIk all belong to V. Hence IE V. Conse
quently, 1= 'YJl + ... + 'YJm' where 'YJi E Ui and is 
an extreme vector of weight zer06 and hence an 
absolute invariant. Each 'Y} is of the form V;;Ii' where 
Vii is extreme and Ii is an absolute invariant. Hence 
Vii is also an absolute invariant. Hence Vij is again 
expressible as ~~=1 L i / q • Repeating the argument as 
often as required, since the degree of I is finite, we 
conclude that I is expressible in terms of II' ... , Ik 
only. 

II. CONCOMITANTS 

Let {A} and {B} be two IR's of C. We denote by 
x = (Xl' ... ,xn) and Y = (Yl, ... ,Ym), vectors in 
the carrier spaces of {A} and {B}, respectively. We 
define a concomitant of C with respect to the two 
representations {A} and {B} as follows. 

For a semisimple Lie algebra C, there exists an 
automorphism 0 such that Oh = -h for h E Je and 
Oaa. = a_a. for aa. E 1:+, where oc is a positive root and 
a_a. E C-. Further, 02 is the identity transformation. 

A polynomial !(Xl,'" ,Xn,Yl,'" ,Ym) homo
geneous in x's and homogeneous in y's is said to be a 
concomitant of!: with respect to {A} and {B} if 

[dQ1(A) + dl/(OB»)f = i dx; of + ~ dy; of = 0, 
i=l ox;. 1=1 oy; 

for every A E {A} and BE {B}, where A and B repre
sent the same element, a E C, in the two representations, 
respectively, dx = (dX1' ... , dxn) = AxT

, and dy = 
(dYl, ... ,dYm) = OByT. 

Theorem 2: The system of concomitants of C (with 
respect to the representations {A} and {B}) have a 
finite integrity basis. 

Proof: Let 
.. 0 m 0 

D(a) = Idxi - + 2dy;-. 
;=1 ox i=1 oy; 

The operators D(a), a E C, span a Lie algebra D(C) 
under the multiplication [D(a), D(b)] = D(b)D(a) -
D(a)D(b), when they act upon the space of all poly
nomials in Xl,'" ,x .. , Yl,'" ,Ym . D(r.) is iso
morphic to L Observing that a concomitant is then 
an extreme vector of D(t) with weight zero, we can 
prove the theorem exactly as Theorem 1. 

Theorem 3: Let hex), ... ,hex) be a basis for the 
carrier space of an IR of d(C, x) such that the matrix 
of d(OA) is the negative of the transpose of the matrix 
of d(A). Let gl(y) , ... ,gk(Y) be a similar basis for the 
space of an equivalent IR of d(C, y). Thenh(x)gl(Y) + 
... + !iX)gk(Y) is a concomitant of r. 

Remark: It can be shown that it is possible to choose 
a basis with the property stated in the theorem and 
also such that the polynomials hex) and g1(y) are 
extreme.s 

Proof: Let 
k 

d.,(A)/;(x) = 2D(A);;!,. 
i=1 

Then 
k 

d",(OA)!;(x) = - ID(A);;!;. 
;=1 

Let 
k 

diB)g;(y) = ~ D(B)ijgj; 

then 
i=1 

k 

dy{()B)giY) = - I D(B);igj' 
j=1 

where A and B represent the same element a E C 
and D(A)ii and D(B)ii are numerical coefficients. 
We have 

D(a)[Nx)g1(Y) + ... + fix)giy)] 
k 

= 2 [d",(A)/;(x)gi(Y) + flx) diOB)gb)] 
;=1 

k (k k ) 
= i~ ,t1D(A)i;!lx)g;(y) - ;~D(B)jigly)fix) 

k k 

= 2 2fix)fly)[D(A)vCl - D(B)vq] = O. 
v=1 q=1 

As the basis, h, ... 'h and gl, ... ,gk are similarly 
transformed by d(A) and d(B), respectively. 

Theorem 4: If cfo(xl' ... , xn , Yl' ... ,Ym) is a con
comitant, then cfo is a sum of concomitants of the 
form 

f = h(X)gl(Y) + ... + J,.(X)gk(Y) , 

where hand gl are extreme; the two sets h, ... ,J,. 
and gl"", gk are bases for spaces irreducibly 
invariant under d(C, x) and d(C, y), respectively, such 
that the representations are equivalent representations 
ofC. 

Proof' Let 

cfo = ~ xfl. .. x~=y!l. .. y~m. 
:Pt"'Pn,qt"'Qm 

D(a)cp = I d(A)xfl . .. x~"y~l ... y~" 

+ Xfl ... x~" d«()B)y~l ... y~ = 0, 

which shows that the monomonials Xfl ... x~n span 
a space 'U invariant under d(C, x). Also, the monomials 
y~l ... y~m span a space invariant under d(C, y). 
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Let the number of distinct monomials Xfl ... x~ .. be 
not greater than that of the distinct monomials 
y11 • •• y::"m. Without loss of generality, we assume 
that the space 'lJ is irreducible; otherwise, rp will be 
found to be merely a sum of two concomitants. Let 
h ... he be a basis of 'lJ with respect to which the 
matrix of d(OA) is the negative of the transpose of 
the matrix of d(A), and let h be extreme. Expressing 
all Xfl ... x~n in terms of h ... he, we have 

where gl' ... ,gk are seen to be linearly independent 
and span a space V invariant under d(C, y). If this 
space is reducible for d(C, y), then rp would again be a 
sum of two concomitants, which implies that 'lJ is 
reducible. Hence it follows that gl' ... ,gk span V, 
which is also irreducible. 

Let 

Then 

D(a)rp = 2 dalA)hgi + 2h dy(OB)gi 
i i 

= 22 F(A)i;/;gi + 2.h 2 G(OB)i;g; = O. 
i j 

The coefficient of hg; in the above is F(A);i + 
G(OB)ij = 0. By our choice of the basis /1' ... ,he, 
F(A)ji = -F(OA)ij; hence, the above equation im
plies that the representations of d(C, x) in 'lJ and of 
d(C, y) in V are equivalent representations of C. 

gl(y) is also extreme because 

k 

d.,(A)fl = 2F(A)1;/; = 0 
;=1 

for matrices A corresponding to each a E C+, and 
therefore 

dy{B)gl = 2, G(B);jgj = 2 F(A)lJgj = 0, 

for every B representing the same a E c+ as the matrix 
A. 

Thus it is seen that, corresponding to any two 
'semi-invariants of equal weights with respect to the 
representations {A} and {B}, respectively, there is a 
concomitant of C with respect to the two representa
tions. Conversely, every concomitant is a sum of 
concomitants, each of which is determined by two 
semi-invariants with respect to {A} and {B} and has 
equal weights. 

In the case of the Lie algebras An, Bn , en, and D n , 

choosing {B} as the so-called self-representation, one 
obtains the concomitants of the full linear, orthogonal, 
and symplectic groups thoroughly discussed by 
mathematicians long ago. 

Now the semi-invariants of L with respect to an IR 
{A} ore also have a finite subsystem in terms of which 
all the semi-invariants can be expressed as polynom
ials (that the highest weight polynomials have a finite 
subset in terms of which every highest weight poly
nomial could be expressed has been observed by Sharp 
and Lam7; we point out here the source where it was 
proved) because the semi-invariants are nothing but 
the relative invariants of the solvable Lie algebra 
c+ + Je. For the proof we refer to WeitzenbOck,8 who 
showed the existence of such a finite subsystem for the 
relative invariants of solvable groups which he called 
the finite integrity basis. He obtains the relative 
invariants of each linear operator as the simultaneous 
semi-invariants of a certain set of binary forms (see 
Ref. 5, p. 227, for the definition of the semi-invariant 
of a binary form). 

In invariant theory a finite set of concomitants is 
said to be complete if every concomitant can be 
expressed as a polynomial in the members of the set. 

. Theorems were established to examine whether a given 
set of covariants of given binary forms is complete.2 

The invariant theory shows that the number of ele
ments in the finite integrity basis increases tremen
dously with the rank of the Lie algebra 1:; their 
determination becomes extremely tedious, and no 
induction argument for asserting the completeness of 
a given set of concomitants which holds good for any 
'llgebra I: is found in the theory developed so far. 

It may not be out of place to remark that the highest 
weight polynomials determined in a series of papers9 

in this journal are merely semi-invariants of certain 
semisimple Lie algebras. 

1 M. Moshinsky, J. Math. Phys. 4, 1128 (1963); M. Moshinsky 
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(1965); G. E. Baird and L. C. Biedenharn, ibid. 4,1459 (1963). 

2 Grace and Young, Algebra of Invariants (Cambridge V.P., 
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In a model quantum theory of interacting mesons, the motion of certain conserved particlelike 
structures is discussed. It is shown how collective coordinates may be introduced to describe them, 
leading, in lowest approximation, to a Dirac equation. 

1. INTRODUCTION 

It has often been suggested that the particle sources 
of fields might really be very localized bound states 
of the same fields. There are at least two important 
reasons for seeking theoretical models of this type; 
first they should reduce the number of independent 
fundamental variables, and second they might lead 
to a theory of interactions that is free from the diffi
culties associated with point interactions. In such a 
model the localized particlelike states may behave 
like point sources for interaction with weak external 
fields, but exhibit a structure in strong fields. 

This paper is mainly concerned with a model theory 
of a self-interacting meson-like field. Considered 
classically, the theory has particlelike solutions; in 
particular there are solutions that describe static 
loc'alized concentrations offield strength. The problem 
is to find the analogs of these in the quantized theory; 
the analysis suggests that these may appear as states 
with fermion symmetry characters, and a systematic 
method of solution is developed starting from an 
approximation in which the particleIike states are 
described by independent variables satisfying a Dirac 
equation. 

Although the starting point is a relativistic theory, 
the discussion is presented in a form that is not 
manifestly covariant, following the canonical quanti
zation procedures. At this stage a nonrelativistic 
description exhibits more clearly the physical ideas 
inherent in the model. 

The problem is that of describing certain collective 
motions of a quantized system. That is analyzed in 
the usual way by introducing auxiliary redundant 
coordinates to describe the collective modes and 
imposing constraints through supplementary condi
tions that link them to the original variables. 

2. THE ONE-DIMENSIONAL MODEL (A) 

A simple one-dimensional model was considered 
earlier, and it will be useful to refer to it as Model A. 
The field variable is an angle ex.(x, t) and all physically 
observable quantities depend only on ex. mod (27T); 

the Lagrangian density is taken to be 

_ 1..[(Oex.)2 _ (Oex.)2] _ K2 (1 _ cos ex.), 
87T ax at 47T 

where K is a mass constant [units with Ii ;:; c = 1 
will be used throughout]. 

The vacuum condition is taken as cos ex. = I, and 
all solutions are assumed to satisfy the boundary 
condition that 

cos ex. -+ I as x -+ 00. 

There is then a conserved current giving rise to the 
quantum number 

N = 1.. (CO (OIX) dx = .l. [IX( + (0) - IX( - (0)]. 
27T J-co ax 27T 

This is interpreted as a particle number. There is a 
localized static solution of the classical field equation 
for which IX( - (0) = 0 and IX( + (0) = 27T. 

This field theory may be quantized in the canonical 
manner, with the conjugate variable 

1 ()IX 
P(x, t) = --. 

47T at 
So long as the fields are weak, 1 - cos IX ""' !1X2, and 
the theory describes "mesons" with mass K, in states 
with N = O. A state with N = 1 may be created by 
operating upon an N = 0 state, e.g., the vacuum, 
with the (singular) operator, 

K = exp [27TiL:p dX} 
that sends IX(X) -+ ex.(x) + 27TO(X - xo), a step at 
x = Xo; this is interpreted as an ideal particle 
singularity at xo, but is not by itself a stationary state. 
It was shown, however, that the operators FK, where 
F = exp (±!iex.(xo», satisfy the equations 

[ ± ~ - £.] F K = 0, 
oXo at 

so that FK may be identified with a particle creation or 
annihilation operator at the point Xo; furthermore, 

1735 
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these operators associated with different Xo anti
commute. This "particle" is a massless neutrinolike 
object that can be introduced as a starting point for 
the description of massive particles. 

3. THE THREE·DIMENSIONAL MODEL (B) 

A three-dimensional model was suggested that has 
rather similar classical propertiesl ; this will be called 
model B and is the main subject of this paper. The 
field variables are four, cpp(x, t), p = 0, 1,2,3, con
strained to satisfy ~ cp! = 1 everywhere; it is conven
ien.t to describe them alternatively by a quaternion 

U(x, t) = CPo + iTa.cprJ.' 

(Indices such as Ct are summed from 1 to 3; Ta. denote 
a standard set of Pauli matrices, which will often but 
not always be associated with an "isobaric spin.") 

The fields are described by the gradients BrJ.p. 
defined by 

Op.U= h"Ba.p.U 

and so satisfy conditions 

o"Ba;p. - op.B"" = 2E"pyBa;p.Byv, 

the Ea;py being the structure constants associated with 
the quaternion algebra. The Lagrangian density of the 
model B is taken as 

-(E/87T2)[(B"p.B"p.)2 - (Ba;p.B",,)(Bpp.Bpv) 

+ 2K2(B"p.B"p.)] , 
where K is a mass constant and E a dimensionless 
parameter, whose value should probably be !(lic). 

The vacuum condition is taken to be U = 1, and 
there is the boundary condition 

U(x, t) -+ 1 as x -+ 00. 

There is a conserved current that leads to the quantum 
number 

N = ~ Jdet (B"i) d3x. 
27T 

There are localized solutions of the classical field 
equations for which N = 1 and which have properties 
that are classical analogs of particles with spin and 
isobaric spin t. Weak field solutions describe a 
triplet of massless mesons. Meson mass could be 
introduced by an additional term in the Lagrangian 
destroying its high symmetry, but this is not particu
larly relevant to the problem of the existence of 
particlelike structures, whose finite mass is governed 
classically by the constant K. 

The field theory may be quantized in the canonical 
manner. The conjugate variables are (apart from a 
numerical factor) the local rotation operators (fourth 

components of spin currents) 

E 
lix) = 47T2 [(By,BYi + K2)~"p - (Ba.iBPi)]Bpo 

= Ga;fJBpo 

(i denotes the space indices, summed from I to 3, 0 is 
the real time index), with the fundamental commuta
tion relations 

[/a;(x'), U(x)] = -iT",U(X)~(x' - x), 

from which 

[I",(x'), Bpi(x)] 

= iE",pyBYi(X)~(X' - x) + lM",po,~(x - x'). 

In terms of these variables 1 and B, the physical 
quantities are: 
Hamiltonian: 

B(I, B) = J1a.(X)G;;Ip(X) d3x 

+ 8:2 J {[(Ba.iB",;)2 - (Ba.tBa.j)(BpiBpi)] 

+ 2K2(BrJ.,B"i)} d3x, 

where Ga.p(B) is the inertia tensor relating I", with Bpo , 
defined above; 
momentum: 

Pi = 2 J1a.Ba.id3~; 
angular momentum: 

Jt = 2Eiik f la.xjBi%k d3x. 

There are two internal symmetries leading to the 
conserved quantities 

H =f1 d
3
x '" '" 

and 

D", = J1rJ.d3x; 

here Ia. rotates U "on the right": 

[l,,(x'), U(x)] = U(lTrJ.)~(X' - x). 

The 1rJ. are an orthogonal transformation of the I"" 
defined by 

T,.1", = U+TplfJU, 

and commute with the I", . 

4. TOPOLOGY 

A particular field distribution, such as U(x) , is 
a mapping from coordinate space onto the space of 
field values. In model A the latter is a circle; in model 
B it is a three-dimensional sphere S3. In both cases 
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"infinity" is mapped onto a fixed point; it is then 
possible to regard the coordinate space as a spherical 
rather than Euclidean space, so that in both models 
the mapping is from one sphere to another of the 
same dimension, with a fixed point of one mapping 
into a fixed point of the other. The quantum number 
N is then just the degree of the mapping, which is the 
only topological characteristic of the mapping of 
one sphere onto another. 

The topological significance of N means that the 
mapping space (the space of all maps with a fixed 
pair of corresponding points) is composed of sub
spaces labeled by N, so that maps in one subspace are 
all deformable into one another but not into those of 
another subspace. The classical evolution of the system 
may be pictured as a deformation of the map, thus 
showing alternatively how N must be a classical 
constant of the motion. 

A quantum state may be regarded as a functional of 
U(x), i.e., a function defined on the mapping space. 
As N commutes with H, a state initially defined on 
just one subspace will remain on that subspace. 

A map with N = I will have, by Brouwer's theorem, 
at least one point where U = -1 and det Ba; > 0; 
this point may be identified with the "center" of 
the particle. More generally there may be m > 1 
points at which if = -1 and det B > 0; then there 
will also be (m - 1) points at which U = -1 and 
det B <0; this situation would be identified with a 
configuration containing m particles and (m - 1) 
antiparticles. 

The difficulty in trying to associate these states with 
fermions having spinor symmetries is that the latter 
could not be (proper single-valued) functions defined 
on the mapping space. In model A indeed, the 
operators associated with particles involved F = 
exp (tioc), which is a double-valued function on the 
circle of values exp (ioc). 

To define such functions properly, we must go to 
the covering space of the mapping space, which in 
the case of model A means using the angle oc instead 
of the basic field variables cos oc, sin oc. It does not 
seem possible to give such a simple explicit representa
tion in the three-dimensional case. However, it is 
known that the covering space for maps from S3 
to S3 is double sheeted; in particular, a 217 rotation of 
a map of degree one is nontrivial, corresponding to 
a path from a point on one sheet to its mate on the 
other. This gives the possibility of defining spinor 
quantities on the covering space. 

A map with N = 1 may be deformed so that the 
region where U is significantly different from I is very 
small; the field distribution is then generally called a 

"kink," 2 e.g., a steep step of 217 in model A. Maps 
with N = 2 may be constructed by putting two kinks 
at different points, and so on. These could 'be added 
in either order giving the same maps, but the opera
tions correspond to opposite points in the covering 
space, as it is known2 that a path interchanging two 
kinks is nontrivial; it is therefore equivalent to a path 
corresponding with a 217 rotation, so that anti
symmetry of the particle operators is naturally associ
ated with change of sign on 217 rotation. Williams3 

showed functions of this type could be formed for the 
model B; these constructs, however, were not evidently 
associated with particle structures, and the object of 
this paper is to show how more realistic structures 
may be defined. 

5. PARTICLE COORDINATES 

If quantum particlelike states exist they will be 
characterized by quantum numbers such as momen
tum, spin, etc; we introduce some corresponding 
variables. 

Evidently one such variable should be a position, 
denoted by Xo with a corresponding momentum 
Po = - iVo. In model A this is all; there are just 
particles and antiparticles, steps propagating to the 
right and to the left, respectively; the operators FK 
depend only on the parameter Xo. 

In model B there must be some internal spin 
variables. To find the appropriate choice, consider 
the static classical field solutions. The only ones that 
have been found are characterized by the central 
position Xo and by a proper orthogonal matrix ea.; 

that links the space and isospin directions. The 
classical theory, moreover, has many similarities to 
the semiclassical theory of the symmetrical pseudo
scalar meson field4 in which the spin operators (jiTa. 

(of the usual meaning) become replaced by elZi • This 
suggests that we should introduce such a matrix as an 
internal coordinate. Conjugate to elZi are the rotation 
operators ta., Si that rotate the corresponding coordi
nate labels and are related by the identity 

so that SiSi = tlZt lZ , and Si' tlZ have eigenstates with the 
same total spin values (in terms of Eulerian angles 
these are just the solid harmonics). 

A particle operator depending on Xo and e"i would 
then describe not just one fermion or doublet of 
fermions but a family of isobars; the operator would 
be a generating function from which the different states 
could be projected. This seems both reasonable and 
quite desirable. 
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6. COLLECTIVE COORDINATES 

We seek to introduce the particle variables as 
collective coordinates, identifying them with appro
priate functions of the original field variables. 

In a general notation the standard procedure is 
this. We want to find solutions of the Schrodinger 
equation 

H1p(q) = E1p(q), 

where q denotes the set of independent physical 
variables. We introduce auxiliary variables qa and 
supplementary conditions Ak , acting only in the % 
space, with 

[Ak' AI] = 0, [H, Ak] = 0, 

so that the system 

H1p(q, %) = E1p(q), Ak1p(q, qa) = ° 
is trivially equivalent to the original one. We then 
make a suitable canonical transformation in the 
complete space; denote this by S so that 

H' = SHS-l, A' = SAS-t, 1p' = S1p, 

with new dynamical equations H'tp' = 0, A'1p' = 0. 
Suppose now H* = H' + L A~Ak' where the Ak 

are some multipliers, arbitrary functions of the 
variables, and that tp* is an eigenstate of H*, 

H*1p* = Etp*; 

,then we can form an eigenstate of H' by projecting 
onto the subspace allowed by the supplementary 
conditions 

for, since [H', A'] = 0, 

H'1p' = r'3(A')H'1p* = r'3(A')H*1p* = E1p'. 

In the original description the projected state is 

1p = Str'3(A')tp* = r'3(A)Sttp*. 

This analysis is quite general; it is useful if we can 
find multipliers Ak such that H* has the form H + 
Ha + Hint, where Ha is a suitable Hamiltonian 
describing motion of the collective coordinates and 
Hint can be treated as a perturbation. There will be 
different states tp* that project into the same state; 
this redundancy arises because the same original 
state may be described either in the original variables 
or with the help of the auxiliary ones; this is not 
generally a serious problem when the collective 'states 
are clearly physically distinguishable. 

In our application we can describe particle states 
either by kinks in the meson fields or by the auxiliary 
coordinates, and there will not be any difficulty 
provided that in the H* description we avoid any kinks 

in the meson fields, as indeed we should like to do 
since they cannot be generated by perturbations. 

The structure of the transformations has the 
following typical form. Suppose we want to identify 
qa with q and that Pa, P are the corresponding con
jugate variables. We start with 

H(q,p)tp = E1p, r'3(qa)tp = 0. 

The first step is to make the supplementary condition 
identify qa withq; this is achieved by Sl = exp (-ipaq), 
giving 

H(q,p + Pa) and r'3(% - q)tp = 0. 

The second step is to replace q by q + qa; S2 = 
exp (iqaP) gives 

H(q + % ,Pa) with r'3( -q)1p = 0. 

The complete transformation is 

S = S2S1 = exp (i%p) exp (-ipaq). 

7. APPLICATION TO MODEL A 

The original variables are oc(x) , (3(x) , with 
Hamiltonian 

H =ien 

[21T{32 + ..L(aoc)2 + K2 (1 - cos oc)] dx. 
-ex! 81T ax 41T 

Introduce the auxiliary variables xo, Po with the origi
nal supplementary condition 

A1p =Po1p = 0. 

An appropriate transformation is 

S = exp [i i en 

21T{3 dxJ exp [!ioc(xo)], 

which gives 0 

H({J, oc) ~ H({J - !r'3(x - xo), oc + 21T(J(X - xo» = H' 

and 

Po ~ Po + 21T{J(XO) - ! (aoc) - 1Tr'3(0) = p~. 
ax "'0 

Then 

and 

H! = H' + p~ = H + Po 

exhibits a complete separation of the modes. 
A similar transformation may be made with the 

factor e!ia replaced by r!ia; then 

H~ = H' - p~ = H - Po' 

These transformations introduce variables describing 
massless right- and left-going particles. The coordinate 
description of the particles can easily be generalized 
to a field description, and then, as described before, 
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they can be used as a basis for a self-consistent 
description of a massive particle. 

This analysis is somewhat unsatisfactory because 
of the singular nature of the operators S. Alternatively 
the following method may be followed which provides 
a better analog of that appropriate in three dimen
sions. The sharp step described by O(x - xo) is re
placed by some suitable smooth approximation to it, 
01(X - xo), which has a small finite width 

S = exp (i217 I P(x)Olx - xo») 

X exp (it I ex(x)O~(x - xo»). 

The only difference in the analysis is that now there 
is a contribution from the "potential energy" term 
in H, so that 

H! = H' + P~ 
= H + Po + K2 I[COS ex - cos (ex + 217(1)] dx. 417 

If we treat the last term in perturbation, the first 
approximation to it is a constant 

K2 I(1 - cos 217(1) dx = m 
417 

proportional to the width of the step. However, the 
form (Po + m) is not a relativistic particle Hamilton
ian, and so this does not give a suitable starting point. 
To describe a massive particle, we need a two-com
ponent description with a Hamiltonian of the form 
(expo + pm), where ex and (J are anticommuting 
matrices. 

The two-component description can be introduced 
quite naturally by considering together the two 
transformations that lead to H! and H~. Introduce 
an additional auxiliary variable which labels these, 
so that 

S(xo, p) = exp [i217 I POI] exp [Pit I exo~l 
where p can take on the values ± 1. This gives 

H' + p~p = H + PoP + m 

in the first approximation. This is not a suitable form 
for H*; however, we are free to add to it multiples of 
the supplementary conditions, and there must be a 
condition associated with the new variable p; we 
take this to have the form 

(~ + 1)11' = 0 

in the original description, where ~ anticommutes 
with p. Then we can add to H' the term -(~' + l)m 
giving 

H* = H + PoP - m~'. 

Here 

t = s~st = exp (-PiI(1X. + 2170l)O~dX) 

= ~exp (-PifexO~) 
since J 010~ dx = t. So in lowest order H* = H + 
poP + m~e-piIa6'1, which has a relativistic form 
[~, p are the analogs of Y4· Y5 in the usual Dirac 
equation notation]. 

The first approximation to an eigenstate of H* has 
the form 

11'* = lpO(ex)ukeikXo, 

where (kp + m~)uk = EUk and lpo(ex) is the vacuum 
state of the meson field. In the original description 
the projected state is 

lp(ex) = !5(Po)!5(~ + I)S\xo, p)lp* 

= f [v+ S tcxo, p )ukeikXO] dxo 11'0 , 

where v satisfies a + l)v = o. This shows how st is 
a generating function for particle creation. 

To develop a proper self~consistent theory, the 
analysis must be generalized to a field description of 

. the particles, introducing an auxiliary two-component 
field lp(xo). The transformation is similar but leads 
to additional two-particle interaction terms which in a 
one-particle state give a mass contribution propor
tional to a-I, just as in the classical theory the kinetic 
energy terms give a similar contribution to be balanced 
against the K 2a contribution of the potential energy. 

8. THE THREE-DIMENSIONAL PROBLEM 

In a three-dimensional problem, such as posed by 
model B, we seek a similar type of transformation 
with two factors, S = S2S1' where S2' analogous to 
exp (i J 217PO), introduces a kink and SI identifies the 
auxiliary momentum and spin variables with field 
quantities. 

It is easy to construct a suitable S2. Since the field 
values U form a group (here SU2), a transformation 
U ---+ U' = UoU, where Uo is anyone-kink field 
configuration, suffices. It is natural and convenient 
to choose a Uo that has a symmetry similar to that of 
the classical field solutions; a specially simple choice is 

U ( 
. ) a + iTaea;Cx - XO)i 

OX, Xo, ei = 
-a + iTaeai(X - XO)i' 

depending on the auxiliary variables Xo and eai; a is a 
length measuring the size of the kink. The transforma
tion is described by the operator 

S2 = exp (if Ia(x) eai(x ; XO)i mer) d3X) , 
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where r = Ix - xol and w(r) is a suitable angle 
function. 

S1' analogous to exp (fioc) of model A, should 
identify the auxiliary momentum vector Po with a 
suitable field expression, and the ea;i with a matrix 
characterizing the field orientation. It must also 
introduce the spinor character. For Uo, the fields 
Bf1.i near x = Xo are proportional to ef1.i' suggesting 
that ea;i should be identified with the "direction" of 
Ba;i near x = Xo. In general, however, Ba;i will not be 
proportional to an orthogonal matrix, but it can be 
used to define one uniquely by noting that any matrix 
with positive determinant can be written uniquely as 
the product of a real symmetric positive definite 
matrix with a proper orthogonal matrix, that is, 

with ca;p symmetric and fpi orthogonal; fai is also the 
orthogonal matrix such that Ba;da;i is maximal. We can 
then try to identify the auxiliary variables ea;i with 
the local values of the fai . 

It is convenient to describe the orthogonal matrices 
by corresponding quaternions E, P, which are 
uniquely defined, apart from sign, by 

Tf1.e"i = ETjEt, Tf1.fai = PTiPt; 

(that is, we are describing 0 3 by its double-valued 
SU2 representation). Then P is defined, apart from 
sign, in terms of B"i by the eigenvalue equation 

Ta;Ba;iPTi = ;'P, 

with the maximum value of A. Alternatively we may 
write the 2 x 2 matrix P as a four-component vector 
cp, and the corresponding equation is 

(/iT"Ba;iCP = -ACP, 

where (/ and T are two sets of Pauli matrices acting on 
the four-component cP, which is therefore seen to be a 
spinor in both the spaces labeled by oc and i. 

The quantity cP satisfies the reality condition cp* = 
(/2T2CP, in the usual conventions, which is consistent 
with the eigenvalue equation. It is this that enables us 
to define a spinor quantity uniquely apart from sign 
in terms of the fields B. In contrast, a spinor quantity 
cannot be defined by a single vector; for a vector a, 
the equation 

('t. a)x = ax 
might seem to define X' but its phase cannot be as
signed in any way independently of the coordinates. 

P is a double-valued function of the field, but it is 
single valued on the covering space; the sign of P must 
be fixed arbitrarily for one particular map taken as 

reference point, and is then uniquely defined for a 
map obtained by a given path from the reference one, 
provided that we avoid points for which det B = O. 

We can then write P = ei1Ta;8a;, where e is a function 
of the map in the covering space. The transformation 
S = exp (ita;(),,), where ta; are the rotation operators 
for the ea;i' then gives 

s.ts-1 = e-i!ra:0f1.E = ptE. 

So a supplementary condItion E = 1 is transformed 
into E = P as wanted. At the same time, as will be 
seen below, S identifies the momentum Po with an 
appropriate field quantity. 

9. APPLICATION TO MODEL B 

We apply these ideas to the model B defined in 
Sec. 3. The transformation considered is S+ = S2S1 
where S2 was defined above to introduce a kink so that 
U(x) - Uo(x; Xo, ea;i)U(X). 

S2 induces the following consequential changes on 
the field variables: 

o -0 
Ba;i - Ba;i + fY"pBPi = fY"p( - BPi + Bpi)' 

Ia;-Wa;plp, l,,-la;. 

Here B~i is the field due to the source Uo 

B:i = b(r)ea;;R;lx - Xo), r = Ix - XoI, 

b(r) = 2a(a2 + r2)-1, and Rji is the orthogonal matrix 

R;i(X) = [b;i(a2 - r2) + 2XiX; + 2aEiikxk](a2 + r2)-1, 

with 

R = a + iTa;Xrz = [-Uo(x; 0, 1)]t. 
(a 2 + r 2)1 

Wrzp(x - xo) is an orthogonal matrix describing the 
rotation of the fields induced by S2: 

Wrzp = erz;(R2);iePi' 

It is convenient to introduce also B~i so that 
o -0 -0 0 

Brzi = - fY"pBpi' Brzi = - WprzBPi = -b(r)erz;Ri;; 

the significance of B will be discussed further below. 
We define S1 as in the last section, using for the 

B"j a suitable average of the field values near the 
sources. For the particular shape of Uo used in S2, it 
appears best to define an average by 

~i(B; Xo) = ~ fBa;;(X)R;;(X - Xo)b2(r) d3x; 
27T 

then, in particular, when B = BO, 

Vrzi = eai' 
So S1 = exp (it,,(),.), where P = eilra;8" satisfies 

T" V"iPTi = ;"P, with maximum ;". 
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The transformation S1 makes t ~ pt t, as shown 
above, and rotates the vector ta; it leaves unchanged 
the vector Si and the fields Bai . The field rotation 
operators [,,(x) transform to 

J,,(x) + A"p(x, B; Xo)/" , 
where 

A"ptp = f eW·8t/Ye-Ut.8 dA[iOy(B, xo), 1ix)]; 

the commutator at the end is a function only of the B 
andx,xo· 

In particular J A"p(x, B, xo) d3x = b"Il' This follows 
from a simple argument. It is clear from the definition 
of F that it must behave as a spinor for rotation of 
the B"t induced by the total spin operator 

that is, 

[H". F] = -!T"F or FH"Ft = Ha + !T". 

Then 
. t 
S1B"S1 = Ba + t" 

since, if we expand the left side in a series of com
mutators, all terms after the second involve only the 
mutual commutators of the la, which are similar to 
those of the iT". 

The total effect of the transformation S2S1 on the 
field variables is then 

B~i = SB"iS-
1 

= B~i + ~pBpi = W"p( -B$i + Bpi)' 

1~ = S1"S-1 = Wap1p 

+ A"p(x, BO + WB, xo{tp + f(bpy - Wpy)Jy} 

The transformation of tp by S2 exhibited in the last 
factor is derived by noting that the total spin tp + 
Hp = tp + J Ip d3x commutes with S2' 

For the auxiliary variables the transformation of Po 
is most easily found by noting that Sis translationally 
invariant and must therefore commute with the total 
linear momentum (PO)i + 2 S ["B"i d3x. 

E is transformed into Ft(BO + WB, xo)£; but 
F(BO, xo) = £ so that the transformed supplementary 
condition £1 = I is identically satisfied in its leading 
term (compare the end of Sec. 6). 

The consequences of this transformation combined 
with the supplementary conditions 

PoV' = 0, (£ - l)V' = 0 

are considered in the following sections. 

10. MOMENTA AND SPINS 

As mentioned above, P~i + 2 J I~B~i d3x = POi + 
2 J [,.B"i d3x, so that the condition p~ = 0 gives 

POi = 2 f [I;B~i - I,.Bai] d
3x. 

The term independent of the new fields is then 

2 f A"p(x, BO, Xo)B~i d3xtp • 

To evaluate A"p, we calculate the commutator of 
[,,(x) with F(xo) from the eigenvalue equations, using 
the selected definition of the average V,.;, and express 
the result in the form' 

[I,.(x), F(xo)] = -A,.ptTpP. 

Putting B = BO in the formula, we obtain the simple 
result 

A~p = A,.p(x, BO, xo) = (1/2172)b3(r)bItP ' 

r = Ix - x01· 
So the leading term for Po; is 

~ fe"iRjib4(r) d3xt,. = ! e"it" = - ! Si' 
172 a a 

The total angular momentum of the system is, 
originally, 

J; = 2E;ik f I"xjB"k d
3
x. 

To see how this transforms, it is convenient to use the 
supplementary conditions to begin instead with 

J i + Li + Si + t;, 

where L = Xo x Po is the auxiliary orbital angular 
momentum. The additional terms are zero because of 
the conditions Po = 0 and eai = b,,;. By a similar. 
argument to that used for H", we see that 

[Ji + L t , F] = FiTi 

and so, as before, SI(Ji + Li + ti)SI = J i + L i • Also 
SI commutes with Si , and so does S2 with Ji + Li + Si 

since it is rotationally symmetric; thus the trans
formed angular momentum is 

S(Ji + Li + S; + ti)st = J i + L; + Si' 

The internal symmetry operators are H~ = H,. + I", 
n~ = H". 

11. HAMILTONIAN 

The transformed Hamiltonian is 

H' (J, B) = H(I', B'). 

Consider the terms independent of the new fields. 
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These are 

j A~ptp(Gol) .. yA~~t6 d3x 

where 

+ ~ J[(B~iB~i)2 - (B~iB~;)(BpiBpj) 
8m 

+ 2K\B~iB~i)] d3x, 

(Go)"p = (e/4172)[(B~iB~i + K 2)b"p - (B2iBpi)]' 

Now B2iBgi = b2(r)ba.p, and so 

G~p = (e/4172)(2b2(r) + K2)ba.p, 

while, as above, 

A~p = (1/2172)b3(r)ba.p. 

So the leading terms in H' are 

( 
1 j b

6

(r) d3x)t t 
2172 b2(r) + iK2 p P 

+ ...!.- j(3b4 + K 2b2
) d3x. 

4172 

For comparison with the usual field theories, it may 
be convenient to introduce a point particle as auxiliary 
(although this may not give the best scheme of approx
imation), i.e., to regard a as very small. Then we may 
neglect K in the integrals to give 

(I/ea)t .. t .. + 3e/2a. 

Suppose also that we are only concerned with 
spin-! states; then we should want H* to contain a 
term ±poi(2si ). If we took H* = H' - p~i2si' the 
leading terms in H* would be 

H + (l/ea)t .. t .. - (2/a)sisi + 3e/2a. 

If e = t, the first two terms cancel, leaving a mass 
term from the potential energy, whose divergence 
should be largely cancelled by the self-energy correc
tions. 

However, the terms (-p~i2si + m) are not a 
relativistic particle Hamiltonian; to achieve that, we 
must introduce an extra variable like p for model A, 
associated with the parity symmetry. 

12. PARITY 

Consider the symmetry properties of the system 
under inversion. The original meson field theory is 
obviously invariant for the transformations 

R: U(x) -+ U( -x) and C: U(x) -+ ut(x). 

C is a charge conjugation operation and R appears to 
correspond to "CP." In connection with C it i~ 

convenient to introduce the charge conjugate fields B 

defined by 0/lUt = iT .. D"/lut so that Da.i = -ga.PDPi' 
where UTflUt = g"p'Tp; corresponding to them are the 
conjugates ia. = -g"pIp (see also Sec. 3). Then C 
gives B -+ D, 1-+ i, in particular the particle density 
det B -+ lEI = -det D, since g is proper orthogonal, 
and so, in the suggested interpretation, will change 
particles into antiparticles. 

The space inversion defined by R makes Dai(x) -+ 

- D"i( -x) and therefore also changes the sign of 
det D, suggesting that it should be regarded as a 
"CP" operation. 

The combined operation RC appears to be the 
proper parity operation: 

RC: U(x) -+ ute -x), Dai(x) -+ -Dai -x), 

- I .. (x) -+ ia( -x). 

Consider the effect of RC on the transformation S, 
supposing that R also transforms Xo to -XO' In S2 
the effect is to change Ia into i,. and to change the sign 
of the factor (x - xo); it is the operator which makes 
Ut(x) -+ UJ(x, xo, e)Ut , i.e. U -+ UUo. It is obviously 
as reasonable to introduce a kink by multiplying U 
on the right as on the left, and we would expect the 
two operations to enter symmetrically into a theory. 

On Sl the effect is to transform it to 81 , defined 
similarly in terms of a local field average, which 
becomes 

Va; = ~ J[ -E,,;(x)]R;;(x - Xo)b2(r) d3x. 
217 

The new transformation 8 then gives !J~i = B2i + 
WpflBpi , and Va; evaluated for D = no is again equal 
to e"i' 

In the transformed HaJ1liltonian, the leading 
additional terms are the same as with S. The leading 
term in the momentum, however, changes sign, as it 
should for a parity transformation, so that with this 
S we should naturally consider H~ = H' + p~i(2si)' of 
which the leading terms are H + POi(2si ) + m. 

13. DIRAC HAMILTONIAN 

We can treat these two equally good types of trans
formation in a symmetrical manner by introducing 
extra variables p, ; just as for model A; these are 
anticommuting matrices with eigenvalues ± 1. It is 
natural to use a representation in which p is diagonal, 

In this representation the transformations are com
bined as (g~), which we now simply write as S. We 
introduce the supplementary condition ($ - 1)1f' = O. 
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~ transforms into 

( 
0 sst) 

~' = s~st = sst 0 . 

sst differs from unity because UoU:¢ UUo, but the 
difference is small when the transformed fields can 
be regarded as small: This can easily be verified by 
detailed study of the operator. 

We therefore consider H* = H' - p~i(2siP) + 
(~' - l)m so that, for a suitable choice of m, 

H* = H - POi(2si P) + m~ + interaction terms. 

For states with spin t, the expression [-Poi(2s i P) + 
m~] has exactly the structure of the Dirac Hamiltonian 
(IX' P + pm). 

We have thus shown that a Dirac Hamiltonian can 
be introduced in a quite natural way to describe the 
particlelike modes of the meson field. 

JOURNAL OF MATHEMATICAL PHYSICS 

14. COMMENTS 

To investigate whether this analysis does give a 
starting point from which valid solutions describing 
particles can be constructed, the transformations 
must first be written with auxiliary fields for the 
particles rather than coordinates; then the interaction 
terms can be investigated by standard field theoretic 
methods, and it is possible that, for some suitable 
choice of kink Uo' perturbation theory might lead to 
a solution free from divergences. 

The model should also contain isobaric states of 
higher spin; the choice made for H* is evidently 
inappropriate for these as it is certainly not then 
relativistic. 

1 T. H. Skyrme, Proc. Roy. Soc. (London) A260, 127 (1961). 
2 D. Finkelstein, J. Math. Phys. 7,1218 (1966). 
3 J. G. Williams, J. Math. Phys. 11, 2611 (1970). 
• W. Pauli, Meson Theory of Nuclear Forces (Interscience, New 

York, 1946). 
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Comment on a Paper of Chiang 

H. W. GOULD 

West Virginia University, Morgantown, West Virginia 26506 

(Received 13 May 1971) 

This is a rebuttal to a paper by Chiang [J. Math. Phys. 10, 2098 (1969»). 

It seems necessary to defend my paper! against 
presumed errors noted by Chiang,2 who uses the 
gamma function in his argument. Ever since the time 
of Newton and through all the work of Euler, Abel, 
et al., it has been correct to define the binomial 
coefficients by the formula 

(
x) = x(x - 1) ... (x - n + 1) (1) 

n n! 

whenever n is a nonnegative integer and x is an 
arbitrary complex number. From this definition it is 
trivial to verify the truth of the identity 

(~x) = (_I)n(x +; - 1), (2) 

which I gave in my paper and which result is standard 
in any text on combinatorial theory. Chiang believes 
that (2) as well as the Vandermonde addition theorem 
noted in my paper are incorrect because use of the 
gamma function gives 

rex + 1) 

n! rex - n + 1)' 
(3) 

which is at first blush indeterminate for negative 
integers x. However, what he ignores is that the 
gamma function satisfies the functional relation 

rex + 1) = xr(x), (4) 

a standard and well-known property by which the 
range of meaning of the gamma function is extended. 
See Artin's monograph for a good treatment.3 

Repeated use of (4) gives us 

xr(x) ----'-'--- -
n! rex - n + 1) 

x(x - 1)(x -2) ... (x - n + l)r(x - n + 1) 

n! rex - n + 1) 

and here we either cancel the gammas or, in the case 
of indeterminacy, the ratio tends to 1, so that the 
gamma function approach is consistent with the 
purely algebraic polynomial method. Chiang's note is 
therefore in error. 

1 H. W. Gould, J. Math. Phys. 10, 49 (1969). 
2 D. Chiang, J. Math. Phys. 10, 2098 (1969). 
3 E. Artin, The Gamma Function (Holt, Rinehart and Winston, 

New York, 1964). 
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Useful Procedure for Computing the Lattice Green's FunCtiOD
Square, Tetragonal, and bee Lattices 

TOHRU MORITA. 

Department of Applied Science, Faculty of Engineering, Tohoku University, Sentiai, Japan 

(Received.2 November 1970) 

A recurrence relation, which gives the values of the lattice Green's function along the diagonal direc
tion from a couple of the elliptic integrals of the first and second kind, is derived for the square lattice 
by an elementary partial integration. The values of the square lattice Green's function at an arbitrary 
site are then calculated in a successive way with the aid of the difference equation defining the function. 
Discussions are given of the application of this result to the calculation of the lattice Green's function 
of the tetragonal and body-centered cubic lattices. 

1. INTRODUCTION 

For the rectangular lattice, the lattice Green's 
function has been investigated with the aid of the 
Mellin-Barnes type integral by Katsura and Ina
washiro.l The function along the diagonal direction 
was expressed in terms of the hyper-geometric 
function. For the special case of the square lattice, 
the lattice Green's function at an arbitrary lattice 
site can be calculated from the values along the 
diagonal direction. Thus they obtained the lattice 
Green's function at an arbitrary site for the square 
lattice. 

With the aid of the expression obtained by Katsura 
and Inawashiro, the present author2 derived a 
recurrence relation which gives the values along the 
diagonal direction from a couple of values of complete 
elliptic integrals of the first and the second kind for 
the rectangular lattice. Thus the calculation is simpli
fied for the lattice Green's function along the diagonal 
direction for the rectangular lattice and for the 
function at an arbitrary site for the square lattice. 

In the present paper, we show that an elementary 
consideration leads to a simpler recurrence relation 
which gives the function along the diagonal direction 
from a couple of values of complete elliptic integrals 
of the first and the second kind for the case of the 
square lattice. 

In a separate paper, 2 the present author provided 
a procedure for calculating the lattice Green's function 
at an arbitrary site for the orthorhombic lattice. 

We show that the present method of calculating 
the square lattice Green's function provides a simpler 
procedure for calculating the lattice Green's function 
at an arbitrary site for the case of the tetragonal 
lattice. We also obtain a procedure for calculating 
the function at an arbitrary site for the body-centered 
cubic lattice. 

2. BASIC FORMULAS FOR THE SQUARE 
LATI'ICE 

The lattice Green's function for the square lattice 
is the solution of the difference equation which 
involves the t5-function type inhomogeneous term: 

2tG(t; m, n) - yG{t; m + I;·n) - yG{t; m - 1, n) 

- yG{t; m, n + 1) - yG(t; m, n - 1) 

= 2t5m •ot5n •o• (2.1) 

The required boundary value is zero at m2 + n2 _ 00. 

The solution of this equation is 

( ) I i 1t
d i1t

d cos my cos nz G t; m, n = - y z . 
71'2 0 ° t - y cos y - y cos z 

(2.2) 

In Fig. I, two natural ways of introducing the 
coordinate axes are shown for the square lattice. 
Fig. 1 (a) is the ordinary way and has been adopted in 
writing equations (2.1) and (2.2). If we adopt the way 
of Fig. I (b), we write the difference equation as 
follows: 

2tG'{t;m',n') - yG'{t;m' + l,n' + 1) 

- yG'{t; m' - 1, n' - 1) - yG'(t; m' + 1, n' - 1) 

- yG'(t; m' - 1, n' + 1) = 2t5m'.ot5n •• o, (2.3) 

where m' + n' must always be even. The boundary 
value is zero at m'2 + n'2 - 00. The solution is 

, " Jl 1 1t
d 'l1td , cos m'y cos n'z G(t'm n)=- y z . 

" 71'2 0 ° t - 2y cos y' cos z' 

(2.4) 

1744 
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• n 
3' • • 

• 2 

• I • • • 

• 0 m 
0 2 3 

• t • • 
FIG. 1. Two ways of 

(a) introducing the coordinate 
axes in the square lattice. 
(a) The ordinary way. (b) • 
An alternative way. 

• • • 
i ~ • • • 

" " 
• • 'l, • 'l, 

• • • • /0.0", 
( b I 

The transformation from (2.1) and (2.2) to (2.3) and 
(2.4) is achieved by 

y' = (y + z)/2, z' = (y - z)/2, 

the following integral 

f dy cos ny(1 - k2 cos2 y)l (3.4) 

is expressed in two ways, in terms of Fn(k2). First, we 
write (3.4) as 

Cll'dy cos ny(1 - P cos2 y) 

Jo (1 - k2 cos2 y)l 

= -(k2J4)F n+Z(k2) + (1 - kZ/2)F n(k2) 

- (kzJ4)F n_2(k2). (3.5) 

On the other hand, by a partial integration, (3.4) is 
reduced to 

1 lll'd' k
2 

cos y sin y 
- - y sm ny l 

n 0 (1 - k2 coS2 y) 

= -(k2/4n)[F n_lkz) - F n+2(k2)]. (3.6) 

By equating (3.5) and (3.6), one obtains the following 
recurrence relation for Fn(k2): 

Fn+2(k2
) = [2n/(n + 1)](2/k2 - I)Fn(k2) 

- [(n - I)/(n + 1)]Fn_ 2(kZ). (3.7) 

Applying formula (3.7) to (3.3), one obtains 

m' = m + n, n' = m - n, 
(2.5) G(t; m + I, m + I) 

G'(t; m', n') = G(t; (m' + n')/2, (m' - n')/2), = [4m/(2m + 1)](t2/2y2 _ I)G(t; m, m) 

G'(t; m + n, m - n) = G(t; m, n). - [(2m - 1)/(2m + 1)]G(t; m - 1, m - I). (3.8) 

3. SQUARE LATTICE: ALONG THE DIAGONAL 
DIRECfION 

The square lattice Green's function along the 
diagonal direction is expressed as G(t; m, m), which 
is equal to G'(t; 2m, 0) by (2.5). By (2.4), it is expressed 
as follows: 

1 ift cos 2my 
G(t; m, m) = - dy l' (3.1) 

1T 0 (t2 _ 4y2 cos2 y) 

In terms of the definite integral Fn(k2) defined by 

G(t; m, m) is expressed as follows: 

1 (4y2) G(t; m, m) = - F zm -2 . 
1Tt t 

(3.3) 

In order to derive a recurrence relation for G(t; m, m), 

When m = 0 and 1, (3.1) gives 

G(t; 0, 0) = (2/1Tt)K(2y/t) (3.9) 
and 

G(t; 1, 1) 

= (2/1Tt)[(tz/2y2 - I)K(2y/t) - (t2/2y2)E(2y/t)]. 

(3.10) 

All the diagonal values G(t; m, m) are now calculated 
by the recurrence formula (3.8) from the knowledge 
of the complete elliptic integrals of the first and the 
second kind, K(2y/t) and E(2y/t). 

If t> 2y, one uses (3.9), (3.10). For arbitrary 
complex values of t, one may use them.s But if t = s -
i€ and 0 < s < 2y, it is more convenient to use their 
analytic continuations, which are obtained by 
replacing K(l/k) and E(I/k) in (3.9) and (3.10), by the 
r~ght-hand sides of the following equl\tions: 

K(I/k) = k[K(k) + iK(k')], (3.11) 

E(l/k) = (l/k)[E(k) - iE(k') - k'2K(k) + ik2K(k')] , 

(3.12) 
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where 
(3.13) 

and 
l/k = 2y/(s - iE) = (2y/s) + i£. 

4. SQUARE LATTICE: ARBITRARY SITE 

By the difference equation (2.3) or (2.1) one obtains 
the square lattice Green's function at an arbitrary site 
from the values along the diagonal direction.2 The 
steps to be followed are 

G(t; 1,0) = [2tG(t; 0, 0) - 2]/4y, (4.1) 

0'(/; m + 1, m) 

= [2tG(t; m, m) - 2yG(t; m, m - 1)]/2y. (4.2) 

If 0 < n < m, one has 

G(t; m + 1, n) 

= [2tG(t; m, n) - yG(t; m - 1, n) 

- yG(t; m, n + 1) - yG(t; m, n - l)]/y. (4.3) 

The values on the axes are obtained by 

G(t; m + 1,0) = [2tG(t; m, 0) - yG(t; m - 1, 0) 

- 2yG(t; m, l)]/y. (4.4) 

5, TETRAGONAL LATTICE: ARBITRARY SITE 

The lattice Green's function for the tetragonal 
lattice is given by 

G(t; 1, m, n) 

1 i" i" = - dx dy 
1T

3 
0 0 

i"d cos Ix cos my cos nz 
X z . 

o t - YI cos X - Y cos Y - Y cos z 
(5.1) 

Comparing with (2.2), we write this as follows: 

11" G(t; I, m, n) = - dx cos lxG(t - YI cos x; m, n). 
1T 0 

(5.2) 

If this function is calculated for the square coordinate 
plane, namely for I = 0, the values for nonzero I are 
calculated by the difference equation defining the 
function: 

G(t; 1, m, n) 

= [2tG(t; 0, m, n) - 2bm .obn .o 
- yG(t; 0, m + 1, n) - yG(t; 0, m - 1, n) 

- yG(t; 0, m, n + I) - yG(t; 0, m, n - 1)]/2YI' 

(5.3) 

For 1 ~ 1, one has 

G(t;l+ 1,m,n) 

= [2tG(t; I, m, n) - yIG(t; 1- 1, m, n) 

- yG(t; I, m + 1, n) - yG(t; I, m - 1, n) 

- yG(t; I, m, n + 1) - yG(t; 1, m, n - l)]/Yl' 

(5.4) 

6. bbc LATTICE: ARBITRARY SITE 

The lattice Green's function for the bcc lattice is 
given by 

G(t; 1, m, n) 

= ~ (" dx (" dy (" d; cos Ix cos my cos nz . (6.1) 
1T Jo Jo Jo t - y cos x cos y cos z 

This is expressed as follows in terms of the function 
G' for the square lattice: 

2 ITT cos Ix '( t ) G(t; 1, m, n) = - dx -- G --; m, n " 
1T 0 cos X y cos x 

(6.2) 

For this case again, we can show that the values at an 
arbitrary site can be calculated from the values on a 
coordinate plane with the aid of the difference 
equation satisfied by the lattice Green's function. 

7. CONCLUDING REMARKS 

The lattice Green's function for the square lattice 
has been numerically computed from the complete 
elliptic integrals of the first and the second kind, via 
the formulas (3.8)-(3.13) and (4.1)-(4.4). The result 
obtained agrees with the one given by Katsura and 
Inawashiro.l Since the arithmetic-geometric mean 
procedure allows us to calculate the complete elliptic 
integrals to the desired accuracy with ease,3.4 the' 
present method is a quite convenient one. 

In a recent article, Horiguchi5 presented a calcula
tion of the lattice Green's function G(s - iE, I, m, n) 
of the simple cubic lattice for the sites with 1 + m + 
n S 5 and I, m, n ~ O. He first calculated the function 
along an axis and then used the difference equation 
defining the function. The present method is superior 
to this in the respect that it allows the calculation 
of the lattice Green's function at an arbitrary site. 
There is not much difference in the respect of pro
gramming of the computations. 

In the present paper, an elementary partial integra
tion is used to give a recurrence formula. The same 
technique has been found useful to give recurrence 
relations for the values along the axes and the 
diagonal directions of the lattice Green's function for 



                                                                                                                                    

USEFUL PROCEDURE FOR COMPUTING THE LATTICE GREEN'S FUNCTION 1747 

the rectangular lattice. That result is applicable to 
the calculation of the orthorhombic lattice Green's 
function. 2 The same method has also been found to 
allow the calculation of the lattice Green's function 
for the fcc lattice. Those formulas and numerical 
computations with the aid of them will be published 
in the near future. 

The computer NEAC 2200 in the Computer 
Center of Tohoku University was used to calculate 

the square lattice Green's function by the method 
presented in this paper. 

* Present address: Department of Physics, Ohio University, 
Athens, Ohio, 4570l. 
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3 See T. Morita and T. Horiguchi, "Table of the Lattice Green's 

Function for the Cubic Lattices (Values at the Origin)" (Tohoku 
University, Sendai, Japan, 1971). 

4 R. Bulirsch, Num. Math. 7,78 (1965). 
5 T. Horiguchi, J. Phys. Soc. Japan 30, 1261 (1971). 
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The method of successive canonical transformation is developed to study both the classical and 
quantum versions of a system of n weakly interacting nonlinear oscillators. The method reproduces the 
essential features of the solutions to these nonlinear differential equations. A general quartic polynomial 
in the oscillator coordinates is taken as the interaction Hamiltonian. After the canonical transformations 
to the desired order, the classical system is quantized, resulting in immediate identification of the raising 
and lowering operators for the perturbed eigenstates in the nonresonant case. In the resonant case 
(commensurable frequencies) the transformed operators lead to finite-dimensional subspaces within which 
eigenstates lie, and are obtained by matrix methods. In each case the Heisenberg equations for the 
operators are solved as fully as presently possible. A particular case of two quantum osciIlators is studied 
in detail, both for the resonant and nonresonant cases. Finally, the method is generalized to the con
tinuum and applied to the Lee model. The usual results for the lowest sector are obtained to second 
order: the physical V particle and the mass shift of the V. Instability of this particle is related to the 
occurrence of nonlinear resonance in the lowest-order "interaction." 

1. INTRODUCTION 

Perturbation expansions for the differential equation 
satisfied by a single classical nonlinear oscillator have 
been known for some time, and the characteristic 
features of the nonlinearity are well understood. On 
the other hand, relatively little has been established 
in the more difficult search for approximations for 
autonomous systems of interacting classical nonlinear 
oscillators. 

In a particular system of two classical resonant 
oscillators, Brown' has shown that "entrainment" or 
synchronous oscillation is stable for a certain range of 
initial conditions, even though the amplitude depend
ence of the frequencies could destroy phase coher
ence, in principle. Qualitative statements of this fact 
can be found in mathematical literature,6 where it is 
asserted that near equality of the frequencies is enough 
to produce synchronous oscillation. A system of three 
classical nonlinear oscillators with COl + CO2 - C03 = 0 
is treated by Ibragovima,6 whose results can easily be 
extended to show that a certain relative angle between 

Internal resonance occurs in a system of n oscil
lators, frequencies {co;}, when these frequencies satisfy 
at least one linear commensurability relation 

the oscillators is itself a periodic function of the time . 
(Ll) This is a type of phase coherence. 

.. 
~ i;co; == i . w = o. 
;=1 

(Some, but not all, of the ij can be zero.) 
In general, the smaller the integers in the relation, 

the stronger the resonance effects, that is, the shorter 
the i vector in integer space. 

Certain rather elegant results for such classical 
systems in the presence of resonance have been 
achieved recently. 1 These we shall rely on heavily 
later, and defer for now. As for earlier work, the 
literature of celestial mechanics, from Poincare on, 
has wrestled with these effects, where the problem 
goes by the name "the problem of small divisors." 
Several phenomena in planetary orbits have been 
traced to nonlinear resonance. Stability of motion 
under resonant conditions has been a question studied 
extensively, with encouraging recent progress.2 . 

As for other efforts, the presence of resonance is 
necessary for equipartition of energy to be established, 
at least in a one-dimensional model studied by FordS 
and others. 

In addition to the intrinsic value of understanding 
systems of coupled nonlinear oscillators, especially 
the quantum versions of such systems, the extended 
problem of an infinite collection of coupled nonlinear 
oscillators leads to interesting questions concerning 
quantum field theories. 

The Heisenberg field equations of any nontrivial 
quantum field theory are nonlinear partial differential 
equations for the field operators as functions of space
time. In weakly coupled theories, it is traditional to use 
a perturbative expansion for approximating operators 
and matrix elements, especially if the theory is re
normalizable. The equivalence of a Feynman-Dyson 
expansion (with or without diagrams) to iterative 
schemes based on the LSZ integral equations with 
adiabatic switching for definition of the singular 
contribution from the Green's function is now well 
known. All such accepted methods suffer from any 
limitation which may exist on a Green's function 
approach to an iterative solution of a nonlinear 

1748 
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equation. That there are such limitations in general 
has been argued recently in nonlinear equations 
ranging from the one-dimensional anharmonic oscil
lator (classical and quantum)? to the field equation 
for a Arp4 self-coupled scalar field.s 

This paper affords a perturbative method for either 
solving directly or greatly simplifying these equations 
while reproducing the essentially nonlinear properties 
(or "parts") of the solution. It is these essentially 
nonlinear parts which are given improperly by Green's 
function techniques. The technique developed here is 
not new, except in the extension to the quantized 
version of the problem and to continuum problems. 
It is the method of successive canonical transformation 
first enunciated by Birkhoff9 for the classical problem 
of a mechanical system of n degrees of freedom near 
equilibrium, and it has since gained wide acceptance 
and usage. Dealing as it does with the classical equiva
lents of the raising and lowering operators, the method 
allows quantization very directly and simply. 

In Sec. 2 the basic method is outlined for a very 
simple system: the anharmonic classical oscillator 
with a perturbing potential. This system is quantized 
and the operator-valued frequency recovered in 
agreement with the previous treatment of this prob
lem.7 Details of the transformation are deferred to 
Appendix A. 

Systems of n coupled nonlinear oscillators are next 
discussed in Sec. 3 with a general quartic interaction 
in the oscillator coordinates. (The restriction to a 
quartic is inessential.) The existence of approximate, 
separating constants of the motion beside H is 
discussed in both resonant and nonresonant cases 
drawing on the work by Gustavsonl mentioned above. 
The implications for the quantized version of the 
system are drawn. There exists a set of conserved 
"number operators" made up of the nonconserved 
number operators of the separate oscillators. The 
problem of finding the energy eigenpairs in the harder 
resonant case is discussed. 

Next a concrete quantum two-oscillator problem is 
worked to first order in the coupling, both without 
resonance and with it, in Sec. 4. In the nonresonant 
case, the Heisenberg equations of motion for the 
position operators Xj(t) are integrated directly. One 
again gets operator-valued frequencies. The Hamilto
nian is a function of the two conserved "renormalized" 
(or transformed) number operators so that the 
eigenpairs of H are immediate. In the resonant case 
the canonical transformation can only simplify the 
problem. One identifies finite-dimensional invariant 
subspaces within which the eigenpairs of H are sought 
by ordinary matrix methods. 

Finally, we apply an extended version of the method 
to the Lee model (a continuum problem) in Sec. 5. 
The low sectors of the Lee model are exactly soluble, 
and show only some of the effects of the nonlinearity 
in the equations of motion. Nonlinear resonance 
between different k-modes of the field seems not to 
lead to important effects in the lowest sector. But the 
method reproduces the usual results of this sector 
when carried to second order in the coupling: (i) the 
identity of the physical V as a mixture of bare V and 
bare NO states, (ii) the mass shift accurate to order g~" 
(iii) NO scattering. The details of the mass shift 
problem are left for Appendix B. 

Thus, the method of successive canonical transfor
mation seems to be a good candidate for further 
calculation in weakly-coupled field theories to obtain 
any new effects due to the intrinsic nonlinearity which 
the methods based on Green's functions or "switching" 
have either omitted or modified. 

2. THE CANONICAL APPROXIMATION FOR ONE 
OSCILLATOR 

As an example of the quantization procedure to be 
employed for the quantum case in Heisenberg repre
'sentation, let us consider a well-studied problem. A 
massive particle moves in one dimension with the 
following Hamiltonian (m = I, Ii = I): 

H = Hp2 + W2q2) + !€W2q4. (2.1) 

Hamilton's equations imply at once a second-order 
equation for q(t): 

(2.2) 

The solution to this equation has been widely 
considered as a kind of prototype for all nonlinear 
differential systems.lO It is for one thing the first 
correction to the motion of a string pendulum, where 
q is the angle and € = -to Many perturbation 
methods for successive approximation to q(t) have 
been detailed. However, the method of successive 
canonical transformation gives a very direct pertur
bative approach to the solution and is perhaps the 
most meaningful in the extension to quantum me
chanics. In the quantum case it enables one to deal 
directly with the classical equivalents of the raising 
and lowering operators. 

Let us introduce a new complex variable n(t) in 
place of the two real variables, which is a coordinate 
canonical to its cohtplex conjugate ;(t) = n*(t), with 
respect to a "Hamiltonian" H' = -iH: 

net) = i(2w)-1[p(t) - iwq(t)]. (2.3) 
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The function 'Yj is the coordinate and ~ the conjugate 
momentum. Explicitly, the Hamiltonian takes the 
following form: 

H' = -iw~'Yj - i(E/16)(~ + 'Yj)4. (2.4) 

A sequence of canonical transformations (~, 'Yj)-+ 
(~, ij) is to be carried out, to successively higher orders 
in E and successively higher powers of (~, ij). The 
method is standard,I.9 and leads to the following 
form for H'(l, ij): 

H' = - iw L~o E1d;(~ij)i+1J. (2.5) 

where do = 1, dl = tw-l , d2 = - ~ ~ w-2• Having suc
ceeded in this, the solution to the rest of the problem 
is trivial. Hamilton's equations for ~ and ij are 

t = iW~C~o E1dlj + l)(~ij)i), (2.6) 

ij = -iwij(i Eid/j + l)(~ij)i). (2.7) 
i=O 

One finds immediately a constant of the motion 

:t (p2) = ~ (~ij) = 0 

=> p2 is a constant in time, p2 > O. (2.8) 

If the initial conditions on ij are parametrized as 
ij(O) = P exp (-i8), then these equations [(2.6) and 
(2.7)] become the following: 

d~ = iO~ 
dt ' 

(2.9a) 

dij .n--= -l:.l.'Yj, 
dt 

(2.9b) 

where 

n = wL~o Eid;(j + 1)(p2)J (2.9c) 

The solutions are immediate: 

ij(t) = ~(t)* = P exp [-i(Ot + 8)]. (2.10) 

Thus, one can achieve quite directly one of the major 
results of such nonlinear problems (and the general 
method is in no way restricted by the type or order of 
polynomial one chooses for HI)' They are known in 
many cases to be solved by Fourier expansions, not 
in the "unrenormalized" frequency w, but in a 
"renormalized" frequency n, shifted by an amplitude
dependent amount. Failure to account for this 
behavior leads to the difficulty known as secularity, 
which the present method avoids in a natural way. 

Convergence of the expansion of H in Eq. (2.5) 
and of n in Eq. (2.9c) is neither proven nor disproven 

here. To comment, we observe that convergence, if it 
occurs, must be limited to some region of initial 
conditions, the effective expansion parameter being 
Ep2, not simply E. In fact, the expansion is only 
believable, even asymptotically, for Ep2 < I, corre
sponding to HI! Ho small. But, in defense of possible 
convergence, one should note that neither expansion 
is a simple power series in E. If they were, it would 
rule out convergence on grounds of the analyticity of 
the exact elliptic integral solution to Eq. (2.2) in E. 

However, the constant p2 is related to the initial 
conditions x(O) and p(O) by a series expansion as 
well. If 'Yj(0) = a exp (-i1», then 

<Xl 

a exp (-i1» = I EibiP
2i+1f;(8). (2.11) 

1=0 

Thus, to obtain p2(a, 1», one would have to invert this 
series. Such a dual expansion may, in fact, converge 
for small a. l 

The details of the transformation method for this 
case and results to order E2 are given in Appendix A 
for reference. There we also outline the method for 
arbitrary order. At this point let us direct attention to 
the quantum version of this problem. As usual, the 
transformation (~, 'Yj) -+ a, ij) induces a parallel 
canonical transformation (p, q) -+ (p, ij) and leads to a 
new form for H: 

<Xl 

H = I Eidiw-i[!(p2 + W2ij2)]i+1. (2.12) 
i=O 

It is in terms of (p, ij) that quantization will now be 
carried out. One disposes of most of the complexity 
of the problem by greatly simplifying the classical 
Hamiltonian and only introduces the added difficulty 
of operators at this stageY Since the Poisson bracket 
of q and p at any time is 1, the operator representatives 
of ij and p (call them q and fl) must be chosen to 
satisfy the usual commutation relations 

[q(t), fl(t)] = i. (2.13) 

Let us introduce raising and lowering operators in the 
usual way: 

oc(l) = i(2w)-![fl(t) - iwq(t)], (2.14a) 

oct(t) = -i(2w)-![fl(t) + iwq(t)]. (2.14b) 

The commutator of oc and oct is just 1, as usual. 
Assuming there is a state of the sy.stem which is 

annihilated by oc(t) for all time, call it 10),12 one can 
construct a set of states at any time t just as in the 
usual harmonic oscillator. 
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Of course, these states are eigenstates of the re
normalized number operator N(t) = at(t)a(t), with 

N(t) In)t = n In)t. (2.16) 

Since N(t) commutes with H at any time, it is a 
constant of the motion. In fact, H has a direct ex
pression in terms of N alone. As is well known, the 
association between classical functions of fJ and q and 
quantum-mechanical operator representatives, ft and 
ij, is not uniqueP One must pick an ordering con
venti(;)ll with the correct physical properties. We shall 
adhere to the Weyl ordering convention, where the 
operator to be associated with the classical monomial 
pmijn is the coefficient of [em + n) !/m! n!] X ).mftn in 
the expansion of the product ().ft + ftij)m+n. This 
ordering gives an Hermitian association and positive
definite probability density. Under this convention, we 
obtain 

H = (N + t)w + lE(N2 + N + t)w. (2.17) 

One can also solve for the time dependence of the 
operator aCt) in terms of its initial (operator) value at 
t = 0, a o == a(O): 

eX. = -i[a, H] = -iQa, (2.18a) 
where 

Q = w[1 + £E(N + 1)]. (2.18b) 

It follows upon integrating Eq. (2.18) that, by taking 
care to maintain the correct ordering of operators, 
since [a, N] ¥: 0, 

aCt) = exp (-jQt)ao. (2.19) 

The relationship of the set of basis states at t = 0 to 
those at arbitrary t, obtainable in several ways, 
results trivially from Eq. (2.15): 

In)t = exp [i(~:Wj)tJ In)o, (2.20) 

where Wj is the eigenvalue of Q in the state Ij)t. It can 
also be verified simply that the coefficient of the 
factor (it) in the exponential is just E~l) - Eril ) , where 
H In)t = E~l) In)t. Thus, as a basis of the Hilbert state 
the set {In)d is essentially the same set regardless of t. 
Henceforth, we shall use {In)o}, denoting each state 
simply by In). If one compares Eqs. (2.17) and (2.18) 
with the results of Ref. 7, remembering that N = 
a+a + O(E), the coefficients of the N2 terms here 
agrees with that of the N2 = (a+a)2 terms there, while 
the other coefficients differ, as they must. 

To complete the discussion of one oscillator, let us 
consider the question of the convergence status of the 
approximation. Loeffel, Martin, Simon, and Wight
manu have recently offered a proof that the Rayleigh-

SchrOdinger perturbation series for the ground state 
energy of the X4 perturbed oscillator is asymptotic to 
the exact eigenvalue. They further prove that the 
Pade approximants constructed from the Rayleigh
SchrOdinger coefficients (given to 75th order by 
Bender and WUI5) converge to the eigenvalue. It is 
expected that the proof can be extended to En' but 
they offer no rigorous statement on the status of the 
Rayleigh-Schr6dinger approximation for the eigen
functions. The canonical method also gives an 
infinite series for En for every ordering choice but 
normal ordering. The order ).1 coefficient agrees with 
the RS value, while ).2 and ).3 differ slightly. We 
expect the ).n coefficient to differ also, for n ~ 4. 
Since an asymptotic expansion is unique, we conclude 
that the power series generated by the canonical 
method is not asymptotic. Some reflection suggests 
why this difference exists. Knowledge of the operators 
xCt) [and pet) and H which are implied by x] would 
yield a global solution. It would give all of the eigen
values and eigenstates. In the Schr6dinger repre
sentation one is solving for a Single eigenpair at a time. 
If these expansions are no better than asymptotic, one 
expects power series expansions of the operator H, 
x(t), and p(t) to be less convergent. Thus, the expan
sions for eigenvalues generated by the expansion of the 
operator will not be asymptotic. But the physical 
approximations behind the canonical method are 
valid and yield expansions for low-lying eigenvalues 
which closely approximate the eigenvalues. This has 
been verified numerically for. small ). « 0.1) to third 
order in the case at hand. The first few orders, then, 
"converge" toward the true values. Such approxi
mations are very common in physics and very useful, 
as long as they are qualitatively correct as well. 
Finally, we generate approximate eigenvectors in the 
sense discussed above. The references to the Schro
dinger representation studies14 defer on this question. 

3. n OSCILLATORS WITH QUARTIC 
INTERACTION 

The techniques and results to be described here are 
more general than the limitation to quartic interaction 
would suggest. Gustavson1 uses them for a classical 
two-oscillator problem from celestial mechanics with 
cubic interaction, while his general results assume an 
arbitrary power series expansion of the Hamiltonian, 
convergent in some neighborhood of an equilibrium 
point. For the purposes at hand the complexity of the 
completely general case is unnecessary. The issues to 
be met are difficult enough with a single order for the 
nonlinear coupling term. Second, for at least one sign 
of the coupling constant the energy surface is well 
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behaved for all values of the coordinates, making 
generalization to the quantum case more reliable. 
(The cut in the coupling constant plane along the 
negative real axis for a one-dimensional Ax' oscillator 
arises, physically, from the possibility of escape to 
infinity in finite time for a quantum particle in a 
negative .x4 potential via tunneling.) Finally, to shed 
light on the ).4>4 field problem, we select an interaction 
as much like it as possible. In a box the denumerably 
infinite set of coupled oscillator equations arising from 
decomposition into normal modes has a quartic 
interaction, which is just an infinite generalization of 
exactly the interaction to be considered. 

At first the discussion will focus on the classical case, 
drawing heavily on the results, methods, and some of 
the notation of Gustavson. Then the problems 
associated with quantization will be discussed. 
Consider, then, a set of n interacting, nonlinear 
oscillators with the following Hamiltonian: 

n 

Ho = I f(p~ + w~q~), 
v=1 

HI = I aljqlp'. 
111+111=4 

(3.1a) 

(3.1b) 

(3.1c) 

In the notation used here i and j represent an n-vector 
with nonnegative integer components, Iii = I:=1 i. , 
and qi = n:=1 q!'. 

Next we must define precisely the notion, degree, 
and order of resonance present in the system. The 
system has resonance of degree r when the frequencies 
{w.} are connected by exactly r linear integer commen
surability relations 

n 
Ic~a)w. = 0, (J = 1,2, ... , r, 
.=1 

(3.2) 

and the c~a) are arbitrary integers. (Examples are 
WI - W 2 = 0, WI + W 2 - W3 = 0, etc.) The case r = ° is called the nonresonant case. The order of each 
such relation is defined as the length of the c(a) vector 
in integer space. (Assume the c~a) are chosen relatively 
prime.) We have 

I - ~lc(a)1 (J = 1 2 ... r 
tT -",(., V , '" • 

.=1 

Thus, for a given set of n frequencies we identify 
resonance of degree r with orders {II' 12 , ••• , Ir }· 

The results of Gustavson may be summarized as 
follows: The original variables may be expressed as a 
formal infinite series of homogeneous polynomials of 
increasing order in canonically transformed variables, 
which bring H into a "normal form" in the new 

variables. In our notation we will discuss this normal 
form shortly. It is attained by a succession of canonical 
transformations, just as in the case of one oscillator. 
In addition he shows that there are n - r independent 
formal integrals or constants of the motion. If r ¢ 0, 
the n - r integrals are independent of H (itself an 
integral, of course). If r = 0, then there are n inde
pendent integrals and H is a function of them. 

Again let us introduce the complex variables 'fJ., n 
in number, 

'fJ.(t) = i(2w.)-t[p.(t) - iw.q.(t)], 

;.(t) = ['fJ.(t)]*. (3.3) 

After re-expressing H in terms of these variables, we 
obtain 

n 

Ho = I w.($.fJv), (3Aa) 
.=1 

HI = E I bu6/. (3Ab) 
111+1'1=4 

Here the multi-index notation is implicit as above. 
The parameter E is assumed small and Iblll ~ 1. The 
goal is to find a new set of variables OW(=> {~.}) in 
terms of which H takes on greatly simplified normal 
form and the integrals mentioned above become 
simple functions of the {ij.}. The transformation is to 
be exhibited as a formal power series: 

0() 

'f/v = ijv + I EP,f~2p,+1)(ijv, tv), 
p,=1 

0() 

;v = tv + kEP,[f~2P,+1)(ij., ~.)]*. (3.5) 
p,=1 

The functions f?P,+I) are homogeneous polynomials of 
order 2~ + 1 in the indicated variables: 

f~2p,+1) = I ri~'·2P,+1)~lij'. 
111+/l1=2p,+1 

(3.6) 

The choice of the generating functions for the 
sequence of transformations is given by Gustavson in 
slightly different variables. Here let us carry out only 
the lowest order to indicate concretely how the 
procedure works: 

F '" -II Ki'fJ., <;.) = E k, kil~ fJ , 
111+/l1=4 

Kiij., ~v) = E ! kueij'. 
111+111=4 

The transformation generated is, as before, 

_ oKi'YJ, ~) 
'fJ. = 'fJ. - O~. 

$v = ~y + oK4(fJ, !) . 
a'f/. 

(3.7a) 

(3.7b) 

C3.8a) 

(3.Sb) 
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But, we can use K4 to order E as well, introducing 
differences only in higher order: 

_ - _ oKlij, l) + O( 2) 
'YJ. - 'YJv a - E , 

~. 
(3.9a) 

~v = $v + aK~~ii' $) + O(E2). 
'YJ. 

(3.9b) 

If H(!') represents the order p. terms in H in terms of 
transformed variables, then our results due to this 
substitution for H(O) and H(l) are 

n 

R(O) = 2, W.(l.ij.) , (3.10a) 
.=1 

(1) ~ (- OK4 - OK4) '" b EH R = ,,-wv 1].-iJ- - ~.-;-=- + E "- w.1]· 
v~l 'YJv V~v 111+11\=4 

(3. lOb) 

Thefirstterm in H(l) can be calculated from Eq. (3.7b): 

= E 2, kll(±(jv - iv}Wv)llijl. (3.11) 
111+1l1=4 .=1 

For a given pair of vectors {i, j} let (i - j,w) represent 
the n-vector scalar product 2,~=1(iv - jv)wv. Then the 
expression for H(l) can be written as follows: 

R(1)=E 2, {bll-ki!(i-j,w)}~liil. (3.12) 
111+111=4 

All such terms become zero by appropriate choice of 
ku except those which sati.sfy (i - j, w) = 0: 

(3.13) 

The case i = j automatically fails to satify Eq. 
(3.13). To the present order of approximation this 
represents at most n2 terms. The first feature of 
"normal form," then, is that it contains all terms of 
the type ~Iiil which were there originally with Iii = 2. 
Similar terms will be induced in higher order by the 
transformation and this statement will extend, 
although Iii will be greater. Let us call these terms the 
nonresonant irreducible Hamiltonian, since their 
presence does not require any resonance condition of 
the type in Eq. (3.2). 

Second, Eq. (3.13) can fail to be valid if one of the 
resonance conditions has order 4 or less. In this case 
we shall call the terms which cannot be removed by 
transformation the resonant part of the irreducible 
Hamiltonian. As the process is carried to arbitrary 
order, all of the resonance conditions will eventually 
come into play. 

One important caution is necessary here concerning 

a pitfall which the formal considerations tend to 
conceal. lffor some i andj, bll ,....., I and (i - j, w) ~ 0, 
but not exactly, then the coefficient kll in Eq. (3.13) 
will be very large. As a perturbative approach, then, 
this iteration scheme will become suspect at this order 
of approximation. This is, the author believes, a very 
deep but unresolved point, which probably means 
that the approximate integrals of the motion remain 
constant only on a certain time scale. For arbitrary 
{wv}, even if r = 0, there is an integer vector i such 
that (i, w)is arbitrarily close to zero. Such vectors 
may have to be very "long" in integer space, in fact 
usually are if r = O. A study of two oscillators by the 
author, with WI - W 2 ~ 0, shows that all of the 
characteristic features of resonance, such as syn
chronous oscillation, persist in low order at least. 
One might then be led to suspect that for arbitrarily 
high order the actual motion of the system approaches 
the case n = r for long times,and the only remaining 
constant of the motion is H itself. 

Having chosen kij as mentioned above and, with 
Gustavson, taken as zero all kl/ such that (i - j, w ) = 
0, we arrive at a unique choice for K4 • The function 
K4 then follows by simple substitution, ii. -4- 'YJv. The 
Hamiltonian is now in normal form or, in present 
terminology, is irreducible, to order E. But, as out
lined explicitly in Appendix A, Eq. (A7)ff., for one 
oscillator, the transformation to order E has generated 
E2 terms which are degree six monomials and also e3 

terms of degree eight. The same procedure, then, is 
followed to achieve an irreducible H to order e2 by 
choice of K6 , and so on to arbitrary order.16 

At any order in the iteration the formal constants of 
the motion-constant to the order in question, 
subject to the caution above concerning small di
visors-are found as follows: Let A be the r x n 
matrix whose first row is ell), second row e(2), etc. 
Let fA. (t) be n - r independent solutions of the equation 

A,,(tl = O. (3.14) 

Then, if [(r) denotes the 7th constant, 1 ::;; 7 ::;; n - r, 
n 

l(t} = 2, p.<:)(~vij.) (3.15a) 
.=1 

n 

= t 2, w-;lp.!r)(pe + w!qe)· (3.15b) 
.=1 

Of course, the fIr) are not unique, as independent 
linear combinations of them are also constants of the 
motion. 

With respect to the new (approximate) canonical 
variables {P., q.}, the constancy of the {lId} means 
that their Poisson bracket with H must vanish to the 
order of concern. Quantization will then proceed 
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exactly as for one oscillator subject to the same 
ordering ambiguities. But, whatever the ordering, 
these n - r integrals give us at once n - r good 
quantum numbers with which to label our states. 

Let ocit) and oct(t) be the raising and lowering 
operators for the '11th oscillator. The operators 
Nv(t) == oc!(t)ocv(t) are not constants of the motion 
unless r = O. In the case r = 0 we may choose 
I(v) = Hp~ + w~q~), 1 :::; v :::; n. After quantization, 
this implies the constancy in time of the number 
operators N v : 

d::(t) = -i[Nit), H] = 0 for all t. (3.16) 

In the presence of resonance, however, a set of 
n - r "number operators" do commute with H, 
althOugh at least some of the Nv(t) will not separately. 
These are not unique, and either convenience or 
physical considerations should be served by their 
choice. We have 

n 

X(r)(t) ==Lf1~r)N.(t), 1 S,T S, n - v, (3.17) 
v=1 

(3.18) 

The oscillator states obtained from the vacuum 
using oct(O) will be taken as the basis of the Hilbert 

space: 

1 m1 , m2, ... , mn ) 

= [g m.!]-\oci(0)r1 ... [oc~(O)]m" 10), (3.19) 

where ocv(O) 10) = 0, 1 :::; v :::; n. In the case r = 0, the 
previous remarks make it clear that these are already 
eigenstates of H, and the eigenvalue problem is 
completely solved to this order. This follows from the 
fact that the nonresonant irreducible classical Hamil
tonian contains only li,iji terms, which when quantized 
give a polynomial in the N v , regardless of ordering 
chosen. Further, the equations of motion for ocit) can 
be solved exactly: 

civ{t) = -i[oc.{t), H] = -iocv(t)D.v(N1 , N2 , ••• , Nn) 
(3.20a) 

=? ocv(t) = IXv(O) exp [-inv(N1, N2 , ••• , Nn)tJ. 
(3.20b) 

Again one obtains an operator-valued Hermitian 
frequency, dependent now in general on the occupa
tion number of every oscillator. 

In the resonant case (r r6 0) the states defined in 
Eq. (3.19) are not eigenstates of H. But the X(d 

define finite-dimensional subspaces within which H 
can be diagonalized by standard matrix methods. 
Thus, the eigenvalue problem can be solved, albeit 
not so directly as in the nonresonant case. But the 
equations of motion for the ocv(t) become highly 
intractable. A forthcoming paper by the author on a 
particular case of n = 2, where the corresponding 
classical equations are solved to order E, shows the 
complexity of these equations even without the added 
issue raised by noncommutativity of the variables. 

To give content to these rather general and formal 
considerations, a case with n = 2 and WI - W2 = 0 
is taken up in the next section. 

4. TWO QUASILINEAR OSCILLATORS: 
HI = 1~wlw2qM 

Consider a system oftwo oscillators near equilibrium 
(ql = q2 = 0) governed by the following Hamiltonian: 

Ho = t(p~ + w~q~) + ~(p~ + wiqi), (4.1a) 

HI = !EWIW2q~q;. (4.1b) 

If WI = W2 = (k2 + rn2)!, then this system corre
sponds to the coupling of only two modes in the }.rp4 

field Hamiltonian decomposed into normal modes, 
the mode of wave number k and that of - k. 

If WI - W2 r6 0, then the system is nonresonant, 
whereas if WI - Wa = 0 or Wl - Wa ~ 0 to order E, 

the system is resonant of degree 1, order 2. Let us 
consider first the nonre~onant case and introduce the 
new variables 'fJI and 172 from Eq. (3.3): 

(4.2a) 

(4.2b) 

In terms of the transformed variables {ijl' ii2' ll' l2}, 
the irreducible Hamiltonian will contain only one 
term corresponding to i = (1, 1): 

Ho = w1lliil + w2l2ii2' 

HI = (E/4)(lliil)( ~2ij2) + D( E2). 

The choice of K4 which must be made is 

(4.3a) 

(4.3b) 

- 1 -2 -2 -2-
K4 = (E/32)[(w1 + W2)- ~1~2 + (2/Wl)~1~2ii2 

+ (WI - W2)-lgN~ - (WI - w2)-Viii~ 
- -2 - 2. + (2/W2)~1~2iil - (2/W2)~liilii2. 

- (2/t)Jl)l2ii~ii2 - (WI + W2)-lii~ii~]· (4.4) 

Of course K4 has the same form as /(4 with iii' replaced 
by 'fJi' The transformation generated by K4 from the 
pairs ai' 'fJi) to (li' iii) may be found from Eq. (3.8) 



                                                                                                                                    

CANONICAL PERTURBATION THEORY 1755 

to order E: 

* - -1- -2 - -1]1 = ~1 = 1]1 - (E/8)[(w1 + w2) ~1~2 + (2/WI)~1~21]2 
+ (WI - W2rl~I1]~ + W21~~1]1 - W211]11]~], 

(4.5a) 

1]2 = ~: = ij2 - (E/8)[(WI + W2)-I~~~2 + Wll~~1]2 
- (WI - W2)-1~21]i + (2/W2)~i21]1 - wl

l1]i1]2]. 

(4.Sb) 

To the same order of accuracy, we can replace 1]1 and 
1]2 in the order-E terms on the right-hand side of Eqs. 
(4.5) by ijl and ij2, thus giving the new variables in 
terms of the old by inversion of a set of implicit cubic 
equations. Numerically, an iteration procedure would 
be the indicated method of solution. One can see that 
order-E2 terms as functions of the once-transformed 
variables are induced in H, coming both from Ho and 
HI' as well as terms of order E3

, E\ and E5. All of the 
order-E2 terms are obtained by simple substitution of 
Eqs. (4.5) (in terms of ~;, ij; on rhs) into Eqs. (4.2), 
except for those introduced by a further transfor
mation to order E2 generated by K 6 • However, until 
K6 is chosen to give irreducible form for H to order 
E2, one cannot complete the enumeration of the order 
E3 induced terms. The formal procedure, of course, is 
as outlined in Appendix A, and extends to arbitrary 
order. Suffice it here simply to enumerate the types of 
terms in the irreducible Hamiltonian to order E2: 

i = (3,0): aIijl)3; (4.6a) 

i = (2,1): (~1 ijl)2( ~2ij2); (4.6b) 

i = (1,2): (~I ijl)( ~2ij2)2; (4.6c) 

i = (0,3): a2ijJ3. (4.6d) 

In terms of a transformed pair of position-momentum 
variables, the Hamiltonian now has simple form to 
order E: 

2 

H - 1 "'( -2 + 2 -2) 0-"2",- Pi wiq;, 
;=1 

(4.7a) 

HI = [E/(16w l w2)](p; + w;q~)(p; + w~q~). (4.7b) 

One next introduces the operator representatives of 
P; and q;, defines raising and lowering operators, and 
generates a space of states from the ground state in the 
usual way. In terms of the number operators Nj = 
lXJlXj , the quantum version of H with symmetric 
ordering is 

H = (Nl + t)Wl + (N2 + t)w2 

+ (E/4)(Nl + t)(N2 + t). (4.8) 

It is evident here that Nl and N2 commute with H, 
and thus have no time dependence. The time depend-

ence of the operator lXi is obtained in the usual way: 

Ii; = -i[rt;, Il] = -K!jrtj, j = 1,2, (4.9a) 
where 

(4.9b) 
and 

These equations are integrated easily to give the same 
type of operator-valued frequencies as we found in the 
case of one oscillator. The first-order spectrum is 
trivial from Eq. (4.8) since the states Inl' n2 ) generated 
by rt1(0) are seen to be energy eigenstates: 

E~~.n2 = (nl + t)w1 + (n2 + t)w2 

+ (E/4)(n l + t)(n 2 + t). (4.10) 

This very direct and complete treatment of the 
problem to first order is possible only in the non
resonant case. The steps outlined above apply to 
arbitrary order, although one encounters large 
numbers of distinct monomial terms in higher orders. 

In the resonant or near-resonant cases the situation 
is rather different. If WI - W2 is zero or near zero, 
then two of the terms in 1(4' Eq. (4.4), are either 
undefined or have coefficients which are large and not 
of order E, those with factors of (WI - W 2)-1. Let us 
perform a reduced canonical transformation in either 
case, generated by 1(4 with omission of these terms. 
The irreducible Hamiltonian has the following form 
in this case: 

Ho = (w - ~)(llijl) + (w + ~)(~2ij2)' (4.l1a) 

HI = (E/16)[~iij; + 4(~lijl)a2ij2) + ~~iji], (4. 11 b) 

where W = !(WI + w2) and 0 < ~ = !(W2 - WI). In 
terms of the transformed momentum and position 
operators, the interaction Hamiltonian is as follows: 

HI = [E/32(w2 _ ~2)] 

X {2[pi + (w - ~)2q~][p; + (w + ~)2q~] 
+ [p~ - (w - ~)2q~][p~ - (w + ~)2qm 
+ (E/8)QlPIQ2P2. (4.12) 

Again let us introduce the transformed raising and 
lowering operators, and calculate the quantum H, 
using symmetric ordering. (Of course, in this case 
{lXj' lX1} have different meaning than in the non
resonant case, because the transformation is different.) 
We have 

H = (NI + N2 + l)w + (N2 - Nl)~ 

+ (E/4)(Nl + t)(N2 + t) 
+ (E/16)(lXi20(~ + lX~2lXi). (4.13) 
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The additional terms here, not found in Eq. (4.8), 
radically alter the nature of the solution. As mentioned 
earlier, neither NI nor N2 commute with H. Thus, 
neither is a constant of the motion. But N = Nl + N2 
does commute with H and is time-independent. The 
operators (H, N) are, then, a possible choice of 
quantum representatives of the two independent 
constants of the motion which exist in the n = 2 case 
with one commensurability relation, as asserted in 
Gustavson's theorem. Further, the {ocj(t)} do not 
obey an easily integrable equation such as Eq. (4.8). 
No direct integration of the equations satisfied by OCI 

and OC2 has been found as yet. 
Let us define a basis of the Hilbert space at time t 

using ocI and oc~, where the ground state satisfies 
IXI 10) = 1X210) = 0 (any t) and it is an eigenstate of H: 

Inl' n2\ = (nt! n2!r![oci(t)]"'[oc~(tWZ 10). (4.14) 

At t = 0, this set of states is denoted simply by 
{Inl , n2)} and will be the actual reference basis for 
finding the eigenpairs. Within the subspaces spanned 
by {Inl, n2M with nl + n2 = n, the Hamiltonian can 
be diagonalized and the eigenpairs found. The 
constancy in time of N assures that the states {Inl , n2)t}, 
with the fixed value of n = nl + n2, span the same 
(n + I)-dimensional subspace of the Hilbert space for 
all t. Let H be the (n + 1) x (n + 1) matrix to order 
E of the Hamiltonian in this subspace, where nl = n, 
n2 = 0 corresponds to index 1 and n1 = 0, n2 = n to 

index n + 1. The energy eigenvalues can be found as 
usual in the degenerate case of perturbation theory. 
They are the (n + 1) roots of the secular equation. 

Det {H - EI} = O. (4.15) 

Let E".a be these eigenvalues, the lowest being a = 0, 
the highest being a = n + 1. Further, let In, a) be the 
corresponding eigenstates. Then, the eigenpairs are 
given in Table I. One sees that the n = 0 and n = 1 
subspaces are still eigenstates with the same eigen
values as in the nonresonant case, since the new terms 
in H have zero matrix elements in these subspaces. 
For n = 2, the characteristic effects of the near
frequency. and equal-frequency cases begin to occur. 

If one assumes E/~« 1 for n = 2, which should 
give results in agreement with case (1), the three 
eigenvalues and the states to order E become the 
following [cf. Eq. (4.10)]: 

E2.0 = t(WI + 5coJ + 1
6
6 E , 12,0) = -10,2), 

(4. 16a) 

E2,l = t(5Wl + (2) + 1
6
6 E , 12, 1) = 12,0), 

(4.l6b) 

E2,2 = t(3Wl + 3wJ + 1
9
6 E , 12,2) = 11,1). 

(4.l6c) 

The other limit which interests 'us, because it corre
sponds to two modes of a 4>3 quantum field with equal 
and opposite momenta, is WI = CO2 = w. In this limit 

TABLE I. Eigenstates and eigenvalues of H in the n = 0, 1, 2 subspaces for two 
unequal-frequency quantum nonlinear oscillators, Hint = ~W1WZq~q:. The form 
of H in terms of the transformed operators is given in Eq. (4.13) and the states 

In" n.) are created by a,1(0) and a,1(0). 

n=O 

n=2 

10, 0) = 10, 0) 

E
"

o = !(3w1 + wz) + -feE 
E1•1 = i(w1 + WI) + -feE 

11,0) = 11,0) 
11,1) = 10,1) 

Let 00 = !(w1 + WI), <5 = WI - WI, l' = [1 + £1/(6461)]1 
and 'T} = 8d(y + 1) 

E1•o = 300 + ~ - 151' 
EZ.1 = 300 + ..f-s£ + <5y 
EI ,,=3w+# 

12,0) = (£Z + 'T}')-i(£ 12, 0) - 'T} 10,2» 
12, 1) = (£1 + 'T}1)-1('T} 12, 0) + £ 10, 2» 
12,2) = 11,1) 
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from Table I with ~y = e/8 and 'YJ = e, one obtains 

E 2 •0 = 3w + -he, 12,0) = 2-!(12, 0) - 10,2», 

(4. 17a) 

E2.l = 3w + ~e, 12, 1) = 2-!(12, 0) + 10,2», 

(4.17b) 

Further, we shall see that the possibility of an un
stable V particle coincides with the kind of frequency 
commensurability relation we have come to associate 
with the onset of nonlinear resonance. 

The Lee model Hamiltonian is defined as follows: 

(5.1 a) 

E2,2 = 3w + -he, 12,2) = 11,1). (4.17c) where 

In this limit, the ordering of the eigenvalues accords 
with the earlier convention. For e < 0, a less reliable 
region for the approximation due to the physical 
possibility of tunneling, both E2,2 and E2,3 are less than 
twice E1.1 = El.2' Now the states 11, 2) and 11, 3) 
would correspond to single-particle states, while the 
states 12, 1), 12,2), and 12,3) would correspond to two
particle states. It is not possible here to define asymp
totic states, since the perturbation does not damp in 
Itl. But since two of these two-particle states have 
energy lower than twice the one-particle energy, we 
might suggest an analogy here with binding in the 
field problem. On· heuristic grounds it is expected that 
correct treatment of the nonlinearity in the field 
problem will lead to appearance of binding and/or 
resonance.s The equal-frequency eigenpairs for n = 3 
are also given here: 

where 

Ea•o = Ea•1 = 4w + (e/16)(1l - 2.../7), 

13,0) = -(J7 + 2)/.../313,0) + b 11,2), 

13,1) = b 12,1) - (.../7 + 2)/.../310,3), 

E 3•2 = Ea•3 = 4w + (e/16)(1l + 2.../7), 

13,2) = (.../7 - 2)/.../313,0) + all, 2), 

13,3) = a 12,1) + (.../7 - 2)/.../310,3), 

a = [4(7 - .../7)/3]-!, b = [4(7 + .../7)/3]-!. 

The absence of regularity in the spectrum and states 
shows up for n = 3, whereas one might be mislead in 
the n = 2 case by the symmetry or anti symmetry of 
the eigenstates to expect such regularity in the higher 
subspaces. 

5. OBSERVATIONS ON THE LEE MODELl7 

The purpose of the following discussion is not to 
present new results for the Lee model, although a 
solution of the operator differential equations would 
probably have this significance. Rather the aim is to 
show how the canonical method presented above 
generalizes to the continuum quantum problem and 
how it gives quite naturally a reasonable choice of the 
dressed or renormalized asymptotic particles in 
agreement with the usual "physical V particle." 

Ho = f dp[mvoat(p)av(p) + mNoa1,(p)aN(p) 

+ w(p)a!(p)a8(p)], w(p) = Wll = (p2 + Ii)! 
(5.lb) 

and 

HI = gO(21T)-! f dk.(2w.,)-! f dp[at(p)aN(p - k)a8(k) 

+ av(p)a1+p - k)a!(k)]f(Wk)' (5.lc) 

One usually looks for the physical states as eigen
states of the full Hamiltonian 

IV, P)a = Z-! (IV, p)o + f dk$(p, k) IN, p - k; 0, k)o). 

(5.2) 
A standard calculation yields the function 

<I>(p, k) = - gO(21T)-! (2Wk)-!f(Wk) 
mv - mNO - Wk 

(5.3) 

Here mv is the "physical" mass of the V, and mv - mvo 
and Z-! are found in terms of integrals of <I> in the 
standard fashion. A point that is seldom discussed is 
that, while IV, P)a is an eigenstate with time depend
ence exp (-imvt), the "bare" states, I )0, are not. 
In fact, the whole asymptotic field problem is hidden 
in this formulation. One defines the operators a(p), 
at(p) as satisfying canonical commutation relations 
at a time t hence creating and annihilating the "bare" 
particles. But, the commutator of oc}(p) with H (at 
t = 0, say) is an operator not involving av or a}, 
rather than a c-number times a}(p) as it would be for a. 
free field. The restriction [a(p, t), at (p', t)] = c5(p - p') 
is assumed. Thus, without solving the Heisenberg 
equation for these operators, one cannot relate the 
bare quanta at time t to those at time 0, although the 
physical V remains the same superposition of I V)olt 
and bare IN, O)olt at time t as it is at t = O. This fact 
and the interpretive difficulties it raises should be 
borne in mind when the statement that the Lee model, 
though a truncated field theory, is "exactly soluble" 
in the lowest sector is made. These issues are discussed 
to some extent by Ezawa.18 

What we now show is that a kind of interaction 
representation exists, in which the physical V has the 
usual expansion in 1 V)o.t and IN, O)o.t and, further, 
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identify the physical one-particle IN)d and IO)d states 
as corresponding to the bare states. These results fail 
to hold when the V particle is unstable, as far as bare 
masses are concerned. Equations of motion for re
normalized operators are discussed, but not solved. 

Let us consider a classical Hamiltonian in terms of 
conventional variables, whose quantized version gives 
the Lee model. 

The following momentum and position operators 
for wave number k are defined, and H o.v is taken as 
the part of Ho involving only the V particle: 

Then 

Qv(k) = (2mvo)-![av(p) + a~(p)], (S.4a) 

Pv(k) = -i(2mvo)-![av(p) - a~(p)]. (S.4b) 

Ho.v = t f dk[Pv(k)Pv(k) + m~oQv(k)Qv(k)]. (S.S) 

Similar expressions can be worked out for H O•N , 

H O•9 , and HI' Let Pv and qv be the classical coordi
nates, where quantum representatives are Pv and Qv. 
Further, let us introduce the classical equivalents of 
at and a as before, canonical with respect to -iH: 

Ho = f dp[mvo~v(p)1]v(p) + mNO~N(p)1]N(P) 
+ wpMP)1]e(P)], (S.6a) 

HI = gO(27T)! f dp f dk[(2wk)-tf(Wk)] 

X [~V(P)1]N(P - k)1]8(k) + c.c.]. (S.6b) 

Hamilton's equations now read in terms of functional 
derivatives: 

. (k)- -i~ 
1]v - b~v(k) , 

. bH 
:::> ~v(k) = i -- . 

b1]v(k) 

(S.7a) 

(S.7b) 

To remove the third-order terms from HI in so far as 
possible, one chooses a generating function 

K(1]v, ~v; 1]N, ~N; 1]8' ~8) 

as an order-3 integrated polynomial in 1]'s and ~'s 
with the usual meaning for K19: 

Ka = gofdqfdq'[F(q, q')~V(q}I]N(-q' - q)17iq') 

+ F*(q, q')17v(q)~N( -q' - q)~iq')]. (S.8) 

The transformed variables are as follows: 

M(' 
1]v(k) = 17v(k) + igo(b~v(~»)' 

-. . (bKa) :::> ~v(k) = ~v(k) - 19o -_- . 
b1]v(k) 

(S.9) 

The transformed V part of Ho is, then, 

Ho.v = mvo f dp~v(p}i7v(p) 

f [- aKa - oK3 ] + mvogo dp 1]v(p) 017v(p) - ~v(p) b~v(p) . 

(S.10) 

When this is done for all three particles, the free 
Hamiltonian ilo has the same form as Eq. (S.6a), but 
in terms of the transformed variables. The new inter
action in light of Eqs. (S.6b), (S.8), and (S.10) is 

ill = gOf dqf dq'{[(27T)-!(2wq .)-tf(wq .) 

- (mvo - mNO - wq.)F(q, q')] 

X lv(q)17N( -q' - q)178(q') + c.c.}. (S.l1) 

A suitable choice of F then removes this part of the 
interaction completely. What remains are terms 
proportional to g~ and higher and involving order-4 
integrated polynomials in the operators and higher. 
A choice of a K4 (:::> K4) will then allow some of that 
part to be removed. In other words, most of the 
interaction can be pushed to higher and higher order. 

The choice of F is, clearly, 

F(q, q') = (27T)-!f(wq,)/[(2wq.)t(mvo - mNO - wq,)]. 

(S.12) 

Now, in the case of a stable V particle, there is no 
mass renormalization to order (go, 3); mv = mvo, 
where the quantized version of tv will create the 
physical V particles. In this case, to order go we have 
the following stability condition 

mvo < mNO + fl.. (S.13) 

If the V is unstable, then the function Fin Eq. (S.12) 
has a singularity. Some region around this singularity 
must be omitted and some third-order term left in HI 
to avoid violating the perturbative approach. The 
condition mvo - mNo - WK = 0 for some k is the kind 
of linear commensurability relationship we have come 
to associate with nonlinear resonance and the presence 
of approximate, separating constants of the motion 
beside H itself. This establishes a connection between 
instability of a particle and presence of nonlinear 
resonance in the Heisenberg equations, when we 
quantize Ho + HI as follows. 20 (In the fourth-order 
term the presence of resonance is unavoidable. There 
it is associated with scattering and the forces between 
particles.) To quantize, one writes H in terms of 
(ijv, Pv; ijN, PN; ije, Pe) and associates the usual kind of 
operators, F,,(k) and QvCk) for example, and the 
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associated raising and lowering operators oct(k) and 
ocv(k). Aside from the crucial question of order of 
operators, when one takes the operator representative 
for mixed pq terms mentioned previously, the net 
effect is simply to replace ~v in H by oct and ijv by OCv , 
etc. 

If H(n) denotes the Hamiltonian transformed to 
order n [inaccurate, then, in order (g;-2, n)] and 
H(n) = 2~~z Hi' we have the following results in the 
stable case: 

Hz = mvof dpoc~(p)ocv(p) + mNof dpOC~(P)OCN(P) 

+ f dpwpOCJ(P)OC8(P), (S.14) 

H3 = 0, (S.lS) 

H4 = (g~/4) f dkl ... f dk4CJ(kl + k3 - kz - k4) 

X G(kl' ... , k4)[OCv(kz)oc~(kl) - OC~(kl)OCv(kz)] 
X [OC~(k3)OCN(k4) - ocN(k4)OC~(k3)] 
+ (similar V - 0 and N - 0 terms). (S.16) 

The functions Gl , G2 , and Gg are given in Appendix 
B, and all further correction terms are of order 
(g~, S) or higher. Symmetric or Weyl ordering has 
been used here in a generalized version for bosons 
and antisymmetric for fermions. One sees that H 4 , 

the lowest-order interaction, has as eigenstates 10), 
I V, p), 10, p), and IN, p). In each case it has different 
eigenvalues. These eigenvalues correspond to the 
shift of the zero point of E, dMv , dM8, and dMN , 

respectively. 
The expressions have the same basic form as the 

usual equation for mv - mvo. We do have shifts to 
renormalized masses, then, in order (gg, 4). Of course, 
we obtain dM8 = dM N = O. 

A further observation is that the NO terms in H4 
will account for NO scattering. Also, the transfor
mation Eq. (S.9) with Ka from Eq. (S.8) and F from 
Eq. (S.12), gives lowest-order relationships between 
(4, oc1, ocl) and (4, ociv, ocl)· The one of greatest 
interest concerns 4(p), 

oc~(p) "-' a~(p) 

+ gO(27T)-~fdq(2Wq)-t f(w q
) 

mvo - mNO - Wq 

X a~(p - q)a!(q). (S.17) 

Thus, the usual result in Eqs. (S.2) and (S.3) is 
reproduced if we remember that Z = 1 + O(gg). As a 
final note, whenf(wq) = 1, all q, we find thatdW I V)d 
is 00. CJ(p - p') if oW I V)o and o(N, 0 I N, 0)0 are the 
usual (j functions, because the following integral fails 

to converge: 

f dk(Wkrl(mvo - mNO - Wk)-Z = 00. (S.18) 

Thus the transformation carries one out of the 
original Hilbert space without a cutoff. However, the 
physical result for dM v also becomes infinite in this 
limit. 

If we choose normal ordering rather than symmetric 
ordering, then the four energy (mass) shifts are zero. 
Issues related to ordering choice are briefly discussed 
also in Appendix B. 

It is clear that much development is needed for 
these techniques to give valuable new insight into 
better approximate solutions to the field problem 
than any perturbation method basically equivalent to 
a Green's function approach, which will not give a 
fully accurate solution to the nonlinear field equations. 
That much development of the canonical method is 
warranted has been suggested in this paper, as we 
have shown in simple cases that the technique does 
reproduce the characteristic behavior of solutions to 
this type of nonlinear equation. In particular the 
behavior of oscillator systems in the presence of 
nonlinear resonance must be understood. A solution 
to the equations of motion under resonant conditions 
for two classical oscillators will be presented in a later 
paper by the author. It is hoped that the points made 
above will help to stimulate the needed development. 

APPENDIX A: THE TRANSFORMATION FOR ONE 
OSCILLATOR 

In this appendix the details of the canonical 
transformation for a single anharmonic oscillator will 
be presented. Let us begin with the example of Sec. 2 
in the complex variables {~, 1]}, let H' = -iH, then 

H' = -i(J)~1] - i(E/16)(~ + 1])4. (AI) 

A canonical transformation is generated by means of 
a generating function K(1], ~),Zl to new variables 
a, ij): 

_ oK 
1] = 1] - o~ , (A2a) 

~ = ~ + oK. 
01] 

(A2b) 

If one chooses K to be a polynomial of degree n, the 
terms involving K above are of degree n - 1. Thus, 
to begin with a function K which is of order E and a 
polynomial of degree four will give fourth-order 
terms in the Hafuiltonian to cancel some of the 
E(~ + 'fj)4 terms. Let K4('fj, ~) be such a polynomial 
and K4(ij, ~) the same polynomial with the simple 
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replacement 'f} -- ij. To order e, the use of ~ in Eq. 
(A2) will not affect the transformation. Correct to 
order e, then, the Hamiltonian becoIIlfls 

Each term in K4 is to be of the form fJ~mijn with 
m + n = 4. These terms are eigenfunctions of the 
operator (ijojoij - ~ojo~) with eigenvalue m - n. 
Thus, the coefficients fJ can be chosen to cancel every 
term in e(t + ij)4 except e(tij)2. Gustavson selects a 
zero coefficient for all such "diagonal" terms in the 
transformation at each stage (terms in the null space 
of the operator). But, to maintain a conjugate re
lationship between ~ and ij, one must use this freedom 
and add the diagonal terms to K in order e2 and higher 
with the correct coefficient so that ~ = ij*. The 
selection of K4 is evident at this point: 

K4(ij, ~) = (ej64w)a4 + 8~3ij - 8~ij3 _ ij4) 

(A4a) 

=::;.K4('f}, ~) = (ej64w)a4 + S~3'f} - S~'f}3 - 'f}4). 

(A4b) 

The canonical transformation to order e now follows 
from Eqs. (A4) and (A2): 

'fJ = ij + e(16w)-1(2ij3 - 6~2ij - ~3), (A5a) 

e = ~ + e(16w)-l(2~3 - 6~2ij - ij3). (A5b) 

Finally, with this transformation the Hamiltonian 
takes on "normal form" to order e: 

mation to order ei as follows: 

(A7a) 

(A7b) 

When these two expressions are substituted into H' 
as given in Eq. (AI), all of the terms of order ei in 
H' are generated as explicit polynomials of order 
2j + 2 in ~ and ij as well as the term 

. (- ° t 0) ;:; 
IW. 'f} oij - \i o~ 1\.2i+2· 

All of these explicit terms in order ei may be cancelled 
by properly selected terms in K21+2 except aij)iH, 
whose coefficient in K2H2 is fixed to insure that ~ and 
ij are conjugate to order ei . 

To achieve an order e2 transformation, then, we 
introduce Ksa, ij). The transformation to this order 
reads as follows: 

'f} = ij - e(64w)-1(4P + 24~2'fJ - S'f}3)IQ=Ql - °0~6 , 
(ASa) 

~ = ~ + e(64wrl(S~3 - 24~'f}2 - 4'f}3)IQ=Ql + °a!s, 
(ASb) 

where 
'f}l = ij + e(16w)-l(2ij3 - 6~2ij - ~~. (ASc) 

H' = - iw( ~ij) - i(3ejS)( ~ij)2 + O( e2
). (A6) The Hamiltonian H' to order e2, then, is the following: 

We call this form the irreducible Hamiltonian. 
To proceed to second order, let us first here outline 

the procedure for arbitrary order. In order ei we 
introduce a' generating function K2H2('f}, ~), where 
K2H2 is a polynomial of order 2j + 2 in the variables 
{'fJ, ~} times a factor ei . Suppose the transformation 
has been calculated to order ei - 1 by selection of K4 
through K2i , giving the functions K, through K2i by 
the substitution ij -- 'f}. (One also obtains K21+2 by this 
substitution once K2H2 has been chosen, of course.) 
Letting 'f}k and ek be the kth approximation to 'f} and 
e as polynomials in ~ and ij, one obtains the transfor-

iH' = waij) + (3e/S)aij)2 

2[ -2 (- oKe tOKe) + e e w 'f} oij - \i o~ 

+ (64w)-1(2~6 + 3~5ij _ lS~4ij2 _ 17~3ij3 

- 15~2ij4 - 9~ij5 - ijS)] + O(e3). (A9) 

The function K6 is now chosen just as was K" since 
terms of the form fJ~mijn, where m + n = 6, are 
eigenfunctions of the operator (ij%ij - ~ojo~) with 
eigenvalue m - n. The entire e2 part of H' may thus 
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be cancelled except (~ij)3 with the following choice: 

/(6 = E2(1536w2)-1(8~6 + 8~5ij - 216~'ii2- 123~3ij3 

+ 180~2ij4 + 54~ij5 + 4ij6), (AIOa) 

K6(1], ~) = /(6(ij, ~)IIi="· (AIOb) 

And, of course, we then have the entire transfor
mation to order E2: 

1] = ij + E(16w)-1(2ij3 - 6~2ij - ~3) + E2(1536w2)-1 

X (36~5 + 216~4ij - 36!3ij2 + 81~2ij - 360~ij4 

+ 18ij5) + O(~). (All) 

The diagonal term in /(6 was fixed so that ~* = ij, 
whence the equation for ~ is implied by Eq. (All) by 
conjugation. Thus, the Hamiltonian has the following 
irreducible form to second order: 

iH' = waij) + (3E/8)aij)2 - (l7E2)(64w)-1(~ij)3 

+ O(E3). (AI2) 

It would be desirable, clearly, in applications to use 
a digital computer to perform the polynomial algebra 
and to find the value of the conserved quantity 
(~ij) = p2 in terms of the particular initial conditions 
selected. 

APPENDIX B 

In this appendix we present the Lee model results 
to second order (for completeness) in the stable 
V-particle case. Generalizing the higher-order pro
cedure outlined in Appendix A to the continuum, we 
obtain a /(, which generates the transformation of the 
classical Lee model coordinates to order g~: 

/(4 = g~fdkfdk'fdk"~(k') G(k,2) -G(k,,2) 
Wk" - Wk' 

where 

and 

X V(Wk" - Wk') 

x [!N(k - k')ijN(k - k")~ik')ije(k") 

- ~V<k)ijy(k - k" + k')!e(k')ije(k)], (Bl) 

~(k) = myO - mNO - Wk, 
G(k2) = (21T)-i(2wk)-!~kY(W~), 

{
I, Ixl > IJ 

vex) = 0, Ixl < IJ, for some IJ > O. 

The region Ik'i R::i Ik"1 corresponds to near com
mensurability of field oscillator frequencies, and the 
large coefficients in /(, due to (Wk' - Wk.)-l are 
excluded by the step function vex). One element of 
arbitrariness here, then, is the choice of IJ. Obviously, 
certain other types of function for vex) would also be 
acceptable. 

The irreducible form for the Lee model Hamiltonian 
to order g! is then easy to obtain: 

Ho = f dp[mvo~v(p)ijv(p) + mNO~N(p)ij~P) 
+ wie(p)ijiP)], (B2a) 

HI = g~f dkf dk~f dk" 

x {~k,G(k'2)G(k"2)4>(Wk' - Wk") 

x [~~k- k')ij~k - k") 

- ~v(k - k',ij,,(k - k")]!e(k')ije(k") 

- ~k,[G(k'2)]2~V(k)ijv(k")~~k" - k')ijN(k - k'} 

(B2b) 
where 

4>(x) = I - vex). 

One now reintroduces ft(k) and q(k) functions by the 
usual relationship (~(k), ij(k» +--+ (P(k), q(k» for each 
field, obtains H in terms of the p's and q's, and then. 
introduces operator representatives. These details 
need not be repeated here; but the effect of the 
quantization is to replace ~(k) by oct(k) and ij(k) by 
oc(k), subject to the correct choice of the ordering of 
the operators. 

For fermions we cannot use symmetric ordering, 
as ![at(p)a(p') + a(p')at(p)] = tlJ(p - p') and is not a 
Q number. It turns out that anti symmetric ordering 
gives the correct result for ~mv, and we shall rely on it 
here: 

~v(p)ijv(p') -4- ![oc~(p)Otv(p') - Otv(p')Ot~(p)] 
= oc~(p)ocp{p') - 1J3(p - p'). (B3) 

The Hamiltonian operator then has the following 
expression: 

Ho = f dp[mvooc~(p)ocv(p) + mNooct(p)OCN(P) 

+ wpocJ(p)oceCp)] 

- tlJ(o) f dp(myo + mNO - wp), (B4a) 

HI = - g~ f dkf dk' f dk" ~(k')G(k'2){ G(k"2) 

x 4>(Wk' - Wk,,)[oct<k - k')oc~k - k") 

- oc~(k - k')Otv(k - k")]Ot!(k')IXe(k") 

- G(k'2)OC~(k)Otv(k")0t~k" - k')ocN(k - k')} 

- g~ I dk I dk'~(k')[G(k'2)]OC~(k)Otv(k) 

- (g~/4)(I dkI dk'~(k')[G(k'2)]2)1J(0). 
(B4b) 
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Now both Ho and Hl have the vacuum as eigenstate 
with divergent eigenvalues. These are the infinite 
zero-point contributions and are removed by "mass 
renormalization." The renormalized Hamiltonian to 
second order, then, follows: 

Ho = f dp[mvo.N' v(p) + mNo.N' N(P) + wjl.N'o(p)], 

(BSa) 

H 1 = - g~ f dk f dk' f dk" 

x .ik,G(k,2){ CP(Wk' - wk,,)G(k"2) 

x [(X1(k - k')(XN(k - k") 

- (X~(k - k')(Xv(k - kl)](X!(k')(Xik") 

- G(k'2)(X~(k)(Xv(k')(X1(k" - k')(XN(k - k')} 

- g~r f dk.N' v(k) , (BSb) 

where 

r = f dk'(27T)-3(2wk,)-l(mvo - mNO - wk,rl lf(k'2)1 2 

and 

The first term in H with the single integral has the one
particle states as eigenvectors; the eigenvalues are the 
mass (energy) shifts of these states to second order: 

(Ho + Hl)(X~(q) 10) = (mvo - g~r)(X~(q) 10), (B6a) 

(Ho + Hl)(X!(q) 10) = wq(X!(q) 10) 

==> .imv = - g~r, 

.imN = .iEo = 0 

(B6b) 

(B6c) 

to order g~. These results accord entirely with the 
usual expressions to this order. One has .imN == 0 and 
.iEo == 0, but the expression for .imv is as follows: 

mv - mvo 

= - g~(2TT)-3 f dk(2wk)-l(mv - mNO - Wk)-l If(k2W. 
(B7) 

If we expand mv in the denominator in powers of go 
and the denominator itself about mv - mNO - W k = 
mvo - mNO - Wk , then we regain the result in Eq. 
(B6a). 

An investigation of higher sectors to this order, and 
higher orders as well, should prove quite interesting. 
We have yet to demonstrate effects due to nonlinearity 
at odds with a Green's function expansion: At least we 
have reproduced several typical results in the exactly 
soluble sectors of the Lee model. 
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A set of Cartesian tensor spherical harmonics is constructed from the spin weighted harmonics of 
Newman and Penrose, s Y1m(O, </». It is shown that these tensor harmonics are eigenfunctions of total 
angular momentum, z component of total angular momentum, total spin and radial component of spin. 
In particular, -s may be thought of as a helicity for outgoing radiation. Tensor operators are introduced 
which lower and raise this helicity. They are shown to correspond to the operators 5 and ~ introduced 
by Newman and Penrose. Because the, Y1m(O, </» can be defined for half-integer values of I, m, and s, 
a set of spinor spherical harmonics is also constructed which has properties paralleling those of the 
tensor harmonics. 

1. INTRODUCTION 

In a paper on the Bondi-Metzner-Sachs group, 
Newman and Penrose! introduced a set of spin-s 
spherical harmonics sYzm(e, cf» and the operator o. 
In a subsequent paper, Goldberg, MacFarlane, 
Newman, Rohrlich, and Sudarshan2 pointed out the 
relationship between these functions and represen
tation matrices of the rotation group R3 • They also 
showed that 0 plays the role of an angular momentum 
raising operator, as did Newman and Penrose. 

In the present paper we introduce a set of sym
metric, traceless, Cartesian tensor spherical harmonics 
which are constructed from the s YzmC6, cf». By using 
the angular momentum operators for tensor repre
sentations of R3 , we show that these tensor harmonics 
are eigenfunctions of the square of the total angular 
momentum with eigenvalue l(l + 1), of the z com
ponent of the total angular momentum with eigenvalue 
m, and of the radial' component of the spin with 
eigenvalue -so They are also eigenfunctions of the 
square of the spin operator with eigenvalue depending 
on their tensor rank. If these tensor harmonics are 
used in expansions of outgoing tensor spherical waves, 
-s can be interpreted as a helicity. 

The operator 0 can be related to a particular 
spherical component of the total angular momentum 
operator. When used along with a spherical com
ponent of the spin operator, it gives us a helicity 
lowering operator. We have then a correspondence 
between the s Y1",(e, cp) and helicity states with 

similar to those of the tensor harmonics. In particular, 
-s and 0 will have the same interpretation as above. 

In Sec. 2 we briefly review the properties of the 
s Y1m(6, cf». In Sec. 3 we introduce the tensor harmonics. 
The spinor harmonics are discussed in Sec. 4. In the 
Appendix we list tensor harmonics of rank n = 1,2, 
and 3. 

2. A REVIEW OF THE PROPERTIES OF sY1m(O, </» 

As we stated in the introduction, we will construct 
our tensor and spinor harmonics from the spin 
harmonics sY1",(6, cf». These spin harmonics for 
integer values of I, m, and s can be obtained from the 
ordinary spherical harmonics Y1m(e, cp) by repeated 
applications of O. The operator 0 is defined specifically 
in terms of the function on which it operates, that is, 
its specific form depends on the so-called spin weight 
of the function. 

Newman and Penrose! define spin weight by 
considering rotations, around the radial direction, of 
unit vectors tangent to a sphere. Suppose a and bare 
such unit vectors which are perpendicular to each 
other. If we define the complex unit vector m == 
(l/v2)(a + ib), then the rotation we want is given by 

m' = ei'l'm, (2.1) 

where 7p is the angle of rotation. We say that any 
function 'Y) defined on the sphere has spin weight s if 
under transformation (2.1) 'Y) transforms according to 

(2.2) 

helicity -s and between 0 and a helicity lowering As examples, the quantities m . A and m* • A, where A 
operator. is some fixed vector, have respectively spin weights 

As Newman and Penrose and Goldberg et al. + 1 and -I. 
pointed out, the definition of the s Y1",(6, cf» can be We can now define the operator O. For our purposes 
extended to include half-integer values of I, m, and s. it will be convenient to define this operator in terms 
This extended definition is used to construct a set of of the usual orbital angular momentum operator 
spinor spherical harmonics which have properties L == -ir x V. Using the function 'Y), with spin weight 

1763 
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S, we have 

lYrj == -(sin O)'{(e + icP) • L}(sin OrsrJ 

= -(sin O)'{~ + i csc 0 1-}(Sin OrsrJ 
00 ocp 

= -{~ + i csc 01- - scot O}rJ (2.3) 
00 o</> ' 

with e and cP the polar and azimuthal unit vectors. A 
companion operator ~ is defined in a similar way by 

~ == (sin Or'{(6 - icP) • L}(sin O)srJ 

= (sin O)-.{- .! + i csc 0 1-}(Sin O)"rJ 
00 04> 

= {- i. + i csc O!- - scot O}rJ' (2.4) 
00 . o,p 

Ifwe now let a = e and b = cf, so that m = (l/J2)(6+ 
icf,), we see that we may take b to have spin weight + 1, 
if we hold the coordinates fixed during transformation 
(2.1). Similarly "5 has spin weight -1 and the functions 

b'1/ and 5'1/ have respectively spin weights s + 1 and 
s - 1. 

For our definition of sYlm for integer values of /, m, 
and s, we use the following set of equations: 

oYim(O, 4» == Yim(O, cp), 
b[sYiml = [(1 - s)(l + s + 1)]* .+1Yim, (2.5) 
- i b[sYiml = - [(l + s)(l - s + 1)] .-1 Yim· 

We note that, with the spin weight of Y1m understood 
to be zero, the spin weight of sYlm will be s. Further

more, b annihilates ,Ylm and 5" annihilates -IYlm ' We 
therefore do not define sYlm for lsi> I. It is clear that 
b operating on Y1m S times will give sYlm and ~ on 
Yzm s times will give -.Ylm . 

The .Ylm defined by (2.5) form a complete ortho
normal set for any function of 0 and cp with spin 
weight s. That is, 

(2.6) 

and 

L .Yz'!'(O', cp') .Yzm(O, ,p) 
l.m 
1~1'1 

= d(,p - rp')d( cos 0 - cos 0'). (2.7) 

Goldberg et al,2 showed that .Ylm is proportional to 
D:.m(rp, fJ, 0), which is a representation matrix for the 

rotation group Ra, i.e., 

.Yzm(O,4» = [(21 + 1)/41T]*D:.m(cp, 0, 0) 

= [(1 + m)! (1- m)! (21 + 1)]\sin !Wl 
(1 - s)! (l + s)! 41T 

x L (1 - s) ( 1 + s ) ( _ )/-'-2> 
2> P p-m+s 

x eimt/>( cos !fJ)22>-m+s 

= [(21 + 1)/41T]1 d:.m(O)eimt/>, (2.8) 

where <:) is the usual binomial coefficient and p is 
summed over the integers. The functions D:"'m(~Py) 
and d;"'m(P) are discussed in some detail in Ref. 2.a 

This relationship between • Ylm and D:.m gives us 
some additional properties of the spin harmonics which 
we will need. If we introduce the usual orbital angular 
momentum raising and lowering operators 

L± = L", ± iLIi 

= ±e'Ht/>(.! ± i cot o..£..) (2.9) 
00 04> ' 

along with the commutation relations 

with 

[Lz, L±] = ±L±, 

[L+, L-1 = 2L%, 

L = -i1-
% 04> ' 

then we find that the operators 

A z == L%, 

A± = A", ± iAIi 

(2.10) 

== L± - s csc Orit/> (2.11) 

satisfy the commutation relations 

[A" A±l = ±A, 
[A+, A_l = 2A" 

(2.12) 

i.e., A obeys the commutation relations of an angular 
momentum operator. Using these operators, we find 

NsYim = 1(1 + 1) .Yim' 
AzsYim = m .Yim' (2.13) 

A± .Yim = [(I =F m)(1 ± m + 1))* .Yzm±l· 

Thus the • Y1m are eigenfunctions of A 2 , and At and 
A± raise and lower m. 

Finally we note that we can allow I, m, and s to take 
on half-integer values, and all of the above results still 
hold as long as 'fe now take Eqs. (2.8) to give us 
our basic definition of sYlm . Of course, we cannot 
generate the half-integer harmonics from Ylm , but 
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given one, say IYlm ' we could generate the others for 
this 1 and m, by using relations (2.5). However, 
Eqs. (2.8) give .Y1m explicitly, and so we have no need 
for this generating procedure. 

3. TENSOR SPHERICAL HARMONICS 

The fact that spin weight is defined in terms of 
rotations around the radial direction indicates that it 
corresponds to an eigenvalue associated with the radial 
component of an angular momentum. That it is a 
"magnetic" quantum number associated with I is 
indicated by relations (2.5) for a .Ylm and 8 .Y1m • 

Goldberg et af.2 have, in fact, shown this more 
explicitly by using the connection between .Ylm and 
the D:.m functions. We will see the same thing here 
when we construct tensor harmonics. We will also see 
that s corresponds to a helicity. 

We first define a set of Cartesian vector harmonics 
and, by examining their properties, we will see how we 
can generalize to tensor harmonics of any higher 
rank. The vector harmonics Ti(s, I, m; f) are defined 
by 

Ti + 1, 1, m; f) == mi[-l Ylm(O, cfo)], 

7:;(0, I, m; f) == f;[oYzm(O, cp)], (3.1) 

7:;( -1, I, m; f) == -mj[+1Yzm(O, cp)], 

with f the unit vector in the radial direction and 
m = (I/J2)(6 + ;cf» as before. The three unit vectors 
f, m, and m * clearly satisfy the relations 

f • m = f • m* = m • m = m* • m* = 0, 

f· f = m· m* = 1. (3.2) 

If we combine relations (3.2) with the orthonormality 
conditions for s Y!m given in Eq. (2.6), we find 

r T:(s', 1', m')Ti(s, 1, m) dO. = 0Ss.oll.omm" (3.3) 
J4o' 

where we have introduced the abbreviated notation 
Ti(s, I, m) = Ti(S, I, m; f). If we use the completeness 
relation (2.7) along with the fact that 'i'i + mimj + 
mtmi = 0ii' we see that 

Z 7:;(s, I, m; f')Tls, I, m; f) 
B.l.m 
,s,SI 

= oijo(cp - cfo')o(cos 0 - cos 0'). (3.4) 

These vector harmonics, therefore, form a complete 
set for vector functions of 0 and cpo In fact, the 
Tls, I, m) are the usual vector harmonics used in 
electrodynamics,' although in a somewhat disguised 
form.s 

The total angular momentum operator for these 
harmonics, which is the generator of rotations for 

vector functions, is given by6 

(Jk)i; = tJiiLk + (Sk)ii' 

(Sk)ii = - i€iik , 

(3.5) 

with L = -ir x V the usual orbital angular mome,n
tum operator introduced earlier. The spin operator 
given in (3.5) is that for Cartesian 3-vectors. (The 
more familiar representation for spin-l systems is 
given by using the complex coordinates z and x ± iy 
instead of x, y, and z.) 

Using (3.5) along with the specific forms for L± and 
L. given in (2.9) and (2.10), we can derive the following 
operator relations: 

(J±)~fi = fiL±, 

(J.)!i; = i;L., 

(J±):m j = mlL± + csc Or;"'), 

(J.)~mi = miL., 

(J±){mj = m:(L± - csc Or;"'), 

(J.)~mj = miL .. 

(3.6) 

with J ± == J~ + jJlI as usual. In addition we have 

(P • S)~fi = 0, 

(f. S)!m j = m., (3.7) 

(f. S)~mj = -mj. 
Finally we note that (S2);i = (Sk)HSk)Pi = 2tJii . 

The operator relations (3.6) allow us to establish a 
correspondence between (J)ii and the operator A 
introduced in Sec. 2. From inspection of the definition 
of A given in (2.11), we see that 

(J){T;( + 1, 1, m) = m.[A_1 Ylm], 

(J)~T;(O, 1, m) = 'i[AoYzm], (3.8) 

(J){T;(-I, I, m) = -m,*[.A+1Yzm]' 

Because the 8 Ylm are eigenfunctions of A 2 and Az , the 
Ti(S, 1, m) are eigenfunctions of (J2)ii and (J.)ii' 

Putting together the results in (3.7) and (3.8) along 
with (2.13), we have 

.(J2){T;(s, I, m) = l(l + 1)~(s, I, m), 

(J.)~T;(s, 1, m) = m~(s, 1, m), 

(J±){T;(s, I, m) = [(1 =f m)(1 ± m + 1)]1 

x ~(s, 1, m ± 1), 

(S2){T,(s, I, m) = 2~(s, 1, m), 

(r. S):T;(s, I, m) = s~(s, 1, m). 

(3.9) 

Since (f. J)ii = (f. S)ii' the last equation holds for J 
as well. [The implication of the results in (3.9) is that 
(f • S)ii commutes with (J)ii and, of course, with 
(S2)'i' This can be easily verified.] 

We are therefore able to relate I to a total angular 
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momentum, m to its z projection, and s to the radial 
component of spin. If we think in terms of outgoing 
radiation, s can be thought of as a helicity. We note 
that this helicity is the negative of the spin weight of 
the 8 ¥lm used to construct a vector harmonic. This is 
easy to understand from the definition of spin weight. 
A spin weight +1 quantity, e.g., m· A, is obtained by 
contracting m into a vector, but this projects ,out the 
function multiplying m* in the vector, and m* has 
helicity - 1. 

Missing from Eqs. (3.9) are a raising and a 
lowering operator for s. Any such operators must be 
related to 0 and <5. In order to construct the operator 
we need, we note first the operator relations 

- .J.. ]" '{ 0 . eO} [(6 ± ht') • J ~r, = ri ± - + I esc -, 
oe or? 

- -. {o. e a e} [(6 ± iel»' JJ~m, = mi ± oe + I csc or? + cot , 

[(& ± jcf,) • JFmj = mt{± ~ + i esc e ~ - cot e}. 
• ~ or? 

(3.10) 
In addition we have 

[(9 + icf,). SJ;m; = [(& - icf,). SJ~mj = 0, 
- .-, i, 

[(6 - leI»' Slim; = -2 ri , 

- . - j * 2*' [(6 + lel»' Slim, = + ri , (3.11) 

- -. * [(6 + icp)· S]~" = -2 mi , 

a . J..) S]; , 2* * [(v - ''t'' irj = + mi' 

Comparing the right-hand sides in (3.10) with the 
definitions of 0 and (5 given in (2.3) and (2.4) suggests 
that we define the operators 

ei ; == [(0 - icf,) • S]~[(O + icf,) • J]ki' 

{ii; == [(0 + icf,) • S]~[(6 - icf,) • J]ki . (3.12) 

These operators are related to 0 and 1) in the following 
way: 

(mi()ii,,) oY;m = -2*ooY;m, 

(f',eiim;) -lYlm = +2!-0 -1 Y;m, 

( *()-i") Y; __ 2f;;;: Y; m, r j 0 1m - u 0 1m' 

(3.13) 

-. . *) y; 2*g y; (f/J"m, +1 1m = + +1 1m' 

as one can easily verify using (3.10), (3.11) and (2.3), 
(2.4). 

Combining the results of (3.13) with the raising and 
lowering properties of 0 and 5 given in (2.5), we find 
from our definitions of the Ti(s, I, m) that 

e~T;(s, 1, m) = [2(1 + s)(l - s + l)]!-T;(s - 1, 1, m), 

O~T;(s, I, m) = [2(1 - s)(l + s + 1)]l-T;(s + 1, I, m). 

(3.14) 

Thus eij , which corresponds to 0, lowers the helicity 
by one and 0i1' which corresponds to 5, raises the 
helicity by one. [The results of (3.14) when compared 
with Egs. (3.9) imply that both eii and {iii commute 
with (J)ii and (S2)i1'] 

We have treated the vector harmonics here in some 
detail for two reasons. One is that they illustrate 
general properties we will find for higher rank tensor 
harmonics. The other is that operator relations (3.6) 
and (3.10) are actually of a very general nature. If one 
uses the specific form of (J)i, in terms of L which is 
given in (3.5), relations (3.6) and (3.10) tell how to 
commute Land '(0 + icf,) • L through several factors 
of ri , mi , and mi. The effects of (r • S);i and [(9 ± 
icf,). S]ij on ri , mi , a~d mi given in (3.7) and (3.11) are 
also general in that, as we will see below, -i"i1k is 
involved In the spin operator for higher-rank tensors. 
These facts will allow us to write down the higher-rank 
harmonics and their properties with little difficulty. 

For nth-rank tensor functions, the total angular 
momentum operator is 

(Jk)it"'inh"'in = c5i1h ••• c5ini"Lk + (Sk)il"'inJ,"'in' 
n 

(Sk)it"'inh"'in = - i ! (jilh .•• (jit-lit-l"ititlJit+lit+l(jinin' 
t=l 

(3.15) 

which is the generalization of (3.5). In order to make 
our notation more compact, we will adopt the 
convention for indices that 

j(n) == i1i2 ' ~ • in' 

which we will use wherever possible. 
Suppose that TiCr"(P, q) is an nth-rank tensor made 

up of P factors of mi , q of -m! • P + q ~ n, with the 
rest of the indices assigned to factors of 'i' Clearly 
there are, in general, many ways of doing this, since 
the ith index could have any of the three unit vectors 
assigned to it, while maintaining the same values of p 
and q. For the moment we will not worry about these 
possible variations. 

Consider then the tensor harmonic 

TiCn)(P, q)[-CP--<1) Ylm]' 

From the definition of (Jk);CnJiCn) given in (3.15) and 
repeated use of operator relations (3.6), we can show 
that 

(J)~~:~T i(n)(P, q)[-(p-q) Y;m] = TiCn)(P, q)[A -Cp-q) Y;ml· 
(3.16) 

Using the definition of (Sk);CnliCn) and (3.7), we also 
find 

(i· S)lI~:TiCn)(P. q) = (p - q)T;ln)(P, q). (3.17) 
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From these two results, we see that these tensor 
harmonics are eigenfunctions of ]2, Jz ' and I' • Sand 
that J ± are the raising and lowering operators for m. 
They are not, in general, eigenfunctions of S2. 

For two reasons, one physical and the other 
mathematical, we will restrict ourselves to symmetric, 
traceless7 tensor harmonics. Frequently the tensor fields 
we use in physics are symmetric and traceless. Such 
fields correspond to eigenfunctions of S2.8 Mathe
matically we know that any nth-rank tensor can be 
decomposed uniquely into a term which is symmetric 
and traceless and is an eigenfunction of (S2)i(n);(n) with 
eigenvalue n(n + 1) and terms which can be related to 
successively lower rank symmetric, traceless tensors.3 
This decomposition can be understood if we think of 
an nth-rank tensor as a direct product of n spin-l 
states. For such a direct product we find total spins 
ranging from 0 up to n, with only one possible way to 
obtain spin n. 

What we need is a set of 'Ti(n) which are symmetric 
and traceless and eigenfunctions of (I' • S)i(n)}(n)' One 
such 'Ti(n) is easy to construct. Consider9 

'Tj(n)(n) == 'Ti(n)(P = n, q = 0) 

= m11mi2 ••• min' 

which clearly satisfies 

(3.18) 

(3.19) 

Since this tensor is symmetric and traceless, it must 
also satisfy 

(3.20) 

This result can be verified directly from the definition 
of (S)i(n)}(n)' Another symmetric, traceless 'Ti(n) which 
is normalized to unity and has eigenvalue, for r· S, 
equal to -n is 

'Ti(n)( -n) == 'Ti(n)(P = 0, q = n) 

(3.21) 

It also satisfies (3.20). 
We can obtain all the other 'T;(n) we need from 

either one of these, since [(6 ± iCf» • S];(n)}(n) are the 
spin raising and lowering operators which go with 
(I' • S);(n)}(n) . We note from the definition of (S);(n);(n) ' 
that when it operates on a symmetric, traceless tensor, 
it leaves a symmetric, traceless tensor. We obtain 
'Tilnl(S) by stepping down 'Ti(nl(n) n - S times. Let us 
assume that 'T;(n)(s) is normalized to unity and that we 
use a phase convention consistent with (3.21) and the 

vector case. We have then 

~ - '( 1 
[(6 ± iG»' S]~t:'I'T}(n)(s) 

= -[en =F s)(n ± s + 1)]f'T;(n)(s ± 1). (3.22) 

If we either step down from 'T;(n)(n) or up from 
'T;(n)( -n) to obtain 'Ti(nl(S), we find 

( ) ()n-. [ (n + s)! ] f 
'Ti(n) S = - (2n)! (n _ s)! 

x W6 - iCf». Sr-S}~:~~'T;(n)(n) 

- (_ ),,+s[ (n - s)! J! 
(2n)! (n + s)! 

x ([Ce + iCf» • Sr+S}~:~h(nl( -n). (3.23) 

Noting that 'T~nr<n) = (- )n'T;(,,)( -n) and (Sk)1tnIJ(n) = 
-(Sk);(n)J(nl' we have 

'TTrn)(s) = (- )"'Ti(n)( -s), (3.24) 

which means we only need to step down 'Ti(n)(n) to 
S = 0 [or step up 'T;(nl( -n) to s = 0] to obtain all the 
'Ti(nl(S), 

It is clear that 'T;(nl(S) is made up of terms which 
contain 'Ti(n)(p, q), all with P - q = s. This means that 
results (3.16) and (3.17) will still hold if we replace 
'Ti(n)(P, q) with 'Ti(nl(S) and P - q with s. We define 
then the nth-rank, symmetric, traceless tensor har
monics as 

Ti(n)(s, I, m; r) == 'Ti(n)(s)L.Y!m(O, cp)], (3.25) 

which are eigenfunctions of ]2, Jz , S2, and r . S, with 
J ± the raising and lowering operators for m. Re
calling that Yim = (_)m Y1.-m and using the definition 
of 8 Y1m given in Sec. 2 along with the result in (3.24), 
we find 

Ttn)(s, T, m) = (- )mTi(n)( -s, T, -m). (3.26) 

These harmonics form a complete set of nth-rank, 
symmetric, traceless tensors. We have 

r Tiin)(s', I', m')Ti(n)(s, I, m) dO. = 0SS,o!!,omm' 
J41T 

and 
(3.27) 

I Ti~nl(S, I, m; r')T}(nl(S, T, m; r) 
•. !.m 
lsi S! 

with 
= Pi(nl;(nlO(CP - cpr)o(cos 0 - cos 0'), (3.28) 

n 

Pi(nl;(nl = I 'T~(n)(S)'T;(n)(S)' (3.29) 
S=-n 

where Pi(n);(n) is a projection operator which projects 
out the symmetric, traceless part of any nth-rank 
tensor. The results in (3.27) and (3.28) are easily 
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obtained from the properties of the 'Ti(nl(S) and the 
BYlm' 

In complete analogy with the vector case, we define 
operators (}i(nlj(n) and (ji(nlj(nl which will lower and 
raise s. We have 

Using operator relations (3.10) repeatedly, we can 
show that 

{Actually, (3.31) is most easily proved for 'Ti(nl(P, q) X 

L(v-(/l Y1m], but, as we have seen, T;(nl(S, I, m) is just a 
linear combination of these with P - q = s.} 

Combining the results of (3.31) and the effects of 
(9 ± i<f,) • S on 'Ti(nl(S) given in (3.22), we see that 
(},(nlj(nl and (), (j ;(n)j(nl and 3 are related in that 

[~* (s 1)(}i(n);(n)~ (s)] Y. • i(n) - • f(nl -s 1m 

= [en + s)(n - s + 1)]!{) -sY1m , 

[ * ( + I)O-Hn)J(n) ()] Y. 'Ti(nl S 'Tj(n) S -81m 

= - [en - s)(n + S + 1)]!"8 -8 Yzm. (3.32) 

CQllecting together all our results, we have 

(J2Hl~!T;(n)(s, I, m) ~ 1(1 + 1)T;(nl(s, 1, m), 

(Jz):I:!Tj(n,(s, I, m) = mTj(nl(S, 1, m), 

(J±)~I~IT;(nl(s, I, m) = [(1 =F m)(l ± m + I)]! 

X T.:(nl(S, 1, m ± 1), 

(S2)~~~IT;(n)(s, 1, m) = n(n + I)Ti(n)(s, 1, m), 

(i. S)II::Tj (n,(s, I, m) = sTi(n)(s, 1, m), (3.33) 

O{I:IT;(n)(s, 1, m) 

= [en + s)(n - s + 1)(1 + s)(1 - S + 1)]t 

X Ti(n)(s - 1, 1, m), 

-fen) 
Oi(n) T;(n)(s, " m) 

= [en - s)(n + S + 1)(1 - s)(l + s + 1)]t 

X Ti(n)(s + 1, " m). 

Once again we note that f· S = f . J so that S is' a 
radial eigenvalue of J as well. It is interesting that this 
dual role for S also shows up in () and ii. 

In the Appendix we tabulate these tensor harmonics 
for n = 1, 2, and 3. 

4. SPINOR SPHERICAL HARMONICS 

Because the 8 Y1m are defined for half-integer values 
of s, I, and m, we can use the techniques of Sec. 3 to 
construct spinor spherical harmonics from them. To 
do this, we need a set of spinors which will play the 
same role as f, m, and m* do in the construction of 
'Ti(n)(S), 

The spinors 

u () = (COS (o/2)e- i/2tP
) 

( ,rp) - sin (0/2)eil2tP ' 

v () = (Sin (0/2)e-iI2tP 
) 

( ,rp) - -cos (Oj2)ei/2tP ' 
(4.1) 

are the ones we will use. They are normalized and 
orthogonal so that u+u = v+v = I and u+v = 0. They 
also satisfy 

f ·au = u, 

f ·av = -v, 

(9 + icP) • au = (9 - icP) • av = 0, (4.2) 

(9 - icP)' au = -2v, 

(9 + icP)· av = -2u, 

where a = all + O'J + O'st( with 0'1' 0'2, and as the 
usual Pauli spin matrices 

If we define the total angular momentum operator 

J=L + S, 

S = ia, 

then we can obtain the operator relations 

J±u = u(L± + I csc Oe±i4», 

Jzu = uLp 

J±v = v(L± - l csc oe±i4», 

Jzv = vLz , 

(4.3) 

(4.4) 

[(8 ± i<l») • J]u = u ± - + i csc () - + t cot () , - - (0 0 ) 
00 orp 

[(6 ± icP)' J]v = v(± .£ + i csc ()..! - ! cot 0), o(} orp 
which are the spino! analogs of (3.6) and (3.10). 

Via all these properties, it is easy to see that 
u Lt Y1m] and v [+t Y1m ] are the spinor harmonics we 
want for spin:.t systems. 

For higher-spin systems we take direct products of 
u's and v's. For a system which involves 2n factors in 
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this direct product, with n either an integer or half
integer, the total angular momentum operator will be 

(J"}'1···a.2 .. fll"··fl2 .. 

= lJa.lfll ••• lJa.2 .. fll .. L" + (Sk)a.l oo ·a.2nf11, oo fll .. ' 

(Sk)a.loo·"lftfll"··fll .. 
2n 

= 1 ! lJa.lfll ••• lJllt_lIIt_l( (Jk)a.tflt lJa.Hlflt+1 ••• lJa.2nf12 .. , 
t=l . 

(4.5) 

where we use Greek letters for spinor indices. We will 
again use the convention that cx(2n) stands for the 2n 
indices CXCCX2n. 

Following the procedure of the last section, we will 
construct spinor quantities Ta.(2nl(S) and from them 
the spinor harmonics. We start with the normalized 
quantities 

or 

which are eigenstates of (t • S)a.(2nlfl(2nl with eigenvalues 
nand - n, respectively. 

Because of our choice of phases for u and v, the 
stepping operators (& ± it{» • S will have exactly the 
same effect on Ta.(2nl(S) here as it does on Ti(nl(S) in 
(3.22). In fact all we need do is replace the indices 
i(n) by cx(2n), etc., and Eqs. (3.23) will give us 
Ta.(Bnl(S) in terms of Ta.(Znl(n) and Ta.(2nl( -n). Once we 
have constructed the Ta.(2nl(S), everything else parallels 
our construction of the tensor harmonics exactly. 

If we define the spinor harmonics 

~a.(Znl(S, I, m; t) == Ta.(2nl(s)[-.¥;m(19, 4»], (4.8) 

then all the relations in Sec. 3 for Ti(nl(S, I, m) from 
(3.27) on will hold for ~a.(2nl(S, I, m) if we replace 
Cartesian indices i(n) with spinor indices cx(2n), etc. 
This includes the definitions of 19 and O. The difference 
here is that n may take on half-integer as well as integer 
values. 

Actually, the spinor harmonics for integer values of 
n are completely equivalent to the tensor harmonics. 
We see this most easily by noting that 

rl = U1Vl - UzVz , 

r2 = i(UIVI + U2V2), 

ra = -(u1V Z + U 2V1), 

ml = (1/-J2)(u~ - u~), 

mz = (i/../2)(u~ + u~), 
ma = (../2)u 1uZ ' 

(4.9) 

with similar expressions for m*. Thus, only the spinor 
harmonics for half-integer values of n give us anything 
new. 
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APPENDIX 

We list here the tensor harmonics for rank n = 1,2, 
and 3. Since these harmonics have the form 

Ti(nl(S, I, m) = Ti(nl(S)L.Ylm], 

we list the Ti(nl(S) and .Ylm separately. Also, because 
Ti(nl( -s) = (-)'Tf(nl( +s), we list Ti(nl(S) for S ~ ° 
only: 

n = 1: 

n = 2: 

Til+2) = mim" 

Til + 1) = (1/../2) (rim, + mil)' (A2) 

n = 3: 
TilO) = (1/../6) (2f/, - mi*m, - mimi); 

Tiili +3) = mim,m", 

Tijk( +2) = (1/../3)(rim;mk + mirjmk + mimik)' 

Tiji +1) = (1/../15)(2r/;mk + 2rim/k + 2mir/k 

- mi*m;mk - mim1mk - mimjm:), (A3) 

Ti;iO) = (1/"/10)(2r//" - rim1mk - rim,m: 

- mtr;mk - m/jm: - mtmA 

- mim:rk)' 

For the. Ylm we have 

lY; =' 1 ("T ~ - i csc 19 i..) Y; 
± 1m [/(1 + 1)]1 a19 a4> 1m' 

1 
±2¥;m = [(I _ 1)/(1 + 1)(/ + 2)]1 

X (T :19 - i csc 19 a~ ± cot 19 ) 

X (::r:.E. - i csc 19 i..) Y; 
--. a19 04> 1m, (A4) 

1 
±3¥;m = [(I _ 2)(1 - 1)/(1 + 1)(1 + 2)(1 + 3)]1 

X ("T i. - i csc 19 ~ ± 2 cot (9) 
019 04> 

X (T ~ - i csc 19 i.. ± cot (9) 
1 019 04> 

X (T ~ - i csc 19 a~) Yzm . 
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The existence and analyticity of the correlation 
functions of a lattice gas in the thermodynamic limit 
have been proved for sufficiently high temperatures at 
all values of fugacity only for a class of potentials 
which are number conserving.1- 3 In this paper we 
demonstrate how integral equation techniques can be 
used to prove the existence of infinite-volume corre
lation functions for a large class of non-number
conserving potentials.4 

We associate with each bounded subset A of the 
v-dimensional lattice ZV the Hilbert space tensor 
product JeA = (8)"'EA Je"" where X", is a two-dimensional 
vector space, and define creation and annihilation 
operators a~ and aw on Jew to satisfy Fermi-Dirac 
statistics at the site x and commutation between 
different lattice sites. Then there is a one-to-one map 
between the subsets of A and the basis vectors of JeA , 

and we may label the basis vectors as 

IY) = a+(Y) 10) for yc A 
and 

a+(Y) == II a+(y). 
!lEY 

We let A be the quasi local C*-algebra generated by 
the local algebras $(JeA) of all bounded operators on 
JeA • 

We shall assume that the system is specified by 
Hamiltonians R(A) which are given by potential 

functions <p (X) , X c A, satisfying the following 
requirements: <p(X) E $(Jex ) is Hermitian, trans
lation invariant, <p(x) = -p,ata"" and <p is bounded 
in A-norm II II;.: 

11<p1l;. = I II <p(Y) II AN<Y) < CIJ 
ycZV 

OEY 

for all A > O. Here the local Hamiltonians R(A) are 

R(A) = I p(Y). 
ycx 
Y"0 

Then the finite-volume correlation functions are 
defined by 

PA(X, Y) = Z-;.l TrJeA [e-PH<A)a+(X)a(Y)], 

where ZA = TrJeA (e-PH(A» is the partition function. 
For further details, see Ref. 5. 

In Ref. I it was proved that the correlation functions 
PA, considered as elements of the Banach space L';' 
of bounded functions on the set of finite subsets of 
ZV, are the solution of the Banach space equations 

PA = KAPA + XAIX, 

where XAIX E L';' and KA is a bounded operator on L';'. 
More precisely, XA (X) is the characteristic function of 
the subset A, b(A = B) = 1 if A = B, zero otherwise, 
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<x(X, Y) = b(X U Y = 0), and the kernel KA is 

KA(X, Y; P, (Y - y) u R) 

I 
2: ( _1)NWI (P - VI ePH(AI aye-PHIAl 

VCRnp 
RIl(IIVXI C V 

X IX U (R - V» 
if Y;t: 0, (X U y) () Rep 

I (_l)NWI (P - (X - x) - VI 
VCRn[P-(X-",l] 

",nPcV 
X e-PH(Ala~ePH(AlIR - V) 

if Y = 0, (X - x) c P, (x n P) c R 

zero otherwise 

for y, x distinguished elements of Y, X, respectively, 
and z = e-PIl , the fugacity. 

To study the thermodynamic limit, we wish to 
estimate the norm 

IIKAII = sup 2: IKA(X, Y; P, R)I· 
X.Y P.RCZ' 

Theorem 1: 

"" 1 (2pr N(A) N(AI 

IIKAII S; oczn~l n! -;, k~2" ·2~2111f1Iai.kl·· ·111f11~z.kn 

X D (~/ k i - 1) + 1), 

where oc = 2..}2 + I, z = max {z, Z-l}, and 

1Ilfilu = I II gJ(Y) II IV. 
ycz' 

N(Y)=j 

Proof' Use the Dyson expansion and locality to 
obtain 

=I 2: ... 2: 2: 
n?:O Y2eSl YneSn-l Y 1 C A 

Ylny=0 

X f dt1 • •• dtn 
J1>11>"'>ln >0 

X pn[ePllhNIf(Yn U Yn)e-PIlIIN, ... , 

[ePlllnNIf(Yl U y)e-PllinN, e-Pllay], ... ] 

for N the number operator in JeA and Si = Y i U 

Yi - 1 U ... U Y1 U y. In evaluating 

.L IKA(X, Y; P, Y' U R)I, 
R.PCA 

we may interchange the order of summation and sum 
last over n and the arguments Y1 , Y2' Y2,"', Y n , 

Yn of the potentials. The cancellations proceed 
analogously to those in Ref. 1. The result for Y ~ 0 

is 

2: IKA(X, Y; P, Y' U R)I 
R.PCA 

00 

S;I 2:'" 2: 2: 
n=l Y2eSl YneSn-l Y 1 C A 

YIlly=0 

X I(P- (R n P) + WI[If(Yn U Yn),"', 

[1f(Yl U Y), aJ .. ']1 

(X n Sn) U (R - R n P + W»I, 

and the Schwarz' inequality is used to complete the 
proof. 

The infinite-volume correlation functions p(X, Y) 
are defined to be the solution of the integral equations 

p = Kp + oc, 

where K is defined pointwise by K(X, Y; P, R) = 
lim KA(X, Y; P, R) as A --+ 00. The proof of Theorem 
1 shows KA --+ K in the sense of strong operator 
convergence of the adjoints in the predual of L';'. 
This and the uniform bound for IIKAII proves p(X, Y) 
is unique, analytic in its parameters, and the pointwise 
limit of the finite volume correlation functions for 
fugacities and temperatures for which the kernels are 
strict contractions. We have the following. 

Theorem 2: The infinite-volume correlation func
tions are unique and analytic in the region of the 
({3, z) plane defined by 

00 1 (2P\n 00 00 

ocz n~l n! -;, k~2' . ·k~2111fIla2.kl •.. II gJllaun 

X n ct (k i - 1) + 1) < 1 

and including a neighborhood of the (positive) z axis. 
If A --+ 00 in the sense of van Hove, then 

p(X, Y) = lim PA(X, Y). 
A-too 

By extending these arguments to the dual potential, 

(CIf)(X) = (_l)N(XI 2: Tr;rey_xlf(Y) 
ycz' 
Y:::>X 

in the case IICIf II;, < 00, it can be seen that the corre
lation functions extend analytically to the region 
defined by replacing If by CIf and z by Z-l in Theorem 
2 . 
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We show that the group of linear canonical transformations in a 2N-dimensional phase space is the 
real symplectic group Sp(2N), and discuss its unitary representation in quantum mechanics when the N 
coordinates are diagonal. We show that this Sp(2N) group is the well-known dynamical group of the 
N-dimensional harmonic oscillator. Finally, we study the case of n particles in a q-dimensional oscillator 
potential, for which N = nq, and discuss the chain of groups Sp(2nq) ::> Sp(2n) X O(q). An application 
to the calculation of matrix elements is given in a following paper. 

1. INTRODUCTION . 

It is well known that some of the powerful tech
niques for solving mechanics problems are based on 
the symmetry group of canonical transformations, i.e., 
the transformations in phase space that leave the 
Hamiltonian and the Poisson brackets of coordinates 
and momenta invariant. In some cases these transfor
mations concern the coordinates alone, i.e., are point 
transformations, as is the case when there is invariance 
under translations, rotations, or permutations of the 
particles. Symmetry groups of point transformations 
have been discussed extensively in the literature1- a 

both in their applications to classical and quantum 
mechanics. Groups of canonical transformations have 
been less extensively applied particularly in quantum 
mechanics, in which we require their unitary repre
sentation in an appropriate Hilbert space.4 We shall 
discuss in this note the group of linear canonical 
transformations in a 2N-dimensional phase space and 
their unitary representation when the N coordinates 
are diagonal. The linear canonical transformations 
constitute the dynamical group of the N-dimensional 
harmonic oscillator.s Their unitary representation 
plays a fundamental role in the understanding of the 
properties of harmonic oscillator statesS and their use 
in many-body calculations.s 

2. THE SYMPLECTIC GROUP OF LINEAR 
CANONICAL TRANSFORMATIONS 

A canonical transformation is a transformation in 
phase space which leaves invariant the Poisson 
brackets 

{xi,p;} = 6;;, {Xi' X;} = {Pi'P;} = 0, 
i,j= I," ·N. (2.1) 

To understand the nature of the group that these 
transformations form, we introduce the notation z"" 
or. = I, 2, ... , 2N, for a vector in phase space defined 
by 

Zj == Xi' Zi+N == Pi' i = 1,' .. N. (2.2) 

The Poisson bracket of two observables f, g is then 

aN 'Of ag 
-! -K«f/-' 

",.P=10Z« oZp 

where the matrix 
(2.3) 

K = IIK(lPii = (~I ~) (2.4) 

has all its submatrices of dimension N x N. 
If we now pass from the vector {z",} in phase space 

to a new one {fa:} whose components are functions of 
the previous one, the transformation will be canonical 
if 

aZa: azp 
!-Ky6 - = K(lp, 
Y.60Z y OZ6 

(2.5) 

If, in particular, the transformation between the 
new and the old vectors in phase space is linear, i.e., 

Z(I = !S(I/lz/l' 
/l 

the transformation will be canonical if 

SKS = K, 

(2.6) 

(2.7) 

where S = II S"'/l II and the tilde stands for transposed. 
The matrix S will be assumed real so that Xi and Pi 
remain Hermitian when Xi and Pi are represented by 
Hermitian operators. 

The matrix K is the one usually associated with the 
symplectic group.3.7 Thus the matrices S satisfying 
(2.7) are elements of a 2N-dimensional real symplectic 
group. We shall write these matrices in the form 

(2.8) 

where the real submatrices are all of dimension N X 

N with components 

A = "aii'" B = Ilbii", C = IJei;'" D = lid;;". 
(2.9) 

1772 
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The restriction (2.7) leads then to the equations 

BA = AB, 
c5 = DC, 

DA - CB = I. 

(2. lOa) 

(2.l0b) 

(2.10c) 

We first consider the case when the matrix B is 
nonsingular. We can then use (2.10c) to determine C 
by 

C = (DA' - 1)8-1• (2. 11 a) 

From this equation and (2.l0a) and (2.10b) we see 
that the restrictions on the remaining submatrices 
A, B, and D are given by 

BA = AB, 
SD = 58. 

(2. 11 b) 

(2.l1c) 

Equations (2.11) are then the ones that determine the 
general matrices 5 of the real symplectic group when 

det B ¢ O. (2.12) 

Wheri B is singular, we proceed to show that it is 
always possible to find a nonsingular diagonal matrix 
B' such that 

(2.13) 

and 
det (B - B'D) ¢ O. (2.14) 

To prove (2.14), let us denote the components of B' by 

8' = Ilb~bd, b~ ¢ O. (2.15) 

If, for all choices of the b; , the matrix 

B - B'D (2.16) 

is singular, then it is possible to find a set of real Yk' 
not all zero, such that 

(2.17) 

where in what follows all repeated Latin indices are 
summed from 1 to N. As this relation must be valid 
for any nonzero value of b; , we can conclude that it 
implies the existence of a set Yk' not all zero, for which 

Ykbik = Yk dik = O. (2.18) 

But this indicates that a linear combination of columns 
in the right-hand side of (2.8) gives zero, which 
implies that in this case 5 is singular. We have though 
from (2.7) that 

(det 5)2 = 1, (2.19) 

and thus we are led to a contradiction. We conclude, 

therefore, that it is possible to find a diagonal non
singular matrix B' for which (2.14) holds when B 
itself is singular. 

In the particular case when 5 is a point transfor
mation, i.e., 

we can express it in the form (2.13)-(2.14) with B = I. 
As the matrix 

(2.21) 

satisfies the conditions (2.11), we have decomposed 
the matrix 5 of (2.8) when B is singular, into the 
product of two matrices belonging to the symplectic 
group for both of which the submatrix in the upper 
right corner is nonsingular. We later show that we can 
obtain in an elementary fashion the unitary repre
sentation of the matrix 5 when B is nonsingular. Thus 
the development (2.13) allows us to obtain the unitary 
representation of the matrix 5 when B is singular, as a 
product of two unitary representations of matrices for 
which the submatrix in the upper right corner is 
nonsingular. 

3. THE UNITARY REPRESENTATION OF LINEAR 
CANONICAL TRANSFORMATIONS 

We wish to find in the quantum mechanical picture 
the unitary representation of the linear canonical 
transformations discussed in the previous section. We 
denote the states in which the coordinates Xi are 
diagonal by the bras and kets (x'i and Ix"), where 
whenever something is characterized by the eigen
values of all the coordinates Xi' i = 1, ... ,N, we 
suppress the index i. The matrix elements of the 
operators Xi and Pi with respect to this basis are then4 

(x'i Xi Ix") = x;o(x' - x"), 

(x'i Pi lx") = - ! ~ c5(x' - x"), 
i ox; 

where Ii is taken as 1 and 
N 

(3.1a) 

(3.1b) 

b(x' - x") = II b(x; - x;). (3.1c) 
i~1 

If we now pass to another set of coordinates and 
momenta, 

Xi = ai;x; + biiP;, 

Pi = CiiX; + diiP;, 

(3.2a) 

(3.2b) 

which are canonical, i.e., for which the matrices A, 
B, C, and D satisfy the relations (2.10), then it is 
clear4 that the matrix elements of Xi and Pi between 
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the bras and kets (i'l and Ii") will have the same form 
as (3.1). We use a round bracket notation for states in 
which Xi is diagonal to distinguish them from the states 
in which Xi is diagonal, in case we take the same 
numerical value for the eigenvalues of Xi and Xi' 

Clearly we could make the development 

Ii') = fiX') dx' (x' I i'), (3.3) 

where dx' = dx~ ... dx~ and we have an N-dimen
sional integration. The transformation bracket in (3.3) 
satisfies the equations4 

( , 'b a)<, 1-') -, < ' I -') aiix i-I ii - X X = Xi X x, 
ax~ 

i = 1, ... ,N. (3.4) 

It is important to notice that Eqs. (3.4) do not com
pletely determine the transformation bracket (x' Ii'). 
In particular, if we multiply (x' I i') by an arbitrary 
function of i', it continues to satisfy Eqs. (3.4). We 
could, though, fully determine the transformation 
bracket <x' I i') up to a constant phase by the further 
requirements that the matrix elements of Xi and Pi 
with respect to the states (x'i and Ii") have the form 
(3.1), i.e., that the transformation be canonical, which 
implies4 

(i'l Xi Ii") = JCi' I x'>( aijx~ - ibii a~)(X' I i") dx' 

= x:b(i' - i"), (3.Sa) 

(i'lpi Ii") = JCi' I X')(CiiX~ - jdii a~)<xl Ii") dx' 

1 a ~(_' _II) =---uX -x, 
i ax~ 

(3.Sb) 

where4 

where we stress the angular, rather than round, 
brackets of the matrix elements. To express then (3.6) 
as a matrix multiplication, we define the matrix 
elements of a unitary matrix U in a basis in which the 
Xi are diagonal4 as 

<x'i U Ix") == (x' I x"), 

which implies (x'i U-l Ix") = (x' I x"), (3.8) 

thus getting 

(xii Xi Ix") 

= J(X'I U Ii') di' (i'l Xi Ii") di" (i"l U-1Ix"). (3.9) 

In operator language we have then4 

(3.10) 

and it is clear that an entirely similar analysis gives us 

(3.11) 

If we carry out in succession two canonical trans
formations that give rise to the unitary representations 
U and V, the new coordinates and momenta in the 
quantum mechanical picture are affected by the 

,transformation VU. Thus we have the quantum 
mechanical equivalent4 of the classical canonical 
transformations and therefore also a unitary repre
sentation of the general symplectic group of which 
they form a part. 

We now proceed to determine (x'i U Ix") explicitly 
when, in the canonical transformation (2.6), the 
matrix S is given by (2.8), where the submatrix B is 
nonsingular. We shall use the notation 

(x' I x") = (x'i Ulx") == rfo(x', x"), (3.12) 

(i' I x') = (x' I i')*. (3.Sc) and proceed to show that rfo must have the form 

Once we have these transformation brackets, we can 
easily identify them with the unitary representation of 
the canonical transformation (3.2). For this purpose, 
we note, for example, that the matrix elements of Xi 

with respect to the basis in which the Xi are diagonal 
can be written as 

<xii Xi Ix") = J<x' I x') dx'(x'i Xi Ii") di"(x" I x") 

= J<XI I i'l di'x~b(i' - i") di"(x" I x"). 

(3.6) 

Now x; , X;' are not operators but just variables over 
which we carry out integrations, and thus, using 
(3.la), we can write 

x;b(i' - x") = <x'i Xi Ix"), (3.7) 

-'-(''') [ '(' " + I" + "")] 'I' X ,x = oc exp I lIijXiX i ftijxix i 'JIiiXi Xi' 

(3.13) 
where rx is a constant, the N X N matrices 

are real, and C and.N' are symmetric. These parameters 
can be determined as follows: First, as (xii x') 
satisfies Eqs. (3.4), we obtain that 

( , 'b a) -'-( I") "-'-( I ") aijx i-I ;; - 'I' X , X = Xi 'I' X ,x , ax; (3.15) 

which implies thatj 

[aiixj + bii(2Ai"X~ + ftikX~)]cf>(X', x") = x: cf>(x', x"), 
(3.16a) 
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which in matrix notation takes the form 

Ax' + 2B£x' + BoM,x" = x". (3.16b) 

As x' and x" are arbitrary independent vector and B 
is nonsingular, this implies that 

£ = -iB-IA, oM, = B-1. (3.17) 

The matrix I: is symmetric, as it should be, as a 
consequence of (2.l1b). Passing now to Eq. (3.5a), 
we see from (3.16a), using the notation (3.12), that it 
implies 

But, making use of (3.18), we see that 

1 0 ~(_' _II) ---ux -x 
i ox~ 

= f 4>*(x', x)[ -PiiX; - 2VjiX'~]rp(x', x") dx'. (3.24b) 

From Egs. (3.24) we obtain the following relation in 
matrix notation, 

(C + 2DI:)x' + DoM,x" = -.M,x' - 2Nx", (3.25) 

f 4>*(x', x')rp(x', x") dx' = t5(x' - x"). (3.18) and, as x' and x" are arbitrary independent vectors, 
we obtain 

Thus we must have the restriction 

lexl 2 exp [ivij( -x~x; + x7x';)] 

x f exp { - iXaPi;(xj - x';)]} dx' 

= lexl 2 exp {ivjj(-x;xj + x7x'j)}(2Tr)N 
N 

x IT b[Pi/xi - xj)] 
;=1 

= lexI 2 (21T)N Idet BI t5(x" - x'). (3.19) 

In (3.19) we made use of the fact that if 

(3.20a) 
or 

x7 = biiY~' (3.20b) 

and similarly for x; , then 

N N 

IT bey;' - y;) = IJI IT o(x7 - x~), (3.21) 
i=1 i=1 

where J is the Jacobian of the transformation (3.20b), 
i.e., 

J = ~ = det B. 
1

0 -" I 
oy'; 

(3.22) 

Thus the restriction that Xi must have its canonical 
form (3.Sa) leads, up to a phase, to the value 

ex = [(21T)N Idet BIr!. (3.23) 

The next step is to make use ofEq. (3.5b), which leads 
to 

J rp*(x', X')[ (CijXj - idij o~J rp(x', XII)] dx' 

= J 4>*(x', x')(cijxj + dil2A.jkX~ + PjkXDJ4>(X', x") dx' 

= - ! ~ b(x' - x"). (3.24a) 
i ax; 

C = -2D£ - .At = DB-lA - B-1 = (DA - I)B-I, 

(3.26a) 

x = -i.M,O = -is-lO = -tDB-l. (3.26b) 

Equation (3.26a) is automatically satisfied in view of 
the relation (2.lla), while (3.26b) gives us the explicit 
form of the matrix X, which from (2.llc) is sym
metric as it should be. Thus, finally, up to a constant 
phase factor, we can write (in matrix and vector 
notation) the unitary representation of the linear 
canonical transformation (2.6) as 

(x'i U Ix") 

= [(21T)N Idet BIr! 

x exp [-ti(x'B-1Ax' - 2x'B-1x" + x"DB-1x")], 

(3.27) 

where i' and i" are the transposed vectors x' and x". 
We recall though that this holds only in the case when 
B is nonsingular, and thus B-1 exists. 

When B is singular, we can consider the develop
ment (2.13). To obtain the unitary representation in 
this case, we need to calculate the product of two 
unitary representations of the form (3.27). We proceed 
first to discuss the unitary representation of the 
product of two arbitrary canonical transformations 

where we assume B1 and B2 nonsingular. We shall 
denote the unitary representations of the matrices in 
(3.28) by U2 , UI , and U, respectively. The unitary 
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representation of the product of canonical transfor
mations is then 

<x'i Ul U2 Ix") 

= J(X'I Ul Ix"') dx"'(x"'l U2 Ix") 

= (217")-N(ldet Bll'ldet B21)-1 

x exp [-ti(i'B11Alx' + i"D2B;lX")] 

x J dx'" exp { -ii[i"'(DlBl
l + B;lA2)x'" 

- 2i"'(Bl
lx' + B;lX")]}. (3.29) 

From (2.11b) and (2.11c) we see that the real matrix 
DlBll + B;lA2 is symmetric, and thus there exists an 
orthogonal transformation 

x"' = Oy 

that diagonalizes this matrix, i.e., 

(3.30) 

6(DlBll + B;lA2)0 = A = II~i~jjll. (3.31) 

We note furthermore that 

Dl Bll + B;lA2 = B;lBB1\ (3.32) 

and thus the number of zeros among the real eigen
values t5 i will be equal to the dimension minus the 
rank of the matrix B which we shall denote by p. We can 
always select the matrix 0 in such a way that the first 
p eigenvalues 151 ,'" ,t5p are the ones that vanish. 
If we then denote by z the vector 

z == O(B1lx' + B;IX"), (3.33) 

the integral in (3.29) takes the form 

J 
.. . JdYl ••• dYN exp (- i. I t5iY~) exp (i.I YiZi) 

2.=p+l .=1 

u N 

= (217")N IT t5(Zi) IT 115;1-1 

;=1 i=p+l 

X exp (-1i17" sgn 15;) exp (i~), 
2 15; 

where we used the notation 

(3.34) 

(3.35) 

Introducing then (3.34) into (3.29), we obtain 
explicitly the unitary representation of the product of 
two canonical transformations. In particular, if we 
want the unitary representation of a canonical 
transformation where B is singular, we just have to 
consider the product (2.13), i.e., 

A2 = O2 = I, B2 = B', C2 = 0, At = A - B'C, 

Bl = B - B'D, Cl = C, 0 1 = D. (3.36) 

We note from (3.34) that the unitary representation 
will contain a product of as many 15 functions as the 
nullity (i.e., dimension minus rank) of the matrix B. 
In particular, if we are dealing with a point transfor
mation in which from (2.20) we have 

B' = I, 0 = A-I, B = C = 0, (3.37) 

then we obtain 

<x'i U1 U2 Ix") = Idet All t5(Ax' - x"). (3.38) 

This last result is.to be expected, as for a unimodular 
A (i.e., det A = 1) we see that the unitary repre
sentation transforms an arbitrary wavefunction tp{x') 
into 

J tp(x') dx' (x'i U Ix") = tp(A-lx"). (3.39) 

We now return to the product of two canonical 
transformations (3.28) but assume that B is non
singular. We note then that the integral (3.34) takes 
the form 

(217")N(ft It5ir1) 

x exp (-ii17"tSgnt5i) exp (tit(Z~/t5i»)' (3.40) 

But from (3.33) we obtain 

N z~ I-.! 
i=l 15; 

= it [(i'Bll + i"B;I)O]i k [6(B1lx' + B;lX")]i 

= (i'Bll + i"B;1)OA-16(B1
lX' + B;lX") 

= (i'Bll + i"B;1)BlB-lB2(B1lX' + B;lX"), (3.41) 

so that the unitary representation of the product of 
two canonical transformations for which Bl and B2 
are nonsingular becomes in this case 

(x'i U l U 2 Ix") 

= exp (-1;17" t sgn bi ) 

X [(217")N Idet Bli . Idet B21 . Idet Air! 

x exp {-!i[x'B11Alx' + X"D2B;lx" 

- (x'Bl
l + i"B;1)BlB-lB2(BllX' + B;lX")]). 

(3.42) 

Making use of some of the relations between the 
submatrices A, B, C, and 0 discussed in Sec. 2, as 
well as of the definition (3.28), we finally obtain 

<x'i Ul U2 Ix") = exp (-ii17" t sgn t5i)<X'1 U lx"). 

(3.43) 
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The matrix elements of U1 , U2 , and U, in a repre
sentation in which the coordinates are diagonal, are 
given by (3.27) when we substitute in it the corre
sponding canonical transformation. 

As there is no way of making the phase factor 
disappear in (3.43) by multiplying the unitary repre
sentation (3.27) by an appropriate constant phase 
factor, this representation then constitutes a ray 
representationS of the 2N-dimensional symplectic 
group. We have even explicitly obtained in (3.43) the 
phase of this ray representation in the case when the 
submatrices B of all the symplectic matrices (2.8) are 
nonsingular. 

4. LINEAR CANONICAL TRANSFORMATIONS 
AND THE DYNAMICAL GROUP OF mE 

OSCILLATOR 

The set of real 2N-dimensional matrices (2.8) that 
satisfy the conditions (2.10) constitute the symplectic 
group Sp(2N). A subgroup of Sp(2N) is formed by the 
matrices (2.8) that are also orthogonal, which besides 
(2.10) satisfy 

(AB~ O~) (Ac B) = (~A + ~C ~B + ~O) 
o BA + DC BS + DO 

= (~ ~). (4.1) 

The relations (2.10) and (4.1) can also be expressed in 
terms of the complex matrices 

'\1 == A + is, '\1* == A - iB, 'IT == 0 - iC, 

'IT* == 0 + iC, (4.2) 

and we showed in another publication9 that they are 
satisfied if 

'IT = '\1 and '\1 unitary, i.e., '\1*'\1 = I. (4.3) 

Thus the subgroup of orthogonal linear canonical 
transformations is actually a representation of the N
dimensional unitary group '\1(N) whose elements are 

( 
.l('lL + '\1*) -li('lL - 'lL*») (4.4) 
li('lL - '\1*) i('\1 + '\1*) . 

We can construct the elements of the Lie algebra of 
Sp(2N) and its subgroup '\1(N) in terms of bilinear 
expressions in coordinates and momenta.5 It is more 
convenient to do this in terms of the creation and 
annihilation operators defined as usual by 

'YJi == 2-1(xi - ipi), ~i == 2-1(Xi + ipi)' 
i = I, ... ,N, (4.5) 

whose commutation relations are 

We consider the N(2N + I) bilinear operators 

H t = l('YJi~i + ~i'YJi) == eit + t, i = 1, ... ,N, 

'YJt~i == eii , i ~ j, i,j = 1, ... , N, 

'YJi'YJi' i~j=I,···,N, 

~i~i' i~j=I,···,N. 

(4.7a) 

(4.7b) 

(4.7c) 

(4.7d) 

From (4.6), these operators close under commutation, 
and, if we obtain their root vectors with respect to the 
set of commuting operators Hi' we find that they are 
the generators5 of the group Sp(2N). The set of 
operators eii' i,j = 1,"', N, of (4.7a) and (4.7b) 
also close under commutation, and their root vectors 
indicate that they are the generators of the '\1(N) 
group. A subset of this last set given by 

eii - eji = i(XiPi - X;Pi) = Xi -;,0 - Xi -;,0 (4.8) 
uX; UXi 

clearlylo gives the generators of the CJ(N) subgroup of 
'\1(N). 

We note that the Hi of (4.7a) are just 

Hi = t('YJi~i + ;i'YJi) = t(p~ + x~), (4.9) 

and the Hamiltonian of the N-dimensional harmonic 
oscillator is given by 

N N 
H = 1 Hi = ! 1 (p~ + X~) (4.10) 

i=1 i=1 

Thus the group Sp(2N) , whose generators are the 
operators (4.7), is the dynamical group of the N
dimensional oscillator. The group '\1 (N) , whose 
generators are the eii of (4.7a) and (4.7b), is the 
symmetry group of the harmonic oscillator, as can be 
seen directly because 

[eii' H] = 0 (4.11) 

and also from the fact that the orthogonal group of 
canonical transformations clearly leaves H invariant. 

In applications6 we usually deal with several 
particles, say n, in an oscillator potential of definite 
number of dimensions q so that N = nq. Denoting by 
fl = I, ... , q the component and by 8 = 1, ... , n, the 
particle indices, we can now express the coordinates 
and momenta as well as the creation and annihilation 
operators in the following notation: 

x. = {xI's}, ,. = {PI"}' YJ. = {'YJl's}' ;. = {~!,.}. 
(4.12) 

Clearly we can in (4.7) substitute i by fl8 and contract 
with respect to the component index fl, thus getting 
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the operators 

Jes = !('1)s • ~s + ~s • '1)s)' s = 1, ... , n, 

'1)s • ~t' s:;6 t, s, t = 1, ... , n, 

'1)s • '1)t, S ~ t = 1, ... , n, 

~s .;1' S ~ t = 1, ... , n. 

(4. 13 a) 

(4.13b) 

(4.13c) 

(4.13d) 

From (4.6) these operators close under commutation 
and have the same type of root vectors with respect to 
the set of commuting operators Jes as we had previ
ously for the operators (4.7) with respect to Hi' Thus 
the operators (4.13) are the generators of a group 
Sp(2n) which is a subgroup of Sp(2N) = Sp(2nq). 

We can also contract the operators (4.7) with respect 
to index s, obtaining, for example, 

n 

ellv == I 'fJIlS~V" 
s~l 

(4.14) 

which by a similar reasoning as above will be the 
generators of a group <tL(q). The antisymmetrized 
part of these generators, i.e., 

A llv == ellv - eVil fl, 'II = 1, ... ,q, (4.15) 

constitute as before the generators of an orthogonal 
group O(q). It is clear that the Al'v and the generators 
of Sp(2n) commute, as the latter are by construction 
invariant under rotations in the q-dimensional space. 
Thus, for the problem of n particles in a q-dimensional 
harmonic oscillator potential, we have the following 
chain of groups: 

Sp(2nq) :::> Sp(2n) X O(q). (4.16) 

It is interesting to see 'in which way the subgroups 
O(q) and Sp(2n) act on the coordinates xllS and 
momenta PIlS' Clearly for O(q) we have the orthogonal 
transformation 110 IlV II, 

XllS = IOllvxvs, Pils = I OIlVPV8' (4.17) 
v V 

while for Sp(2n) we obtain 

n n 

xllS = L astxllt + L bstPllt, 
t~l t~l 

n n 

Pils = L CstXllt + L dstPllt, (4.18) 
t~l t~l 

with the 2n-dimensional matrix of the type (2.8) 
satisfying again the restrictions (2.10). 

The set of all states of an N-dimensional harmonic 
oscillator belong to one of two irreducible repre
sentations of the group Sp(2N). This can be seen as 
follows: First all states can be expressed as homo-

geneous polynomials of degree r = 0, 1, ... in the 
creation operators 'YJi acting on the ground state 10). 
Using the generators 'fJi~j, i > j, repeatedly, we can 
transform these states into 

(4.19) 

Applying then the generator ~1, we finally convert 
them either in 

10) r even or 'fJN 10) r odd. (4.20) 

The two IR's are then characterized by the eigen
values of the N weight generators (4. 7a) corresponding 
to the minimum weight states (4.20), i.e., 

[t· .. t] = [(t)N] or [H"'!] = [(t)N-ln 

(4.21) 

This result continues to hold when we have n particles 
in a q-dimensional oscillator in which case N = nq. 

Now the chain of groups (4.16), which characterizes 
states defined by boson creation operators acting on 
the ground state, looks very similar to the corre
sponding problem for fermionsll of spin! in a given 
shell of angular momentum I. We briefly review the 
fermion case to establish the parallelism in detail. 
Assume that we have n different types of fermions 
(e.g., n = 2 if we have both protons and neutrons) 
in a shell of orbital angular momentum I. We can then 
define the indices 

fl == rna, m = I, ... ,-I, a = !, -!, 
s = 1, ... ,n, (4.22) 

in which fl can take 41 + 2 values. The fermion 
creation and annihilation operators can then be 
denoted respectively by 

bts' blls. 

The bilinear operators 

btsbt,s" 

bIlSbll '8' 

(4.23) 

(4. 24a) 

(4.24b) 

(4.24c) 

then constitute the generators of an ° [2n( 41 + 2)] 
group.u If we contract with respect to the fl index 
[keeping in mind a phase factor (-1 )/+m+!+a for 
(4.24b) and (4.24c)], we get the generators of an 
Spu(2n) group.12 The u index here' means we are 
dealing with the compact symplectic group (a sub
group of a unitary rather than of a linear group) since 
all representations we have for a fermion system are 
finite dimensional due to the fact that the Pauli 
principle limits the total number of states13 to 24/+2. 
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Had we, on the other hand, contracted the operators 
(4.24a) with respect to the s index, we would have 
obtained the generators of a (41 + 2)-dimensional 
unitary group 'U,(41 + 2), whose compact symplectic 
subgroup Spu(41 + 2) has the generators 

~ [b;;'"sbm''''s + (-l)m+m'+"+"'b~m'_"'sb-m-"s]. (4.25) 
s 

The generators of Spu(2n) and Spu(41 + 2) clearly 
commute with each other since the former by con
struction are invariant under the transformations of 
the latter. Thus in the fermion case we have the chain 
of groups 

0(2nq) :) Spu(2n) X Spu(q), q = 41 + 2. (4.26) 

If we have just one type of particles, i.e., n = 1, the 
group Spu(2) is identical to SU(2) and the group 0(3), 
which is homeomorphic to it, is the usual quasi spin 
group. For two types of particles, e.g., protons and 
neutrons, Spu(4), which is isomorphic to 0(5), is the 
generalized quasispin discussed by Hecht14 and others. 

In the fermion case all states belong to one of two 
IR's of 0+(2nq) , 

(4.27) 

which parallels the result (4.21) for bosons. The IR's 
of the subgroups Spu(2n) and Spu(q) for a given IR 
(4.27) of 0+(2nq) are complementary in the sense that 
they are in one-to-one correspondence as defined in 
Ref. 13. In particular this correspondence for n = 1 
gives the relation between quasi spin and seniority. In 
the boson chain (4.16) the IR's ofO(q) are character
ized by the partitions 

[A1A2 ' •• A!q] or [A1A2 '" A!(q-l)], (4.28) 

depending on whether q is even or odd. As was shown 
by Chacon,l5 these partitions also characterize 
completely the IR's of Sp(2n). Thus the groups 
Sp(2n) and O(q) are complementary in the same sense 
as Spu(2n) and Sp,.(q) were complementary in the 
fermion problem. We note though that in the boson 
problem Sp(2n) is a noncompact group and so its 
IR's are infinite dimensional, as we have an infinite 
number of harmonic oscillator states corresponding 
to a definite IR of o (q). 

The group Sp(2n) plays then, with respect to the 
boson operators associated with particles in an 
harmonic oscillator potential, a role similar to the one 
the generalized quasi spin has with respect to Fermi 
operators. In the following paper we use this quasi spin 
for bosons16 in the evaluation of one-particle matrix 
elements with harmonic oscillator states, in a way that 
parallels the use of the fermion quasispin by Lawson 

and MacFarlanel7 for a similar problem. Later we 
plan to extend this viewpoint to more than one 
particle. 

When dealing with the problem of n particles in a 
q-dimensional oscillator potential, we are also 
interested in the unitary representation of the group 
Sp(2n) of canonical transformations (4.18). Clearly, 
in the case when B = Ilbstil is nonsingular, we can 
immediately generalize the reasoning of Sec. 3, and 
obtain that the unitary representation in the basis in 
which the coordinates Xs are diagonal is, in the vector 
notation (4.12), given by 

(x'I U Ix") 

= [(2 7Tt Idet BIr! exp (-ii I [x;(B-1A)stX; 
s.t 

- 2x~(B-l)stX; + X;(DB-l)stX7]). (4.29) 

A particular case is that of a single particle (n = 1) 
in a three-dimensional (q = 3) harmonic oscillator. 
Designating by r = (X1X 2X 3) the position vector, we 
have that the unitary representation of Sp(2) in a 
scheme where the coordinates are diagonal is 

(r/l U Ir") = (27T Ib[)-i exp [-(iJ2b)(ar '2 - 2r ' • r" 

+ dr"2)]. (4.30) 

If we want the matrix U in a scheme in which the 
Hamiltonian H, angular momentum £2, and pro
jection L z are diagonal, we can obtain it from (4.30) 
with the help of the relation 

(n'l'm/l U In"l"m") 

= ff<nlllm l I r/) dr/(r' / U Ir") dr"(r" I n"l"m"), (4.31) 

where (r I nlm) is the three-dimensional harmonic 
oscillator wavefunction and (nlm I r) its conjugate. 
Using the relations18 .19 for Laguerre polynomials, 

L~+t(floX2) = i [r(n + 1 + -iW 
m=O m! [r( n - m + 1 + -iW 

J X flon-m(1 - flo)mL~~!m(x\ (4.33) 

we obtain straightforwardly that the unitary repre
sentation (4.31), which is clearly diagonal in I, m and 
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independent of m, has the explicit form 

(n'lml U In"lm) 

= iZ[n'! n"! fen' + 1 + t)r(n" + 1+ t)]i 
X (b + ia)-n.-z-l ( -b + iat'y-Z-l 

X 2 {[p! (n' - p)! (n" - p)! rep + 1+ t>rl 
11 

X [y2(a2 + b2)r2>[1 - y-l(a2 + b2r l t-11 

X (1 - y-l)n"-11}, (4.34) 

where y is given by 

y = {bel + a2 + b2
) 

-i[a - d(a2 + b2)]} [2b(a2 + b2)]-l. (4.35) 

If we consider an element of Sp(2) that belongs also 
to the orthogonal subgroup 0(2) of this group, i.e., 

a = d = cos cp, b = -c = sin cp, (4.36) 

we have a2 + b2 = I and y = I, and thus the unitary 
representation (4.34) simplifies drastically, taking the 
form 

(n'lml U In"lm) = ~n'n .. i-Iei(2n·+z+f)q>. (4.37) 

This result we, of course, expect as the state Inlm) can 
be written as an homogeneous9 polynomial of degree 
2n + I in the creation operators YJ acting on the 
ground state. The linear canonical transformation 
(4.36) implies then 

(4.38) 
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and thus the state Inlm) transforms, up to a constant 
phase, in the way indicated by the unitary repre
sentation (4.37). 
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We use the ideas on linear canonical transformations developed previously to calculate the matrix 
elements of the multipole operators between single-particle states in a three-dimensional oscillator 
potential. We characterize first the oscillator states in the chain of groups Sp(6) => SP(2) x 0(3), 
Sp(2) =>08(2), and 0(3) => OL(2), and then expand the multipole operators in terms of irreducible 
tensors with respect to the Sp(2) x 0(3) group. Their matrix elements are obtained by applying the 
Wigner-Eckart theorem with respect to both the Sp(2) and 0(3) groups. In this wayan explicit expression 
for the radial integral of rt, k > 0, is obtained. 

1. INTRODUCTION 

While canonical transformations playa fundamental 
role in the solution of problems of classical and 
quantum mechanics, their application, in the latter 
case, to the evaluation of matrix elements has not 
been fully explored. In the preceding paperl we 
discussed the linear canonical transformations and 

showed that the symplectic group which they form 
is the dynamical group of the harmonic oscillator. 
We wish in this paper to make use of this group and 
its subgroups in the evaluation of the matrix elements 
of the multipole operators 

(1.1) 
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independent of m, has the explicit form 

(n'lml U In"lm) 

= iZ[n'! n"! fen' + 1 + t)r(n" + 1+ t)]i 
X (b + ia)-n.-z-l ( -b + iat'y-Z-l 

X 2 {[p! (n' - p)! (n" - p)! rep + 1+ t>rl 
11 

X [y2(a2 + b2)r2>[1 - y-l(a2 + b2r l t-11 

X (1 - y-l)n"-11}, (4.34) 

where y is given by 

y = {bel + a2 + b2
) 

-i[a - d(a2 + b2)]} [2b(a2 + b2)]-l. (4.35) 

If we consider an element of Sp(2) that belongs also 
to the orthogonal subgroup 0(2) of this group, i.e., 

a = d = cos cp, b = -c = sin cp, (4.36) 

we have a2 + b2 = I and y = I, and thus the unitary 
representation (4.34) simplifies drastically, taking the 
form 

(n'lml U In"lm) = ~n'n .. i-Iei(2n·+z+f)q>. (4.37) 

This result we, of course, expect as the state Inlm) can 
be written as an homogeneous9 polynomial of degree 
2n + I in the creation operators YJ acting on the 
ground state. The linear canonical transformation 
(4.36) implies then 

(4.38) 
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and thus the state Inlm) transforms, up to a constant 
phase, in the way indicated by the unitary repre
sentation (4.37). 
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We use the ideas on linear canonical transformations developed previously to calculate the matrix 
elements of the multipole operators between single-particle states in a three-dimensional oscillator 
potential. We characterize first the oscillator states in the chain of groups Sp(6) => SP(2) x 0(3), 
Sp(2) =>08(2), and 0(3) => OL(2), and then expand the multipole operators in terms of irreducible 
tensors with respect to the Sp(2) x 0(3) group. Their matrix elements are obtained by applying the 
Wigner-Eckart theorem with respect to both the Sp(2) and 0(3) groups. In this wayan explicit expression 
for the radial integral of rt, k > 0, is obtained. 

1. INTRODUCTION 

While canonical transformations playa fundamental 
role in the solution of problems of classical and 
quantum mechanics, their application, in the latter 
case, to the evaluation of matrix elements has not 
been fully explored. In the preceding paperl we 
discussed the linear canonical transformations and 

showed that the symplectic group which they form 
is the dynamical group of the harmonic oscillator. 
We wish in this paper to make use of this group and 
its subgroups in the evaluation of the matrix elements 
of the multipole operators 

(1.1) 
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with respect to single-particle states in a three
dimensional harmonic oscillator potential. While these 
matrix elements can be evaluated either directly using 
elementary properties of special functions or with the 
help of more sophisticated properties associated with 
the group theory2.a behind these functions, so far as we 
know they have not been evaluated with the help of 
the canonical transformations associated with the 
harmonic oscillator. Thus we think the discussion can 
be not only instructive for the particular problem we 
propose to deal with here, but may also be useful in a 
general approach to the evaluation of matrix elements 
for problems in which an ,explicit group of canonical 
transformations is available. 

2. THE SINGLE-PARTICLE STATES IN A THREE· 
DIMENSIONAL OSCILLATOR POTENTIAL 

As indicated in the preceding article,l whose 
notation we shall employ, we have for a single 
particle in a three-dimensional oscillator potential the 
chain of groups 

Sp(6) :::> Sp(2) x 0(3). (2.1) 

All states of even number of quanta belong to the 
irreducible representation (IR) [Hll of the six
dimensional symplectic group Sp(6) , while those of 
odd number of quanta belong to the IR [Uil of the 
same group. The group 0(3) is the usual rotation 
group in three dimensions whose generators are the 
components of the angular momentum 

L = r X p = - iY) x ;, 

where 'I and ; are the creation and 
vectors defined by 

'I = 2-1(r - ip), 

; = 2-1(r + ip). 

(2.2) 

annihilation 

(2.3a) 

(2.3b) 

The generators of the symplectic group Sp(2) are 
formed by the bilinear expressions in the components 
of 'I and ; that are invariant under rotations and 
thus can be expressed as 

T+ == -1'1 • 'I, (2.4a) 

To == 1('1 . ; + ; . 'I) = i(Y) • ; + t), (2.4b) 

L == -i;';' (2.4c) 

The commutation rules of these operators are 

[To, T±l = ±T±, 

[T+, T_J = -2To, 

(2.5a) 

(2.5b) 

which differ in the sign of the last term from the usual 
ones of the rotation group. Thus we are dealing with 
the Lie algebra of the real symplectic group Sp(2) or 

those locally isomorphic to it4 such as S'\1(I, 1) or 
0(2, 1). 

The single-particle harmonic oscillator states can be 
expressed ass 

Inlm) = P 1IIm(Y) 10), (2.6) 

where 10) is the ground state of the oscillator and 
P 111m is a homogeneous polynomial of degree 2n + I 
in the creation operator 

This state can be characterized by definite IR's of the 
chain of groups 

Sp(2) :::> 0,(2), 0(3):::> 0L(2), (2.8) 

where we distinguish by indices Sand L the two
dimensional orthogonal subgroups associated respec
tively with Sp(2) (which was discussed in Ref. 1) and 
with 0(3). 

Clearly the state (2.7) is characterized by the IR's 1 
of 0(3) and m of OL(2). For Sp(2) we note first that 
when n = 0, the state is of lowest weight in Sp(2) as 

T_IOlm) = -iA1I1(;· ;)'Ylm(y) 10) = 0, (2.9) 

because; can be interpreted as the differential operator 
alay) when applied to polynomials in 'I, due to the 
commutation relations between 'I and ;.5 Applying 
To to 101m), we obtain the eigenvalues 

(2.10) 

which we may consider as the label that characterizes 
the IR of Sp(2). The IR of 0(3) specifies the IR of 
Sp(2), and thus the groups are complementary in the 
sense discussed in the preceding article.I •6 If we app~y 
T+ to the state, we do not change the IR of Sp(2), and 
thus we see that all states Inlm) of fixed I, m belong to 
the same IR (2.10) of Sp(2). They belong though to 
different IR's of the subgroup 0 8 (2), whose generator 
is To, as the eigenvalue of this operator is now 

p, = l(2n + I + t). (2.11) 

Thus the single-particle state Inlm) can also be 
written as 

Inlm) == lAp,; 1m), (2.12) 

where it is now characterized by the IR's of the chain 
of groups (2.8), with;' and p, given by (2.10) and 
(2.11), respectively. 

We proceed now to show that the solid spherical 
harmonic (1.1) can also be expressed in terms of 
linear combinations of irreducible tensors in Sp(2). 
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Thus the evaluation of the matrix elements of this Sp(2), we get new generators 
solid spherical harmonic can be carried out with the 
help of the Wigner-Eckart theorem for both the T+ = -ir. r, (3.Sa) 

rotation 0(3) and symplectic Sp(2) groups. To = li(r • p + p • r), (3.Sb) 

3. TENSORIAL CHARACTER OF THE MULTI
POLE OPERATORS WITH RESPECT TO 

THE Sp(2) x 0(3) GROUP 

The muItipole operator (I.I) is clearly an irreducible 
tensor of rank k and projection t with respect to the 
0(3) group. We wish now to investigate its properties 
with respect to the Sp(2) group. As the latter group is 
locally isomorphic to S'l1(I, I), an irreducible tensor 
'b~, T = -K, -K + I, ... ,K, with respect to this 
group has the properties7 

[T±, 'b~] = ±[(K 1= T)(K ± T + l)]t'b;±l' (3.1a) 

[To,'b~]=T'b~. (3.1b) 

The operators 'b, form a basis for a finite-dimensional, 
and therefore nonunitary, IR of S'l1(I, I). In the 
following, we are going to consider double tensors 
'b~:, i.e., tensors with respect to the Sp(2) X 0(3) 
group. 

In order to investigate the tensorial character of the 
multipole operator (1.1) with respect to the Sp(2) 
group, we first note that the operators 'YJt and ~ t, for a 
given t (t = I, 0, or -I), are the projections +-~ and 
-t, respectively, of a tensor ofrank i with respect to 
Sp(2), as 

[T+. 'YJt] = 0, 

[To, 'YJt] = i'YJt, 

[T_, 1/t] = -~t' 

[T+, ~t] = 'YJt, (3.2a) 

[To, ~t] = -Ht, (3.2b) 

[L, ~t] = 0. (3.2c) 

Higher-rank irreducible tensor operators can be 
constructed from the creation and annihilation 
operators by using S'l1(I, 1) Wigner coefficients. On 
the other hand, it is well known4.7 that the Wigner 
coefficients which couple two finite-dimensional, non
unitary IR's of the S'l1(1, I) group can be taken to be 
identical to the corresponding Wigner coefficients of 
the S'l1(2) group. Therefore, the construction of 
higher-rank irreducible tensors only requires S'l1(2) 
Wigner coefficients. In this way we can form a tensor 
of rank kj2 whose highest component is given by 

!kk 
'btkt ;; 'Ykt(Yl). (3.3) 

If we apply now the transformation 

to the operators Yl and ; in the generators (2.4) of 

(3.5c) 

with respect to which the operators f t and ipt, for a 
given t, are the projections +t and -t, respectively, 
of a tensor of rank i. As before, we can build from it 
higher-rank irreducible tensors by just using S'l1(2) 
Wigner coefficients. In particular, the transformation 
of (3.3) leads to the multipole operator (1.1), which 
can be rewritten as 

-!kk 
'b!kt = 'Ykt(r). (3.6) 

As the construction of the tensor operators only 
involves the algebra of S'l1(2) and the matrix of the 
transformation (3.4) is unitary, the transformed 
tensor is given in terms of the original one by means 
of a Wigner ~ functionS 

;;o!kk '" '1"!kkm !k(O .1 0) °rt ="4,, UT't JJr'r '-2 1T, . (3.7) 
T' 

Introducing in (3.7) the explicit expression of the ~ 
function, we finally get the expansion of the muItipole 
operators in terms of double tensors, 

'Y - . 'btkk 38 k/2 ( k' )t 
kt(r) -T=~/2 (k + 2T)!! (k _ 2T)" Tt· (.) 

We proceed now to use this expansion to calculate the 
matrix elements of (1.1) between oscillator single
particle states. 

4. MATRIX ELEMENTS OF THE MULTIPOLE 
OPERATORS BETWEEN OSCILLATOR 

SINGLE-PARTICLE STATES 

Using (2.12) and (3.8), we can write the matrix 
elements of a solid spherical harmonic between 
oscillator single-particle states as 

(n'I'm'l 'Ykt(r) Inlm) 

k/2 [( k' )t 
=T=~/2 (k + 2T)!! (k - 2T)!1 

x (Ap'; I'm" 'bttkk IA,u; 1m>} (4.1) 

The Wigner-Eckart theorem applied to both the 
S91,(l, 1) and S'l1(2) groups enables to factorize the 
matrix element of the tensor operator 'bt~k into a 
product of Wigner coefficients of S'l1(I, 1) and 
S91,(2) and the reduced matrix element of the operator 
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with respect to both groups, 

(n' l'm'llIkt(r) Inlm) 

k/2 [( k! )! 
= T=~/2 (k + 27)!! (k - 27)!l 

X (A tk,u 7 I A',u')nc (I k m t I/'m')}A'; I'll b!kk III.; I). 

(4.2) 

We designate by ( I )nc the Wigner coefficient of the 
noncompact S'l1(I, 1) group in order to distinguish 
it from the S'l1(2) Wigner coefficient ( I ). This type 
of S'l1(1, 1) Wigner coefficient is the one which arises 
when a unitary and a non unitary representation are 
coupled to get a unitary representation. Explicit 
expressions of it have been given by Vi.7 

The selection rule on the S'l1(2) Wigner coefficientS 
gives rise to the well-known selection rule on the 
angular part of the matrix element (4.1), 

II - /'1 ~ k ~ 1+ 1'. (4.3) 

On the other hand, the selection rule on the S'l1(1, 1) 
Wigner coefficienf? 

I" + 7 = 1"', (4.4) 

taking into account the values of ,u and ,u' given by 
(2.11) and the fact that 7 goes from -kj2 to kj2, 
leads us to the selection rule on the radial part of (4.1), 

2n + 1- (2n' + 1') = -k, -k + 2, ... , k. (4.5) 

As the angular part of (4.1) is well known, we are 
only interested in the explicit expression of the radial 
integral. To obtain it, the relation (4.2) can be 
rewFitten by expressing the reduced matrix element, 

in terms of the matrix element corresponding to n = 
n' = ° or ,u = A, ,u' = A', as 

(n' l'm'llIkt(r) Inlm) 

[( 
k! )! 

= (k + 2,u' - 2,u)!! (k - 2,u' + 2,u)!! 

X (A, tk,,u,,u' - ,u I A',u' )nc] 

[( 
k! )! 

X (k + 21.' - 2A)!! (k - 21.' + 2A)!! 

X (A, tk, A, A' - A I A'A')ncT
1 

X (OI'm'l lIklr) 101m), (4.6) 

from which it follows that 

L'JRn'l.(r),-k+2Rnl(r) dr 

= (k + 21.' - 2A)!! (k - 21.' + 2A)!!)! 
(k + 2,u' - 2,u)!! (k - 2,u' + 2,u)!! 

(A, tk,,u,,u' - ,u I A',u' )nc 
X 

(A, tk, A, A' - A I A'A')nc 

X f" Ro!,(r)rk+2Rol(r) dr. (4.7) 

The radial integral of the right-hand side is easily 
shown to be equal to 

LaJ ROI,(r)rk+2Roz<r) dr 

= (k + 1 + I' + 1)11 [2k(21 + I)!! (21' + l)!!r!. 

(4.8) 

Introducing in (4.7) the explicit expression for the 
S'l1(1, 1) Wigner coefficients,7 we finatly get 

raJ R ,,(r)l+2 R (r) dr = (_I)n+n' (k + I + l' + I)!! [l(k + 1 - l')]! 
Jo nl nl [t(k+I'-/)+n'-n]! 

X (2n,-n-kn l n'! (2n' + 2/' + I)!!)! min<n.!(kI-I,)+n-n') 

(2n + 21 + 1) I! p=max(O.n-n') 

X ( 2P[-Hk + I' - I) + n' - n + p]! ) 
pI [l(k + 1 - 1') + n - n' - p]! (n - p)1 (n' - n + p)1 (2n' - 2n + 2/' + 2p + I)!! . (4.9) 

This formula coincides with that given by Armstrong2 using group theory related to special functions. 
The approach followed in this article for the evaluation of the single-particle matrix elements for 

harmonic oscillator states can clearly be generalized to problems involving more particles, as well as to 
states associated with other type of potentials. It requires the knowledge of the chain of groups involved 
in the characterization of the states and of the Wigner coefficients of these groups. 
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A detailed investigation of the generation of sound waves from an oscillating piston is considered 
within the framework of kinetic theory. Two kinetic models appropriate to the problem are developed. 
Both of these are exactly solved by the Wiener-Hopf method. Under a certain special limit, gas dynamics 
is shown to hold. A variety of other special limits are also considered. 

1. INTRODUCTION 

An early investigation of the sound propagation 
problem by means of kinetic theory is to be found in 
the pioneering report of Wang Chang and Uhlenbeck.1 

In brief their method is based upon the expansion of 
the distribution function in terms of moments. Using 
this method, they showed that a series expansion for 
sound speed and attenuation rate in the frequency w 
could be obtained. The leading terms of these yield 
the same results as the Euler, Navier-Stokes, and 
Burnett equations, etc. A numerical investigation 
based on this method and using an extremely large 
number of moments is to be found in the work of 
Pekeris and his co-workers.2.3 However, these results 
proved to be very poor in the transition and high 
frequency limit when compared with the experiments 
of Greenspan4 and Meyer and Sessler.s A discussion 
ofthese results is to be found in Sirovich and Thurber.6 
In that paper a method for investigating sound waves 
by means of fairly elaborate kinetic models is given. 
The results of their investigation showed extremely 
close agreement with the above-mentioned experiments. 

In all of the above theoretical investigations, only 
the problem of sound propagation was considered. 
By this we mean that only the dispersion relation for a 
plane wave was analyzed. The boundary value 
problem corresponding to the experiments of Refs. 4 
and 5 was not considered. This lead to a cOl).troversy 
(see Refs. 7 and 8) concerning the applicability of 
the plane wave description in the neighborhood of the 
oscillating wall. It was felt that in this region a free 
flow analysis would be more appropriate. The free 
flow analysis and certain experiments in their support 
are given in Refs. 9 and 10. However, even these 
new experiments provided data which fell more closely 
on the sound dispersion curves than on the free flow 
curves. It was shown in Ref. 7 that the free flow 
analysis is of very questionable value at high' fre
quencies even within one mean free path of the wall. 

The real issue can only be resolved by the solution 
of the exact boundary value problem. A certain 
amount of penetration into this problem has been 

made by Ostrowsky and Kieitman,ll Weitzner,12 
Mason,13.14 and Buckner and Ferziger.15 Due to 
various analytical difficulties a number of restrictive 
assumptions had to be made in each of these investi
gations. To a certain extent the result of these studies 
was to raise more questions rather than to settle 
the above controversy. Notable among these new 
questions was the result in Ref. II, that the falloff 
of a disturbance from an oscillating wall at large 
distances is O[exp (-xi)]. This is in clear violation of 
the widely held view that gas dynamics is the valid 
theory at large distances, since this theory predicts a 
simple exponential falloff which is clearly recessive 
when compared with the result of Ref. 11. We 
mention in passing that this same peculiar falloff was 
also found in a study of shock wave structure by 
Lyubarskii.16 The explanation for this behavior is due 
to the BGKW model (Bhatnagar, Gross, and Krook17 

and Welander18) or variations of it which were used 
in the above theoretical investigations, for, in this 
model, the collision frequency is a constant and fast 
molecules have unbounded free paths. This point is 
made in a recent paper.19 It is also shown there that 
other fall-offs occur when the collision frequency is 
nonconstant. If we denote the collision frequency by 
.,,(~) and if 

IX = lim In .,,/(1n ~), 
; ... 00 

then in general one has a falloff o [exp (_X2/(3-
a»]. This 

has been demonstrated in a particular boundary value 
problem using a model equation (Sirovich and York20) 
and also for the full linearized Boltzmann equation 
(Richardson and Sirovich21). 

The resolution of the boundary value problem can 
be made in terms of contributions due to the point 
spectrum (essentially sound propagation) and con
tinuous spectrum (in which the collision frequency 
and boundary conditions playa major role). A major 
aim of our investigation is to better understand the 
interplay of these two effects. Specifically, we wish to 
know if and )Vhere the point and continuous spectra 
individually dominate. We also wish to take up the 

1784 



                                                                                                                                    

SOUND WAVE BOUNDARY.VALUE PROBLEM. I 1785 

detailed effect of collision fr~quency. This last part 
will be taken up in the second part of this study, and 
in the present paper we will assume a constant 
collision frequency. 

We are critical of the previous treatments in their 
choice of models and in their boundary conditions. 
For these reasons we will (in Sec. 2) formulate the 
problem and treat the boundary conditions with more 
than usual care. It is shown that previous studies, at 
least implicitly, assume that the flow under investi
gation is distant from the piston. We develop the 
problem under the sole assumption that the Mach 
number based on piston speed is small, and a simple 
transformation renders the analysis valid up to the 
wall. 

In Sec. 3 we introduce two kinetic models for the 
sound problem. Both are developed with the goal of 
faithfully describing both the plane wave and con
tinuous spectrum contributions to the solution. These 
models are exactly solved by essentially the Wiener
Hopf technique in Sec. 4. 

Although our solutions are explicit, they do not 
yield to ready analysis. For low frequencies our 
solution implicitly settles the above-mentioned 
controversy in showing that the discrete spectrum 
dominates over the continuous spectrum in the 
neighborhood of the piston. A specific solution for all 
frequencies must await machine calculation. In the 
limit of low frequency oscillations a number of results 
can be obtained. For one thing, in this limit the 
neighborhood of the piston is dominated by the 
discrete spectrum, ie., the plane wave solution. The role 
of hydrodynamics also emerges. We show that in the 
limit of y --+ 00 with xw/(RT)i held fixed, hydro
dynamical theory (the plane wave) dominates. Also of 
interest is the extent of the region in which the plane 
wave solution dominates the continuous spectra 
portion of the solution. The asymptotic extent of this is 
x« w-6• Beyond this region the description is 
essentially nonhydrodynamic. A more detailed picture 
of this "crossover" phenomena is given in Sec. 5. 

2. STATEMENT OF THE SOUND PROPAGATION 
PROBLEM 

We begin our discussion with the Boltzmann 
equation 

(~, + ~; a~,)F = JF, (2.1) 

where F = F(x, ;', t') is the molecular distribution 
function, x' is distance measured from the mean 
position of a sinusoidally oscillating piston, ;' is the 
molecular velocity, and t' is the time. JF is the non-

linear Boltzmann collision operator or any particular 
model of it. 

Equation (2.1) can be nondimensionalized with 
respect to a constant y, representative of molecular 
collision frequency, a mean molecular speed (RTo)i, 
where To is the mean gas temperature, and Po, the 
mean density. The dimensionless variables are then 
defined by 

yx'/(RTo)i = X, f//(RTo/
1 =;, yt' = t. (2.2) 

Since boundary conditions are applied at the piston 
position x' = x;(t), rather than the mean position 
x' = 0, we make a (noninertial) transformation which 
takes the piston position x~(t) into the origin of a 
coordinate x'; 

X' - x;(t) = x', :t x;(t) = u;(t), 

where u;(t) is the piston velocity. x;, u; are non
dimensionalized by (2.2) and we write 

x'y/(RTo)i = x, u;(t)/(R1;i = Eu:lt), 

YX;(t)/(RTo)i = xit), 

where E is chosen so as to make u:p = 0(1) and hence 
is in effect the piston Mach number. Finally by writing 

F(x', ;', t') = f (x, ;, t), 

(2.1) becomes 

[i + (~1 + EU:IJ) 1..J! = ! Jf at aX" 
(2.3) 

We impose the following boundary conditions on (2.3): 

1: (;1 - Eu:p)f(x = 0, ;, t) d; = 0, (2.4a) 

f(x = 0, ;, t) = Po(27TRTo)-! piT:lr! 

x exp [(; - EU:p)2(2T:IJ)-1]; 

;1 > EU:IJ(t). (2.4b) 

Equations (2.4) have been nondimensionalized ac
cording to (2.2) and 

p:IJ = p;/Po, T:p = T;/To' 

The first condition, (2.4a), states that there is no mass 
flow through the piston surface. For this to be true, 
it must be assumed that the "waiting time" of mole
cules on the surface is small compared to the period of 
oscillations of the piston. It should be mentioned 
that for very high frequency oscillations this might not 
be the case. (In the case of specular reflection at the 
piston there is no waiting time and the condition is 
exact.) The second equation, (2.4b), specifies that the 
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molecules leave the piston diffusely, i.e., for ~1 > eup 

the distribution function is Maxwellian centered at the 
piston speed and with a density and temperature PP' 
Tp which must be determined. (Other "outgoing" 
distribution functions can be prescribed. We choose 
this since it seems to be the most realistic condition.) 
One of the unknown parameters is ultimately fixed by 
(2.4a). In general, to determine the other one, another 
boundary condition must be applied. (For example, 
the temperature of the piston can be given, or a heat 
flow condition supplied at the piston.) However, we 
will subsequently show that, for the model operators 
that we will consider, (2.4b) must satisfy a symmetry 
condition of the equation which effectively relates pp 
and T p , so that (2.4a) suffices for a complete deter
mination. It will be seen that the method of solution 
holds in principle for any given outgoing distribution 
function. The distribution function for molecules 
striking the wall is of course determined with the full 
solution. 

Equation (2.3) together with (2.4) forms a completely 
general framework for the sound propagation problem 
in a rarefied gas. The linearization is carried out by 
assuming that the Mach number e is very much less 
than 1. We emphasize that this will be the sole 
"smallness" assumption which we make. This is in 
contrast to previous treatments which, at least 
implicitly, assume that the piston position xp is 
small. This added generality is a direct consequence of 
the coordinate transformation. 

Linearization follows from the following pertur
bation expansion: 

withfO the absolute Maxwellian, 

o Po [~l Po 0 
f = (27TRTo)f exp -"2J = (RT)f . 

To 0(1), (2.3) is identically satisfied, and, to O(e), we 
obtain 

(E.. + ~1 ~) - = ! ~ (Jf)1 = Lg. at ax g v ae <=0 
(2.5) 

Defining the inner product 

(f, g) = L: Of*g d;, (2.6) 

where 1* is the complex conjugate of I, we have, for the 
hydrodynamical moments, 

P' = 11 d;' = Po + epop + O(e2
), 

p'u' = L:~u d;' = epo(RYo)ia + 0(e2
), 

p'RT' = 1: {[(~; -U')2 + ~~ + ~~J/3}f d;' 

= PoRTo + epoRTo(fi + T) + O(e2
), 

with the perturbed hydrodynamical quantities given by 

p = (l,g), It = (~l,g), T= (H2 - l,g). (2.7) 

The boundary conditions (2.4) become 

(~1' i(x = 0» = up(t) (2.8a) 

g(x = 0;;, t) = ,x1(t) + ,x2(t)(g2 - i) + ~lU'll' 
(2.8b) 

where the unknown functions ,xl(t), ,xlI) arise from 

Pp = 1 + e,x1(t) + 0(e2
), 

Tp = 1 + e,x2(t) + O(e2). 

3. DISCUSSION OF KINETIC MODELS 

The system (2.5), (2.6) is completed by specifying a 
particular collision operator L. We base our dis
cussion on the well-known model operator of Bhatua
gar, Gross, Krook,17 and Welander,18 

JI= v(1a - f). (3.1) 

Here fo is the local Maxwellian, v = vp'{ Po, and 'P is 
constant. Linearizing according to (2.5) becomes 

Lg = -g + p + ~la + (U2 - i)T, (3.2) 

where we have used the definitions (2.7). We focus on 
the problem of an oscillating piston by taking up = 
exp (iwt). Collecting (2.5), (2.8), (3.2) and defining 
g = g(x, ~)eirot, p = peirot , a = ueirot, T = Teirot , ,xl,2 = 
0(1.2 (w)eirot, we have the boundary value problem 
defined by 

( 1 + iw + ~1 :J g = p + ~IU + (t~2 - i)T, (3.3) 

[1, g(x = 0)] = 1, (3.4a) 

g(x = 0, ;) = O(l(W) + 0(2(W)(!~2 - -i) + ~l' 
~l > O. (3.4b) 

The restriction to a/at = iw is, of course, the case of 
steady state oscillations-which corresponds to asymp
totically long times. As indicated, the parameters 0(1, 

0(2, are functions of w, and their determination is part 
of the problem. From (3.4a) we note that e is the 
normalized velocity amplitude of the piston. 

Equation (3.3) is seen to be an integro-differential 
equation for g. The mass conservation equation [taking 



                                                                                                                                    

SOUND WAVE BOUNDARY VALUE PROBLEM. I 1787 

the inner product (2.7) with respect to 1] is 

. au 0 
IWp + - = . ax (3.5) 

This implies that (3.3) has really only two independent 
moments of g on the right-hand side. As a result it may 
be reduced to two coupled integral equations. Un
fortunately, no procedures for exact solution are 
known for this type of problem. Thus for the sound 
problem, if one seeks exact solutions (as we do here), 
it is necessary to approximate (3.3) in such a way that 
there is only a single moment of g present. (For low
speed shear problems this is exactly the case, which 
accounts for the amount of success which is met with 
in such problems.) Several such approximations have 
been introduced in connection with the sound propa
gation problem. (Buckner and Ferziger15 present an 
interesting alternative. They make no assumption on 
the number of moments but instead replace the 
boundary with a known oscillating source.) In Refs. 
11, 13, and 14 the "isothermal" model (T = 0) is 
considered: 

(1 + iw + ~1 :Jg = p + ~lU. (3.6) 

It is of interest to note that (3.6) does not provide exact 
solutions to (3.3) with T = O. To prove this, let us 
integrate (3.6) with respect to the first two moments 
to obtain 

. + au 0 IWP - = , ax 
ap 

iwu + - = o. ax 
To obtain the second, we have written 

a 2 aT ap ap 
- (~1 - 1 + 1, g) = 3 - + - = - , 
ax ax ax ax 

(3.7) 

using (3.2), the fact that g = g(x, ~1) only, and the 
isothermal assumption. Therefore, (3.7) and hence 
(3.6) permit plane wave solutions 

eiwt-ik." k = w, 

and k is real. To see that this is impossible, we seek a 
plane wave solution of (3.6) directly. This then takes 
the form 

(3.8) 

where p and u are now constants. Taking the inner 
product with respect to g*, we obtain 

(l + iw) I/g112 - ik(g, ~lg) = Ipl2 + lul2, (3.9) 

and I/gl/2 = (g, g). The real part of (3.9) is 

I/gl/2 = Ipl2 + lul2, 

which implies that 
g = p + ~lU. (3.10) 

Substituting (3.10) into (3.8) demonstrates that k = w 
is impossible, hence a contradiction, and hence (3.7) 
does not admit a solution with T = O. 

Another type of model is due to Weitzner.12 There 
g is assumed to depend only on ~l so that one has the 
equation 

(1 + iw + ~1 ~) g 

= p + ~lU + t(~~ - 1)(~~ - 1, g). (3.11) 

This too cannot produce a solution to (3.3). For, 
comparison of (.HI) with (3.3) shows that, in order 
for a solution of (3.11) to satisfy (3.3), the distribution 
can only be a function of ~1 in velocity space. How
ever, imposing this on (3.3), we see that this is im
possible unless T = O. But this has been shown above 
to be incompatible with (3.3). 

A related and somewhat more severe difficulty 
associated with (3.6) and (3.11) is that they lead to 
incorrect "sound speeds"; (3.6) produces sound waves 
travelling at (t)! of the correct adiabatic speed and 
(3.11) 3(../5 of the adiabatic speed. We now introduce 
two models which to some degree eliminate this 
shortcoming. 

Adiabatic Model 

First consider the "adiabatic" model defined by 

( a) ~2 
1 + iw + ~1 ax g = 3' p + ~lU. (3.12) 

This equation can be obtained by assuming that 
aQ/ox = 0 in the energy equation of (3.3), namely in 

iwT + ~ au + ~ aQ = o. 
3 ax 3 ox 

Then this and (3.5) give p = -iT, hence (3.12) from 
(3.3). Note that (3.12) conserves mass and momentum 
but not energy just as (3.6). Because of the adiabatic 
assumption, the dispersion relation of (3.12) gives the 
adiabatic sound speed, (!)! to lowest order in the 
frequency w (Appendix A). However, again an exact 
solution of (3.12) does not yield an exact solution of 
the BGKW model. 

Positive Wave Model 

We now introduce a second model of (3.3). Our 
objective will be to construct a model which faithfully 
portrays the plane wave solutions of (3.3), but 
involves only a single moment of g. For convenience 
we write 



                                                                                                                                    

1788 T. O. RICHARDSON AND L. SIROVICH 

and note that (Xi' Xi) = ~ij' Then (3.3) can be 
rewritten as 

(3.13) 

Now we seek a plane wave solution of this, i.e., we 
assume 

(3.14) 
to obtain 

(1 + iw + S~l)G = X· (X, G) = X • a. (3.15) 

In order that 
G = X· a/(1 + iw + S~l) (3.16) 

be a solution of (3.15), it is necessary that 

det [1 - (X, 1./(1 + jw + S~I»] = O. (3.17) 

Among the possible roots S which satisfy (3.17), we 
choose the one s = so(w) which lies in the third 
quadrant. Then, by taking w > 0, this gives a wave 
propagating to the right (and decaying in the direction 
of propagation). Next let a = a(so; w) denote the 
eigenvector corresponding to So , 

[1 - (X, X/(1 + iw + SO~I»]' a = 0, (3.18) 

and for convenience we take a * . a = 1; as before the 
asterisk signifies the complex conjugate. 

Now consider the equation 

(1 + jw + ~1 a~) g = X· av(x), (3.19) 

with 
v(x~ = (a· X,g) (3.20) 

and a as defined above. A plane wave solution, (3.14), 
of (3.19) gives 

x·a G = . ~ (a· X, G). (3.21) 
1 + lW + s 1 

The inner product of both sides with respect to 
X· a gives 

(a· X. G) = (a· X G)a*· (X, 1 + i; + s~J . a, 

hence the dispersion relation 

a* • (X, . X ~ ) . a = 1. (3.22) 
1 + IW + S 1 

Multiplying (3.18) on the left by a* shows that s = 
so(w) satisfies (3.22). In Appendix A it is shown that 
So is the only solution of (3.22); By observing that 
(a. X. G) in (3.21) is merely a constant, it follows 
that (3.21) and (3.16) are identical up to a constant 
multiplier. Therefore, the model (3.19) has the same 
plane wave solution as the BGKW model (3.13). 

The positive wave model (3.19) does not a priori 
satisfy the conservation equations. On the other hand, 
the plane wave solution does. This follows trivially 
from the' fact that any solution of the BGKW equation 
satisfies the conservation equations. Hence, in any 
region in which the plane wave dominates, (3.19) does 
lead to the conservation laws. Now, although the 
positive wave model does not yield an exact solution 
of the BGKW model, it will have this property 
asymptotically. We will later show in what follows 
that the plane wave is dominant in one important 
region. 

In the limit w ---+ 0, So and a (so ) take especially simple 
forms. This calculation follows from (3.17), (3.18) and 
yields 

So = - (f)t;w + O(w2) 

aO = (130)t, (i)t, (i-)t + O(w). 

(These are the same as would be obtained from the 
gasdynamic Euler equations.) Under this limit 

X· aO = (l/.J2)(~1 + ~2/.J15) + O(w), 

and the asymptotic positive wave model has the form' 

(1 + iw + ~l ~) g = J2 (~1 + ;:5) w(x), (3.23) 

w(x) = (1/.J2)(~1 + ~2/.J15. g). (3.24) 

The positive wave model (3.19), (3.20) and its asymp
totic form (3.23), (3.24) both yield to solution by the 
methods of the following section. However, since the 
exact calculation of so(w) and aO is difficult, all explicit 
calculations will refer to (3.23), (3.24). 

Boundary Conditions 

As stated after (2.4), the particular model operator 
that we choose, (3.12), (3.19), or (3.23), places a 
restriction on the form of (2.4b) or, in the linearized 
form, on (3Ab). To show this, consider (3.12) and 
(3.23) in the limit ~1 ---+ 0 for x > O. As will be clear 
from the representation of the solution, og/ox exists 
for x > O. Then, in the limit, 

(1 + jw)g(x, ~l = 0) 

_ {[(~~ + ~~)/3]p(x), adiabatic model, 
- [a~ + ~:)/.J30]w(x), positive wave model. 

The prescribed boundary value must also have this 
symmetry; hence 

1X1 ( w) = f1X2( w) 

and (3.4b) becomes 

go = g(x = 0, ;) = 1X2(wH~2 + ~1' ~1 > O. (3.25) 

Thus (3.12) or (3.23) together with (3.4a) and (3.25) 
form the complete boundary value problem. [A more 
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complicated form than (3.25) results for the model Taking the inner product (4.2) of (4.4), one obtains 
(3.19).] the integral equation 

4. SOLUTION OF THE BOUNDARY VALUE 
PROBLEM 

A variety of equivalent methods are available for 
solving the given model equations. An approach of 
some generality is the normal modes method used by 
Cercignani.22 Another approach is that of Weitzner ,12 

who uses transforms. In this paper we use an approach 
which relies on the reduction of the problem to a pure 
integral equation of the Wiener-Hopf type. 

The equations to be solved are (3.12) [for which p 
can be eliminated by (3.5)] or (3.23) with boundary 
conditions (3.4a) and (3.25). These can be typically 
represented by the equation 

( 1 + iw + ~1 .E..) g = N;)v(x) + f2(;) ov. (4.1) 
ox ox 

v is taken as a generic moment, depending on the 
model, and we write 

vex) = (/3(;)' g). (4.2) 

Thus 11 , h, and Is are known for each model. Our 
method of solution allows any number of derivatives 
of v to appear on the right-hand side of (4.1), but for 
simplicity we consider only one here. Integrating (4.1) 
gives the equation 

g(x, ;) = H(~I)gO(;) exp [- (1 ~1 iw) x] 

+ H(~I) f':I~I(;)V(S) + f2(;) ~:] 

x exp [ - (1 ~1 iw) (x - S)] ds 

- H( -~l) f') :l~l(;)V(S) + f2(;) ~:] 

x exp [ - (1 ~1 iw) (x - S)] ds. (4.3) 

H is the Heaviside function, go is the given boundary 
value (3.25). Parts integrating terms in ovfos gives 

g(x, 1;) = H(~I){gO(;) - [f2(;)f~I]V(0)} 

X exp {-[(I + iw)f~I]X} + [f2(;)f~1]V(X) 

;- 1l(~1) j[~(I/~I) 
x {fIe;) - (1 + iW)[f2(;)f;1]}V(S) 

x exp {-[(I ;- iw)f~I](X - s)} ds 

-1l(-~1) ID

(1/;I) 

x {ft(;) - (1 ;- iW)[f2(;)/~I]}V(S) 
X exp {-[(I ;- iw)/e1](x - s)} ds. (4.4) 

vex) = j[a:> K(x - s)v(s) ds ;- f(x), (4.5) 

where (in the cases under study III is real) 

K(x) = (1/"1) L:0(;)[fa(;)/e1] 

x {fI(;) - (1 ;- iw)[f2(;)fel]) 

x exp{-[(l;- iw)/e1]x} 

x [H(~l)H(x) - H( -~1)1l( -x)] d;, (4.6) 

f(x) = (If "I) L: 0(;)f3(;)H(~1) 
x {go(;) - [f2(;)/~1]v(0)} 

X exp {-[(I ;- iw)f~l]X} d;, (4.7) 

"I = 1 - (f3(;)' [f2(;)/~1])' (4.8) 

In (4.5) redefine the functions as follows: 

vex) = v(x), x> 0, I(x) = I(x), x> 0, 

= 0, x < 0, = 0, x < 0, 
and let 

(

0, x> 0, 
q(x) = (a:> - Jo K(x-s)v(s)ds, x < 0. 

Then (4.5) is extended to the integral equation 

vex) = L: K(x - s)v(s) ds ;- f(x) + q(x). (4.9) 

The Fourier transform of (4.9) is taken using 

g(k) = L: e;k~g(x) dx, 

and the same functional notation is used for the 
transformed and untransformed function. (The argu
ment signifies the variable under consideration.) This 
yields the Wiener-Hopf equation 

v(k)[1 - K(k)] = I(k) ;- q(k), (4.10) 

where the transforms of (4.6) and (4.7) are 

K(k) = ! La:> 0(;)f3(;) 
"I -00 1 ;- iw - ikel 

x (!Ie;) - (1 + iw/2i~») d;, (4.11) 

f(k) = ! (a:> 0(;)f3(;)H(el)e1 

y La:> 1 ;- iw - ik~l 

X (go(l;) - f2~:) V(O») dl;. (4.12) 
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In (4.10), by construction, v(k) is analytic for 1m k > 
o and q(k) is analytic for 1m k < O. From (4.11) it is 
seen that 1 - K(k) defines two different analytic 
functions for 1m (1 + iwlik) ~ 0, i.e., across the line 
L = {k 11 + iw - ik~l = 0, -00 < ~l < oo}. Each, 
of course, may be continued into the other half-plane. 
From (4. 12),J(k) defines an analytic function having 
a cut on the half-line L_ = {k 11 + iw - ik~l = 0, 
~l > O} in the fourth quadrant. (L+ will denote 
L - L_ in the second quadrant.) Considering k real, 
we see that both J and K are continuous at k = 0 
and analytic elsewhere. In addition 1 - K(k) = 1 + 
O(l/k), J(k) = O(1/k) for k -- 00. From Appendix 
A we know that 1 - K has no zeros on the real line 
for w =/= O. 

In order to solve (4.10) by the Wiener-Hopf method, 
it is necessary to construct a splitting into upper and 
lower analytic functions. This is accomplished in a 
standard way,23 by introducing the functions 

Q(k) = (1/217i) 1:10g [1 - K(t)1 dt/(t - k), (4.13) 

P(k) = (1/217i) l:f (t) exp [Q-(t)] dtl(t - k). (4.14) 

From the above mentioned properties of J and K, 
(4.13) and (4.14) exist. Again P and Q define two 
3;nalytic functions for 1m k ~ O. Unless otherwise 
stated, the particular function being considered is 
determined by the value of the argument, i.e., assume 
no analytic continuation unless specifically stated. 
(Analytic continuation will be denoted by the super
script ±.) In particular from the Plemelj formula,23 
as 1m k -+ 0 from above and below (± respectively), 

Q+(k) - Q-(k) = log [1 - K(k)]. (4.15) 

Next consider the function 

A(k) = v(k) exp [Q(k)] - P(k), 1m k > 0, 

= q(k) exp [Q(k)1- P(k), 1m k < O. (4.16) 

A is analytic by construction in the domain of defini
tion, and, as 1m k -+ O±, by (4.15), 

A+(k) - A-(k) = exp [Q-(k)]{v+(k) 

X exp [Q+(k) - Q-(k)1 

- [P+(k) - P-(k)] 

X exp [-Q-(k)] - q-(k)} 

= exp [Q-(k)J{v(k)[l - K(k)] 

- J(k) - q(k)} 

=0, 

since the term in square brackets is zero from (4.10). 
Thus A is analytic for 1m k ~ 0 and continuous for 

1m k = O. Hence it is analytic everywhere. In the limit 
of k large, Q, P are both O(l/k) so that (4.16) gives 
for Imk > 0 

v(k) = P(k) exp [-Q(k)]. (4.17) 

Taking the inverse Fourier transform, we have 

1 Loo . vex) = - e-'k:1JP(k) exp [-Q(k)] dk, (4.18) 
217 -00 

where the path of integration is parallel to and just 
above the real line. 

At this point the problem is essentially solved since 
(4.18) can be put in (4.4) to give g for all (x, ;). 
However, it is natural to push the contour of (4.18) as 
far as possible into the lower half-plane' since the 
solution for x > 0 is desired. In doing this, we also 
split the solution into contributions from the point 
and continuous spectra. First we continue P and Q 
into the lower half-plane by means of (4.15) and find 

() 
1 Loo 

-ikx exp [-Q(k)] vx = - e 
217 -00 1 - K(k) 

X {P(k) + f(k) exp [Q(k)]} dk, (4.19) 

where now the contour is just below the real axis, 
passing through the origin, and P and Q are now 
defined for 1m k < O. 

We note again that the line L((1 + iw)!it, - 00 < 
t < 00) is a cut for K(k) and L_ a cut for J(k). Also, 
for the models under study, 1 - K has a single root, 
ko, in the lower half-plane (see Appendix A). There
fore, ko is a pole for (1 - K)-l and a branch point for 
ln (1 - K). The branch cut is taken between ko and 00 

as indicated in Fig. 1. (One may easily show that the 
origin is an essential singularity of K.) 

Considering P, (4.14), and making use of the 
contours indicated in Fig. 1, we find (in the following 
we will take 1m k < 0, although the final results do 
not depend on this) 

P(k) = -f(k) exp Q(k) 

1 i dt + -. (f(t)} exp Q(t) --, (4.20) 
2m L_ t - k 

where 

{f} = J(t)r - J(t)z. 

Here J(t)T and J(t)z signify that t approaches L from 
the right and left, as viewed in Fig. 1. 

Using the same contours for Q, (4.13), we obtain 

Q(k) = -In (l - K(k» 

1 1 dt + - {In [1 - K(t)]}--
217i L- t - k 

+ In (ko - k). (4.21) 
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k plane 

FIG. 1. Complex k plane. 

Then, defining 

X(k) = exp (~f {In (1 - K)}~)' (4.22) 
2m JL- t - k 

we have from (4.21) 

exp (-Q)j(1 - K) = [X(k)(ko - k)rt
. (4.23) 

On defining 

N(k) = - 2~i I_V(t)} exp (Q(t» t ~ k' (4.24) 

(4.19) becomes 

so that, from (4.8), 

y = (1 + iw)jiw. 

Therefore, from (4.11) and (4.12) we have 

K(k) = ~ roo 0(t)!2 dt 
1 + iw 1-00 1 + iw - ikt 

1 foo Q(t)(t
2 + 2) d + - t 

3 -00 1 + iw - ikt ' 

f(k) = £00 1 + ~~t)~ iktC :iW tgo(t) 

+ (t
2 
+ 2) ) dt. 

3(1 + iw) 

(4.27) 

(4.28) 

Here we have integrated out the $2 and $a variables 
and in (4.28) 

go($t) = 1: l: O($2)O($a)go(;) d$2 d$a 

= $t + cx2(w)(1 + 1m· 
In these, O(x) = (217ri exp (-x2j2) is the one
dimensional Gaussian. It is clear from (4.27) that 

K( -k) = K(k). (4.29) 

In particular, if t lies on the cut L of the function K, 

K(t)r = K(-t)z· 

From this and an obvious change of variable, we 
obtain 

X(-k) = exp (-~ f {In (1 - K(t)}~). 
2m JL+ t - k 

(4.30) 

L+ is the path indicated in Fig. 1 extending from the 
vex) = 1- fOO e-ikllJ N(k) dk. (4.25) origin to 00. 

217 1-00 (k - ko)X(k) From (4.29) it is clear that -ko is a root of tl).e 

N and X are analytic except on L_ and the pole is 
explicit. Therefore, the continuation of the contour 
down into the lower half-plane yields 

dispersion relation 1 - K = 0 if ko is a root. There
fore, as indicated in Fig. 1, -ko is a branch point of 
In [1 - K(t)]. On making use of the contours indicated 
in the upper half-plane of Fig. 1, we obtain in analogy 

vex) = - i[N(ko)/X(ko)]e-ikollJ + (217r t with (4.22), 

x L_ [e-ik"'j(k - ko)]{N(k)jX(k)} dk, (4.26) exp [Q(k)] = - [XC -k)(k + ko)]-t, (4.31) 
and combining (4.22) and (4.31) gives 

where the boldface curly brackets again indicate the 
jump of the enclosed function across L_ . 

We defer discussion of the solution to the next 
section and now specialize the above results to the 
adiabatic and positive wave models. 

Adiabatic Model 

For this model 

X(k)X( -k) = [1 - K(k)]j(k2 
- k~). (4.32) 

Inserting (4.31) into (4.24) gives 

N(k) = _1 r {f(t)} dt . (4.33) 
217i JL_ X( -t)(t + ko)(t - k) 

Positive Wave Model 
We have 

ftC;) = fa(;) = 2-i(~t + 1;2/"';15), f2 = 0, 



                                                                                                                                    

1792 T. G. RICHARDSON AND L. SIROVICH 

and, from (4.8), y = 1. From (4.11) and (4.12), 

Loo ( ~2 )2 d; 
K(k) = t -00 0(;) ~1 + ../15 1 + iw - ik~l ' 

In analogy with (4.30) and (4.31), 

exp Q(k) = I/Y(k), 

(4.34) 

Y(k) = exp (-1 r log 1 - K(t)r~) (4.36) 
217i JL+ 1 - K(t), t - k 

since there is now no root to 1 - K = 0 in the upper 
half-plane (see Appendix B). From (4.23) 

X(k)Y(k) = (1 - K)/(ko - k). (4.37) 

Finally, substitution into (4.24) gives 

-1 i {J(t)} dt N(k)=- ----. 
217i L_ yet) t - k 

Alternate Representation 

(4.38) 

The above results can be put in a somewhat simpler 
form with the transformation 

z = (1 + iw)/ik. 

This transformation takes L into the real axis [and 
L_ into (0, (0)]. Under this transformation we also 
have {f}-+ -<I), where 

(J(t» = J(t)+ - J(t)-. 

Here, as usual,f+ and f- signify the limits of fez) as 
z approaches the real axis from above and below, 
respectively. Functions of z will in general be denoted 
by tildes, e.g., 

K(z) = K«1 + iw)/iz) 

Adiabatic model: From (4.29) 

K(z) = _ iwz roo O(t)t2 ~ 
(1 + iW)2Loo I - z 

_ z roo O(t)(t
2 + 2) dt. (4.39) 

3(1 + iw) Loo t - z 

Also from (4.28), 

l<z) = O(t)t(iwtgo(t) + l(t2 + 2»--100 ~ 

o t - z 

= (1 + iW)2 J (1 -: iW). 
z IZ 

(4.40) 

Next we define 

2(z) = _ (1 + iW)2 x(1 -: iW). (4.41) 
wZoZ IZ' 

Then, using contours of the type shown on Fig. 1, 
one can show 

2(z) = ! exp (~ roo (In [1 - K(T)]) dT) (4.42) 
Z 2171 Jo T - z 

and also 

2( -z) = _ ! exp (~LO (In [1 - K(T)]) dT). 
Z 2171 -00 T - z 

Then from (4.32) 
(4.43) 

2(z)2( -z) = _ 1 - K(Z)(1 + iW)2. (4.44) 
- Z2 - z~ iw 

We see from (4.42) and (4.43) that 2(z) and 2( -z) 
have cuts, respectively, on the positive and negative 
real axis. Therefore, from (4.48) and the Plemelj 
formulas, we may write 

.f(z) = __ 1 (1 + iw)2 roo (I - K(t» ~. 
217i iw Jo 2( -t)(t2 - z~) t - z 

From (4.33) and (4.40) we find 
(4.45) 

N(z) = _1 roo <l(t» dt 
217i Jo 2( -t)(lo + zo)(t - z) 

= _ iw(1 + iw) N (1 -: iW). (4.46) 
z IZ 

The various jump quantities are now easily obtained: 

(](t» = 217iO(t)t(iwtgo(t) + 1(t2 + 2», (4.47) 

(I - K(t» = 217iO(t)t ( iwt
2 

2 + t
2 
+ 2 ). 

(1 + iw) 3(1 + iw) 

(4.48) 

Returning to (4.26), we first recognize that vex) = 
u(x) , the macroscopic velocity, for the adiabatic 
model, and, then inserting (4.41) and (4.46), we find 

() 1 + iw N(zo) (1 + iW)X) u x = ---- exp - -'-----'--
(iw)2zo %(zo) Zo 

_ ~ roo exp [-(1 + iw)x/z] 1 + iw 
217i Jo z - Zo (iW)2Z 

(
N(Z)\ 

X 2(z)/ dz, (4.49) 

where 
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Then from (4.46) and (4.47) 

-+ - O(Z)Z 2 
N - N- = ~ [iwzgo(z) +!(Z + 2)], 

A( -z)(z + zo) 
(4.51) 

and from (4.45) and (4.48) 

x- _ x+ = O(z)z (£ + 1 + iw Z2 + 2). 
x( -Z)(Z2 - z~) iw (iW)2 3 

(4.52) 

Positive wave model: In analogy with the above 
treatment, we write 

and then 

X(z) = __ 1 1 + iw (00 (1 - K(t» ~. (4.61) 
21Ti iw Jo Y(t)(t - zo) t - z 

Finally, inverting the transform (4.53), we have 

( ) 1 + iw N(zo) (1 + iW)X) wx =+----exp -~-~ 
iwzo g(zo) Zo 

__ 1_ C'>" exp [-(1 + iw)xlz] 1 + iw 

21Ti Jo z - Zo iwz 

/N(z)\ d 
x \g(z)/ z, 

(4.62) 

N(z) = _1 (00 (J(t» ~ 
21Ti Jo yet) t - z (4.53) with (NIX) calculated as in (4.50) with 

x(z) = ! exp...L (ooJog 1 - K(t)+ ~ (4.54) 
z 21Ti Jo 1 - K(t)- t - z 

- 1 iO 
1 - K(t)+ dt Y(z) = exp -. log --, 

2m -00 1 - K(t)- t - z 
with 

J(z) = 2* roo O(t)t 
Jo t - z 

X [310(t4 + 2(15)*t3 + 19t2 + 4(15)*t + 8) 

+ _1_(!XlW) _1) 
2(15)* 2 - (15)* 

(4.55) 

x (t
4 + (15)*t3 + 4t2 + 2(15)*t + 8)]dt, (4.56) 

- Z LOO net) l 1 - K(z) = 1 + -- (t4 + 2(15)~t3 
30(1 + ~w) -00 t - z 

+ 19t2 + 4(15)*t + 8) dt. (4.57) 
The jumps are now 

(J(z» = 21Ti2*O(z)z 

x [3\(Z' + 2(15)*Z3 + 19z2 + 4(15)*z + 8) 

+ 1 (!Xlw) 1) 
2(15)* -2- - (15)* 

x (Z4 + (15)*Z3 + 4Z2 + 2(15)*z + 8)} 

(4.58) 

(1 - K(z» = 21Ti Q(z)z (Z4 + 2(15)*z3 
30(1 + iw) 

+ 19z2 + 4(15)*z + 8). (4.59) 

The identity analogous to (4.44) is 

g(z)Y(z) = _ 1 - K(z) 1 :- iw. 
z - Zo lW 

(4.60) 

N+ - N- = (/(z»/ y(z) 
and 

g _ _ g+ = 1 + iw ~1 - K(z» 
iw Y(z)(z - zo) 

(4.63) 

To study a hydrodynamic moment of g, it is, of course, 
necessary to put (4.62) back into (4.3) and take the 
appropriate moment. Our solution in the z variable 
for both models has the same form as is found in 
Refs. 12 and 22, while in the k variable it is similar to 
that of Ref. 11. 

5. ANALYSIS OF THE SOLUTION 

Determination of g(x = 0, ~1 < 0) 

Adiabatic model: As a first step in the study of the 
solution (4.49) we calculate the boundary value of the 
distribution for incoming molecules by evaluating (4.4) 
at x = 0 for ~1 < 0 with the appropriate 11 ,12' and 13 . 
This gives 

g(x = 0, ;1 < 0) 

= _ (00[1 + 1 ~ iw ;~u(s) exp [(1 + iW)SJ ds 
Jo 3,W ;~J ~1 

1 ~2 
---. (5.1) 

3iw ~1 

We demonstrate that (5.1) is bounded in the limit 
~1 ---+ O. By Watson's Lemma we have 

1°OU(S) exp (1 +~:W)S) ds 

~ ~,. ~ 
= - 1 + iw u(O) + (1 + iW)2 U (0) + O(~l)' (5.2) 

where we use u(x) = u(O) + u' (O)x + O(x) which is 
demonstrated in Appendix B. Note that, unlike shear 
problems, u'(O) exists-however, this is already 
signaled by the continuity equation (3.5). Using (5.2) 
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in (5.1), we find, since u(O) = 1, that 

I· (- 0 1::') _ (e~ + e~) '(0) 1m g x - ,") - - U • 
h->o- 3iw(1 + iW) 

(5.3) 

Positive wave model: Here we find that from (4.3) 

1 roo [ e2 J 
g(x = 0, e1 < 0) = - ../2 Jo 1 + ../15;J w(s) 

x exp [(1 ~:W)SJ ds (5.4) 

and in the limit for ~l small, by Watson's lemma, 

. (~~ + ~:) 
hm g(x = 0, ;) = / w(O). (5.5) 

h->O- V 30 (1 + iW) 

Comparing (5.3) and (5.5) with (3.25), we see that 
the distribution will not be continuous at ~l = 0 
unless 

cx:lw) = i[u'(O)/iw(1 + iW)], adiabatic, 

= (2/../30)[w(0)/(l + iW)], positive wave. 

(5.6) 

However, CX2 is fixed by (3.4a), and (5.6) is not satisfied. 
Hence the distribution function is discontinuous at the 
wall. 

Low Frequency Oscillations 

Adiabatic model: We will consider the behavior of 
the solution (4.49) as w -+ O. The expansion of Zo in 
this case is given by (A.2). Now the point spectrum 
contribution to (4.49) is 

() 
1 + iw N(zo) _ (1+iw)",/zo 

U x =----e . 
P (iw)2zo ..f(zo) 

(5.7) 

N(zo) is given by(4.40,4.44), and using (A.2) we find 
to first order 

N(zo) = _ 1. [00 n(t)t (t2 + 2) dt + 0(W3) 
z~ Jo x( -t, w = 0) 3 

(5.8) 

[where 1/z2 = -(3/5)W2 + 0(w3
)]. The dependence of 

..f on w is indicated and from (4.41j, 4.43)we observe 
that-It is well behaved at co = O. Similarly ..f is 
expanded using (4.45), (4.49), and we find 

..f(zo) = __ 1 _ [00 n(t)t 
z~(iW)2 Jo X( -t, co = 0) 

The continuous spectrum contribution to (4.49) is 
given by 

1 100 e-(l+iW)",lzo 1 + iw / N(z)\ 
uix) = - - \- dz. 

27Ti 0 z - Zo (iW)2Z ..f(z)/ 
(5.11) 

From (4.40), (4.44) we find that to first order 

..f(z) = 1. roo O(t)t (t2 + 2) dt + 0(w2), 
Zo Jo ..f( - t, 0) 3 t - z 

(5.12) 
and 

"( ) 1 100 n(t)t (t
2 + 2) dt 

A Z = -- -- + O(w) 
z~(iW)2 0 ..f(-t, O) 3 t - z . 

Therefore 
(5.13) 

_1_1 + iw N(z) = _! + O(w). 
Z - Zo (iW)2Z .f(z) z 

(5.14) 

If we now take the jump of (5.14), it is seen to be of 
O(w) since the 0(1) term is analytic across the real 
axis [while the O(w) term is not]. Hence in the limit, 
for a fixed x, 

uc(x) = O(w). (5.15) 

Thus (5.10), (5.15) and the expansion of Zo give 

u(x, t) = [1 + O(w)] exp {iw[t - (~)!x] 

- Ht)!W2X + 0(w3x)} + O(w). (5.16) 

Hence, for any fixed value of x and as w -+ 0, the 
flow is governed not only by the plane wave (the 
point spectrum) but actually by hydrodynamics, since 
the amplitude of the plane wave is unity, i.e., u(O) = 1 
in the normalization. 

Positive wave model: For this model, since we are 
interested in the velocity moment u, it is necessary to 
substitute the solution for w, (4.63), into (4.3) and 
solve for u. Hence u will have a representation such as 
(4.63) in terms of the point and continuous spectra, 
and we again write 

After some calculation, the contribution from the point 
spectrum is found to be 

x (t
2 

+ 2) dt + 0(W2). (5.9) U (x) = _ . N(zo) ( ['" nal) 
3 P iwX(zo) Loo .J2 

Then (5.8), (5.9) give in (5.7) 

(5.10) 
(5.17) 
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(S.18) 

First consider the pole contribution for w small. The ~1 
integral behaves asymptotically as -1/..}2 Zo + O(w2). 

The expansions of N(zo) and 2(zo) follow from 
(4.S3), (4.S6) and (4.S9), (4.61) respectively. We find 

N(zo) = - 2! 1"" ~(t)t 
Zo 0 yet) 

and 

X [310(t4 + 2(lS)!t3 + 19t2 + 4(lS)tt + 8) 

+ _1_(0(2(0) _ _ 1_)(t4 + (lS)!t3 + 4t2 

2(lSl 21st 

+ 2(lS)!t + 8)J~ + O(w2
), (S.19) 

t - z 

2(zo) = - ~ ("" ~(t)t 310(t4 + 2(lS)!t3 
1WZo Jo yet) 

+ 19t2 + 4(lS)!t + 8) ~ + O(w2
). (S.20) 

t - Z 

Unlike the adiabatic model (S.17), 0(2(0) occurs to 
first order in N(zo) [(S.19)]. Therefore, we must deter
mine it to fix Up and Uc • The condition for its deter
mination is (3.4a), and so in the limit we have 

1 = lim [uvCx = 0) + ucCx = 0)]. 
ro-+o 

As is easily seen by (S.17), (S.18), this is a linear equa
tion in 0(2(0). However, it is unnecessary to solve for 
it, since we observe that if 

by (S.19), (S.20) 

N(zo)/2(zo) = 2!iwzo + O(w), 

so that (S.17) to first order at x = 0 is 

up(x = 0) = 1 + O(w). (S.2I) 

Also we see that 

[N(z)/2(z)] = O(w). 

The remammg calculation is analogous to that of 
(S.12)-(S.14) and need not be repeated. All contribu
tions to Uc are seen to be O(w). Therefore, altogether, 
we have for this model 

u(x, t) = [1 + O(w)] exp {iw(t - (%)!x) 

- t(%)!W2X + O(w3x)} + O(w). (S.22) 

Again for any fixed x and as w ~ 0, not only does the 
plane wave dominate, but also hydrodynamics, since 
the amplitude is unity. 

Limit of x Large 

Adiabatic model: For x large, the contribution from 
the point spectrum is clear and is O(e-ko",) where 
Re ko(w) > 0 for w ~ 0, i.e., the decay is exponential. 
Now consider the continuous spectrum. From (S.l1) 
and (4.S0)-(4.S2) this is 

Z2 + 2 
X 2 2 h(z) dz, (S.23) 

3(z - zo) 
where 

h(z) = 2+(z)[1 + iw3zgo(z)/(Z2 + 2)] 

+ {N+(z)/[(iw)2(Z - zo)]}[l + iw2(2z2 + 1)/ 

(Z2 + 2)]. (S.24) 

The integral is of the form 

("" s lex) = Jo e-(Hiro)",lz-z 12q(Z) dz. 

Set z = (1 + iw)txlw and take the principal branch 
of the cube root. The path can be taken as the real 
axis again and 

lex) = looexp [-(1 + iW)!X!(~ + ~)J 
dz 

X ,q[z(w)] dw dw. 

The exponential has a maximum at w = 1, and by 
Laplace's formula, for x large, l(x),-....; (27T/3)! X 

exp [--!z!]q(zm), where 

Zm = (1 + iw)txt. (5.25) 
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Therefore, (S.23) becomes 

1 + iw 
ucCx) '" - (iw)\j3 

X exp [_~Z2 ] h(zm) 
2 m 2+(zm)2-(zm)2( -Zm) 

Z2 + 2 X m 

3(z~ - Z~) . 

If we keep all first-order terms for Zm large (x large), 
we find 

1 + iw -iz a z~ ( 1 3 • 
uc(x)"'. 2 J e m 2 \I - [1 + 2 IWZmI)(2(W)] 

(IW) 3 3 Zm - Zo Zm 

jJ'+(oo) . ) 
- 2 (1 + 41W) , (5.26) 

zm(iw) (zm - zo) 
with 

jJ+(oo) = ('Xl n(t)t [iwtgo(t) + l(t2 + 2)] dt . 
Jo 2( -t) (t + zo) (5.27) 

Thus in the limit of large x the continuous spectrum, 
being O(exp [-txt]) by (5.2S), (S.26), dominates the 
point spectrum. This result was first obtained in Ref. 
11 and in another context in Ref. 16. If one takes x 
large as the hydrodynamic limit, then this result 
contradicts hydrodynamic theory which predicts that 
the point spectrum is dominant. Shortly we give a 
proper definition of what is the hydrodynamic limit, 
and this resolves the contradiction. 

For the positive wave model, the same type of 
argument may be given and a result similar to (S.26) 
can be obtained. In view of the similarity a separate 
analysis does not seem warranted. 

Hydrodynamic limit: We now define the hydro
dynamic limit to be 

x'w' 
--I fixed, ')I -+ 00. (5.28) 
(RTo) 

Here x' is physical distance from the walls, (RTo)l/w' 
is the wavelength of the sound disturbance, and ')I is 
the collision frequency. In dimensionless variables, 
the normalization (2.2), we have that (5.28) is equiva
lent to 

xw fixed, w -+ O. (5.29) 

The consequences of this limit given below should 
serve as sufficient motivation for making this definition. 

Let us consider the exponential behavior of the 
point and continuous spectra under this limit. The 
continuous spectrum for both models has the factor 

exp [-txt] = exp [-t(wx)i(l/w)i] 

'" exp [-t(l/w )1]. (S.30) 

The point spectrum, on the other hand, is, by taking 
the real part to first order, 

exp [_t(t)tw2X] = exp [-%(t)l(wx)w] = 0(1). 

(5.31) 

Clearly the point spectrum dominates and the hydro
dynamic solution (5.16) or (S.22) results. It is of 
interest to consider the sequence of limits 

wnx fixed, w -+ 0, (5.32) 

for n = 1,2,3, ',' .. By (5.30), (5.31) it is apparent 
that the point spectrum will still dominate for 
n - 2 < 2n/3, i.e., n'< 6. Hence hydrodynamics re
sults as long as 

x« l/w6
• (S.33) 

Otherwise the continuous spectrum will appear as a 
boundary layer at infinity at the order (5.33). 

We refer to the change of dominance in the point 
and continuous spectra as "crossover." Therefore, 
condition (S.33) can be referred to as asymptotic 
crossover, that is, for x S 0(1/w6

) the continuous 
spectrum certainly dominates. It seems worthwhile 
having a more precise criteria for crossover since 
conceivably this might be measurable in an experi
ment. The lead term of U'D for the adiabatic model, 
from (5.16), is 

u'D(x) r-.J exp [- (t)liwX - f(t)lw2x]. (S.34) 

The continuous spectrum is calculated from (S.2S), 
(5.26), and we find, keeping all first-order terms, 

xi exp (_txi) ( 1 t 
uc(x)"", - I l,. t [1 + tiwx 1)(2(0)] 

3 (S + 3w2
x-) x 

- x\ [G)liwxt + 1]). (5.3S) 

To evaluate i/+( 00), (5.27), in the limit of w small, we 
have used the fact that 

-~- (t 2 + 2) dt = -5, i«J n(t)t 

o X(-t, O) 
(5.36) 

which follows by expanding (4.44) for z large and w 
small. The explicit crossover is obtained from the 
match of (S.34) and (S.3S). Although 1)(2(0) is not 
known, its explicit form is not important since it will 
be 0(1). 
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APPENDIX A: THE DISPERSION RELATIONS 

Adiabatic Model 

The dispersion relation is defined to be I - K = ° 
and is of a class that has been exhaustively studied in 
Refs. 24 and 2S. In particular the roots come in 
pairs. For w small, we find 

-ik = ±(t)!iw[1 - iiw + 2
7
5 (iW)2 + O(w2)], (AI) 

or, in the z variable, 

I/z = =F(t)!iw[l - tiw + g(iW)2 + O(w3)]. (A2) 

We denote the root in the fourth quadrant by +ko 
(or +zo). Using the methods of Ref. 24, one can 
show that there are in fact only the two roots as given 
above. Waves to the right and left are produced, 
moving at the adiabatic speed to lowest order and 
decaying in the direction of propagation. It is also 
known25 that there exists a Wo > ° such that no 
roots exists for w > wo' By arguments similar to 
(3.8)-(3.10) it is possible to show that there is no root 
ofIm k = 0, w ~ 0. 

Positive Wave Model 

The dispersion relation for this model, from (4.34), 
is 

1 - 3
1
0 L:0(t)[t4 + 2(15)!t3 + 19t2 

+ 4(lS)!r + 8] dt/(l + iw - ikt) = 0, (A3) 

or (4.S8) in the z variable. For w small we find the 
root in the fourth quadrant 

+ik = tiw[l - l;iw + O(w2)J. (A4) 

This dispersion relation lacks the symmetry present 
in the adiabatic model. We want to show that (A4) 
is the only root of (A3). To carry this out, we study 
wave solutions of (3.23), (3.24), 

(1 + iw + S;I)g = (1/./2)(;1 + ;2/./IS)w, (A5) 

w = 1/./2(;1 + ;2/./IS, g). (A6) 

Taking the inner product of (AS) with respect to g* 
and separating real and imaginary parts, we find 

admissible roots lie in the first or third quadrant. Now 
consider (AS) for the limiting case w = 0. The 
complex conjugate of (AS) is 

(1- w)g* +S*;lg* = (w*/./2)(;1 + ;2/./IS). (A 10) 

Then (A1O) multiplied by (AS), for w = 0, gives 

Igl2 + Isl 2 ~i Igl 2 + 2Sr;1 Igl 2 = IwI2j2(~1 + ;2/./1S)2, 

and, taking the inner product of this with respect to I, 
we have 

I + IsI 2 II ;lg11 2 + 2sr (g, ;lg) = Ilw112. (All) 

First suppose that (g, ;lg) = 0. Then (All) is 
satisfied only if S = ° and Ilwll = 1 (or, trivially, 
II ;~112 = 0, which impliesg = 0). Secondly, if (g, ;lg) ~ 
0, by (A 7) Si = ° for w = 0. It remains to show that 
Sr = ° in that case. To do this, define 

J(z) =1 00 

O(t) dt . 
-00 t - z 

For z above and below the real axis (± respectively) 
the representation 

J±(z) = e-Z2/2 [± ~ - [z/12 dt] (AI2) 
./271' Jo 

is known. 24 Then the dispersion relation associated 
with (AS) is just (4.S8) in the z variable, setting 
s = -ik = (1 + iw)/z. This can be reduced in terms 
of (AI2) to 

30(1 + iw) + z[f±(Z){Z4 + 2(lS)!z3 + 19z2 + 4(1S)!z 

+ 8} + Z3 + 2(lS)!Z2 + 20z + 6(IS)!] = 0. (AI3) 

Now as w -+ 0, Zl -+ si/lsI2. Thus any root z(w) of 
(Al3) approaches a real value since we have shown 
that Si = ° when w = 0, and by continuity this is true 
in the limit, i.e., Si -+ ° as w -+ 0. By (AI2) the 
imaginary part of (Al3), for w = 0, is found to be 

71'/(271')!e- Z2 /2zP(Z) , (AI4) 
where 

P(z) = Z4 + 2(15)!z3 + 19z2 + 4(l5)!z + 8. (AI 5) 

w + sJg, ~lg) = 0, 

1 + sr(g, ;lg) = Ilw11 2• 

(A 7) (AI4) is zero if z = 0, but then the real part of 
(AI3) is nonzero. We must check for zeros of P(z) 

(A8) for z real. From (4.37) and (A3), P is seen to be the 

Here Sr and Si are the real and imaginary parts of s, 
(g, g) = Ilg11 2 , and for convenience we have taken 
IIgll = 1. Hence, in particular IIwll s:; 1. Equations 
(A 7), (A8) give 

w/(l - Ilw11 2
) = sdsr' (A9) 

By assuming w ~ ° for definiteness, (A9) implies that 

integral of a nonnegative function and therefore 
nonnegative. The stationary points of (AI5) are 
found to be at -(IS)!j2, -(15)!/2 ± (7)!j2, and atthe 
minima (AI5) is positive. Therefore, (A14) is never 
zero unless zr -+ 00, which implies Sr = O. Hence we 
conclude that when w = 0, S = O. Therefore, at least 
for w small, (A4) is the only root of (A3). 
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APPENDIX B: BOUNDEDNESS OF u'(O) 
FOR THE ADIABATIC MODEL 

That u' (0) ought to exist follows from the con
tinuity equation (3.5), since it exists if and only if 
p(O) does, and the latter must be bounded by physical 
considerations. Differentiating (4.49) and evaluating at 
x = 0, we get 

2 -
u'(O) = _ (1 + iw) N(zo) 

(iW)2Z~ X(zo) 

+ (1 + iW)2 (00 __ 1_ .l/N(z)\dz. (B1) 
(iW)227Ti Jo (z - zo) Z2 \X(z)/ 

By (4.50)-(4.52) we see that 

(N(z)/X(z» = O(z), (B2) 

as z ~ O. Therefore, the integrand of the integral in 
(Bl) is O(1/z) for z small and the integral does not 
appear to exist. We demonstrate that (B2) is in fact 
0(Z2) so that (BI) does exist. 

We begin by Fourier-transforming the continuity 
equation (3.5) in the z variable, (4.38), to give 

u(k(z» = -z/(1 + iw) + [ziw/(l + iw)]p(k(z». 

(B3) 
By (4.39) 

u(k(z» = z 2 (N(z)/X(z», (B4) 
(z - zo)(iw) 

and in the limit of z small, by (5.2), (B4) or (B3) is 

u(k(z» = -z/(1 + iw) + O(z). (B5) 

Therefore, we must have p(k(z» = O(z) for (B3) to be 
consistent with (B5). This suggests that we write 

p(k(z» = z[M(z) + R(z)]/(z - zo)X(z), (B6) 

where we suppose 

M(z) = roo _ met) ~ . (B7) 
Jo X( -t)(t + ko) t - k 

met) is to be determined, and we require that M be 
bounded for z small, consistent with (B3). R is 
analytic in the plane. The form (B6) only says that p 
has the same singular behavior as u which follows 
from (B3). Therefore, (B3), (B4), and (B6) give 

z N(z) 

(z - zO)(iW)2 2(z) 

= _ _ z_ + z
2
iw [M(z) + R(z)]. (B8) 

1 + iw 1 + iw (z - zo)X(z) 

Evaluating the jump of (B8) across the positive J;"eal 

axis, one finds that 

met) = Q(t)t(go(t) _ _ t_2 _) 1 + iw , 
1 + iw (iW)2 

so that by (B2) 

M(t) = 1 + iw roo Q(t)t 
(iW)2 Jo X( -t)(t + zo) 

(B9) 

( 
t2 ) dt x go(t) - -_.- -_. (B10) 

1 + lW t - z 

To determine R, observe that in (B8) the left-hand 
side is 0(1) for z large, (z - zo)X(z) = 0(1) so that 
R = O(1/z). Hence it is zero everywhere. Also note 
that by (BI0), M is bounded for z small. We thus have 
with this construction of M that 

N(z) (.)2 (z - zo) (.)3 M(z) (B11) -- = lW + lW Z -- • 
X(z) 1 + iw 2(z) 

Now the jump in M is O(z) for z small so that (B2) 
is actually 0(Z2). Therefore, the continuous spectrum 
integral exists and u' (0) is bounded. 
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A previously developed representation for many-atom problems is extended by incorporation of all 
effects of interatomic exchange of electrons and nuclei into a "projected Hamiltonian." An expression 
for the projected Hamiltonian is derived which is exact on the two-atom subspace, and hence incorporates 
those exchange effects which are important at low densities. By the use of the center-of-mass separation 
of atomic wavefunctions, this expression for the projected Hamiltonian is transformed into a representa
tion in terms of atomic field operators 'Pir) and 'Pt(r), where r is the center-of-mass position of an atom 
and v stands for all of its internal quantum numbers. 

1. INTRODUCTION 

Consider a system of n identical atoms, each 
containing I electrons. In cases where real or virtual 
internal excitation of the atoms is important, it is 
necessary to use a representation of the states and 
observables which takes proper account of the 
internal structure of the atoms. One such representa
tion is a SchrOdinger representation in which all 
nuclear and electronic variables appear explicitly. 
However, little practical use has been made of this 
representation, due to the difficulty of simultaneously 
treating the dynamics responsible for the existence of 
the atoms and the dynamics of their interactions. An 
alternative representation in terms of atomic annihila
tion and creation operators aa and a! for atoms in 
orthonormal single-atom states 1f",(XXI '" x!) has 
been developed in two previous papers.1 These oper
ators satisfy Bose or Fermi commutation or anti
commutation relations 

(1) 

where I is the nuclear spin. All effects of intra-atomic 
electron exchange are included by using atomic wave
functions lfa(XXI '" Xl) which are antisymmetric in 
the electron variables Xl .•• Xl, whereas the effects 
of interatomic exchange of electrons and nuclei are 
incorporated by requiring that all allowed n-atom 
state vectors IV') satisfy the exchange subsidiary 
conditions 

lnuo IV') = (-l)2J.~n(n - 1) IV'), 

lelec IV') = -tn(n - 1) IV'). (2) 

Here the exchange operators lnue and lelec are 

lnue = i I (oc,81 lnue Iyb)a!a;a,jay, 
a/ly,j 

leleo = t I (oc,81 Iel~o Iy~)a!a;a,jay, (3) 
a/lyl! 

and the exchange matrix elements are 

(a,B1 Inuo Iyb) 

= J 1f:(XXI ••• XI)If~(X'X~ ... x;)<P/X'XI ... Xl) 

x 1f,j(XX{ ... x;) dX dXI ••• dXI dX' dx~ ... dx;, 

(a,B I I elee I y~) 

= J 1f:(XXI ••• xl)If~(X'x~ ... x;)lfy(Xxix2 ••• Xl) 

X lfiX' XIX; ... X~) dX dX l ••• dx! dX' dx; ... dx;. 

(4) 

Each Xj stands for both the position rj and spin 
(z-component) variable (Jj of an electron, and S dx; 
implies integration over r; and summation over u;. 
Similarly, Xj stands for the position R j of a nucleus, 
and also includes its spin variable in case I ;I: O. The 
space of simultaneous eigenstates of the Hamiltonian 
H, of lnuo and lelee with the proper eigenvalues (2), 
and of the total atom-number operator 

N = Ia~aa (5) 
a 

with eigenvalue n is physically and mathematically 
equivalent to the space of Schrodinger wavefunctions 
V'(Xl ' •• Xnxi ••• Xln) which are antisymmetric in the 
electron variable~ Xl .•• Xln and symmetric (21 even) 
or anti symmetric (21 odd) in the nuclear variables 
X1···Xn • 

1799 
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The many-atom Hamiltonian His 

H = Ho + V', 

Ho = T + Vo, 

T = L (IX I T IP)a1ap, Vo = L (IX I V IP)a!ap, (6) 
ap afJ 

V' = i L (IXPI V lyb)a!a/a6ay, 

where 
afJy6 

(IX I TIP) = f 1P:(Xxl ... XZ)( T(X) + j~1T(Xj») 
X IPP(XXl' .. XZ) dX dXl ... dxz, 

(IX I VIP) =flP:(XXl ... XZ)(± V(XXj) +.± V(XjXk») 
;=1 j <k 

(IXPI V 11'<5) (7) 

= f 1P:(XX1 ••• XZ)IP;(X'xi ... xD 

x (V(XX') + ~t(XX;) + ~lV(X'Xj) 

+ j~l Jl V(XjX~») IP/XX1 ••• Xl) 

x lPiX'x; ... xi) dX dXl ... dX I dX' dx{ ... dx;. 

Here T(X) and T(x) are the single-nucleus and single
electron kinetic energy operators, and V(XX'), V(Xx) , 
and V(xx') are the nucleus-nucleus, nucleus-electron, 
and electron-electron Coulomb interaction potentials. 
If the 1PrJ. are chosen to be the single-atom energy 
eigenstates, i.e., 

(T(X) + jtlT(X i ) + ~lV(XXj) +,t V(XjXk») 
x lPa(Xxl ' .. Xl) = €alPaCXXl ..• xz), (8) 

then Ho takes on the diagonal form 

(9) 

Since the operators lnue and lelee have the same 
general structure as the interatomic interaction 
Hamiltonian V', satisfying the subsidiary conditions 
(2) exactly would be as difficult as treating interatomic 
interactions exactly. However, by use of projection 
operators for the subsidiary conditions, it is possible 
to define a "projected Hamiltonian" in which the 
subsidiary conditions are incorporated as additional 
effective interatomic exchange interactions, which can 
then be treated approximately along with the inter
atomic Coulomb interactions V'. The formal definition 
of the projected Hamiltonian is given in Sec. 2. As a 
preliminary to construction of an explicit expression, 
the algebraic properties of the exchange matrices and 

exchange operators (3) are investigated in Sec. 3. With 
the aid of these algebraic properties, expressions for 
the projection operators and projected Hamiltonian 
are obtained in Sec. 4 which are explicit and exact on 
the subspace of two-atom states. By the use of the 
center-of-mass separation of the atomic wavefunc
tions, an alternative representation of the projected 
Hamiltonian in terms of atomic field operators 
V'v(r) and V'J(r) is constructed in Sec. 5, where r refers 
to the center-of-mass position of an atom and 'JI 

stands for all its internal quantum numbers. 

2. PROJECTEDHA~TON1AN 

Let ~ nue be the projection operator which projects 
onto the subspace of eigenstates of lnue with eigen
value ( -I )2J in(n - 1), and let ~ elee be the projection 
operator onto the subspace of eigenstates of lelee with 
eigenvalue -tn(n - I). Since ~nue and ~elec are 
projection operators and lnue, lelee, and Hare 
mutually commuting, 1 one has 

~!ue = ~ nue, ~:lee = ~ elee , 

[~nue, ~ elee] = [~nue, H] = [~elee, H] = O. (10) 

Let IAnue, Aelec) be a simultaneous eigenstate of lnue 
and lelee with eigenvalues Anue and Aelee . Then by 
the definition of projection operators 

~ nue IAnue, Aelee) 

= b(Anue, (-llJ !n(n - 1» IAnue, Aelee), 

~ elee IAnue, Aelee) 

= b(Aelec> -in(n - 1» IAnue, Aelee), (11) 

where b(A, A') is the Kronecker delta function b.v:. 
Conversely, if IV') is an n-atom state satisfying 

(12) 

then IV') is a simultaneous eigenstate of lnue and lelee 
with eigenvalues (-1)2Jin(n - 1) and -in(n - 1), 
i.e., IV') satisfies the subsidiary conditions (2). 

Let H be the Hamiltonian (6) and define the 
"pro-jected Hamiltonian" 

(13) 

Suppose that 11J!) is an eigenstate of Je: 

Je 11J!> = E 11J!). (14) 

Then one has2 with (10) and (13) 

~nue IV') = E-l~nueJe IV') = E-1~!uc~elecH 11J!) 

= E-1~nue~elecH IV') = E-1;re IV') = IV')· (15) 

Similarly 
(16) 
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It follows that any n-atom eigenstate of Je automati
cally satisfies the subsidiary conditions (2). Further
more, such an eigenstate of Je is also an eigenstate of 
H with the same eigenvalue. To see this, it is merely 
necessary to note from (10) and (13)-(16) that 

Finally, since ;r nue' ;r elee' and H are Hermitian and 
mutually commuting, it follows that Je is Hermitian. 
Its n-atom eigenstates consist of those n-atom eigen
stE!-tes of H which satisfy the subsidiary conditions 
(2), and the eigenvalues of Je are equal to the corre
sponding eigenvalues of H. 

3. ALGEBRAIC PROPERTIES OF THE 
EXCHANGE OPERATORS 

Explicit expressions for ;r nue and ;r elee correct 
through two-atom terms can be found by making use 
of algebraic properties of the exchange matrices (4). 
It is convenient to define new matrices (o:fJl I~uc Iyb) 
and (ocfJl I~lec Iyb) as follows: 

(ocfJl I~ue Iyb) = (o:fJl Inue Iyb) - (-1)2JbaAM' 
(ocfJl I~lee Iyb) = (o:fJl I elee Iyb) + bayb{Ja. (18) 

We then define 

I~ue = ! ! (ocfJl I~uc Iyb)a!a)aclay, 
a{Jya 

I~lee = ! I (o:fJl I~lec Iyb)a!a)aaa y (19) 
a{Jycl 

in analogy with (3). Noting that 

I a!a)a{Jaa = N(N - 1), 
a{J 

(20) 

where N is the atom-number operator (5), one sees 
that on the space of n-atom states the subsidiary 
conditions (2) are equivalent to 

(21) 

We shall show that within the two-atom state space 
the operators I~uc' I~lec' and certain other operators 
related to multiple electron exchange form an algebra, 
i.e., powers and products of these operators are 
linear combinations of the operators in the set. 

Consider first (I~uc)2. Squaring the top Eq. (3) and 
putting all terms into normal order, one finds with (1) 

(I~ue)2 = t! I (o:fJl I~ue IOC1OC2) 
a{Jya a1a2 

X [(O:lOC21 I~uc Iyb) + (-1)2J+I(O:2OC11 I~ue Iyb)] 
x a!a)aclay + (a ta ta taaa) 

+ (a ta ta ta taaaa), (22) 

where the abbreviated terms in parentheses stand for 
sums of terms proportional to products of creation 
and annihilation operators of the indicated structures 
(three-atom and four-atom operators), which are 
identically zero on the space of two-atom states. 
Now it follows from its definition that 

(OC2oc11I~ue Iyb) = (OC1OC21 I~uc Iby). (23) 

Then, using (1), one has 

(I~uc)2 = l! (ocfJl (I~ue)2Iyb)a:a)aaay + .. " (24) 
a{Jycl 

where, here and throughout this paper, the dots 
stand for terms which vanish identically on the two
atom subspace (three-atom, four-atom, ... terms) 
and where the matrix product notation 

(ocfJl AB Iyb) = !(ocfJl A IOC1OC2)(OC1OC21 B Iyb) (25) 
Glla2 

has been employed. By (18) and (25) 

(ocfJl (I~uc)2Iyb) = bayb{Jcl - 2( -1)2J(ocfJl Inue Iyb) 

+ (ocfJl I!ue Iyb). (26) 

To evaluate the remaining matrix product in (26), we 
make use of the orthonormality and completeness 
relations 

f 1P:(Xx1 ... xl)IPP(XX I ••• Xl? dX dX1 ... dX I = ba{J' 

! lPaCXxl ••• XI)IP:(X'x~ ... xi) 
a 

= (l !r1b(X - X') 

X ! (-1)v( Plp[b(X1 - xD ... b(XI - xi)], (27) 
P 

where Ip runs over all I! permutations of Xl ••• Xl, 

and (-1 )v(Pl is + 1 for even and -1 for odd permuta-
tions.3 It then follows with (25) and (4) that4 . 

(ocfJl I!uc Iyb) = bayb{JD' 

Hence one has with (18) and (26) 

(28) 

(ocfJl (I~ucllyb) = -2( -1)2J(ocfJl I~uc Iyb) (29) 

so that (24) becomes 

(I~ue)2 = -2( -1)2JI~ue + . . . . (30) 

Thus, if we neglect the three-atom and four-atom 
terms which are identically zero on the two-atom 
subspace (n = 2) and small if the number density of 
atoms is low, then (I~uc)2 is linear in I~ue . 

Consider next (I~lec)2. One has in analogy with (22) 

(I~lec)2 = t I (ocfJl (I~lec)2Iy~)a~a~aclay + .. '. (31) 
a{JylJ 
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By (18) 

(aPI (l~lee)2IY~) = ~ay~po + 2(aPI Ielee Iy~) 

+ (aPI I:lce Iyo). (32) 

It follows from (4), (25), and (27) that 

(aPI I;lec Iyo) 

= (l !)-2 f 9?:(X Xl ... Xz)9?;(X' x~ ... xi) 

x 9?r<YY~Y2' .. YI)9?iY'YIY~ ... Y;) 

x ~(X - Y)o(X' - Y') 

x :2 (-1)I'{P)P[~(Y1 - XDO(Y2 - x2)··· ~(Yl - Xl)] 
p 

x :2 (-1 y(P')p'[o(y{ - X1)O(Y~ - x~)· .. o(y; - x;)] 
P' 

x dX dX1 ... dXI dX' dx{ ... dx; 

x dY dY1 ... dYI dY' dy{ .•. dy;, (33) 

where P is an arbitrary permutation of Y1 ... Yl and 
p' is an arbitrary permutation of y~ ... y~. The set of 
aU P can be decomposed into I disjoint subsets 
81 ••• 8z, where 8, consists of those (l- I)! permu
tations for which PY1 = y,. Furthermore, 8, is identi
cal with the set of all (l - I)! permutations of 
Yl ... y,-IY'+l ... Yl' The set of all P' can be de
composed simil.arly. Making use of the antisymmetry 
of 9?: and 9?p, one then finds eventually 

(aPI I:lec Iyo) = Z-2[OayOpo - 2(1 - 1)(aPI I elee Iy~) 

+ (I - 1)2(aPI 12 I yo)]. (34) 

Here (IXPI I2lyo) is the matrix element of double 
electron exchange; more generally, we define the 
j-fold electron exchange matrix as 

(aPI I, Iyo) = f 9?:(Xx1 ••. xl)9?p(X'x{ ... xD 

x 9?y(Xx~' .. xixi+1 ... Xl) 

X 9?lX'XI' .. X,X~+l ... x;) 

x dX dX1 ... dXI dX' dx{ ... dx; (35) 

for 1 ~ j ~ I. Defining 

(aPI Ii Iyo) = (aPI I J Iyo) - (-I)ioayopo' (36) 

one then finds with (18) and (32) 

(aPI (l~lee)2Iyo) = 2/-2(12 - 1 + 1)(aPI I~lec Iyo) 

+ 1-2(1 - 1)2(aPI I~ Iyo). (37) 
Then by (31) 

(I~lec)2 = 21-2(12 - 1 + 1)1~lec + [-2(1 - 1)21~ + ... , 
(38) 

where 

It follows that within the two-atom state space, 
(I~lec)2 is linear in 1~lec and I~ . 

Similar derivations, which we shall omit! show that5 

I~ucI~lee = I~uc - ( -1)2JI~lec 
+ ( -1 )2J+11;_1 + . " (40) 

and more generally 

I~ucIi = -(-1)'I~uc - (-1)2JI; 
+ (_1)2J+11;_, + . .. (41) 

for 1 ~ j ~ I - 1 and 1 ~ 2. 
The results obtained so far suggest that, within the 

two-atom state space, the operators I~uc' 1~lec' 
I~, ... , ILl form an algebra, Le., all powers and 
products of these operators are linear combinations 
of the same 1 operators. This is indeed the case. To 
complete the proof, it is necessary to evaluate the 
squares of the operators Ii and their products with 
themselves and with I~lec for 2 ~ j ~ I - 1. By a 
derivation paraUeling that of (38), one finds 

I~IPcI; = I;I~lcc 
= -( -l)'I~lcc + (jfl)2Ii_1 

+ 1-2(12 - 2j 1 + 2l)1; 

+ 1-2(1 - })211+1 + . . . (42) 

for 2 ~ j ~ 1 - 1 and I ~ 3. Because of the identities 

I{ = I~lec, I; = (-1)2J+II~ue, (43) 

the cases j = 2 and j = I - 1 are exceptional; in 
these cases (42) reduces to 

I~lccI~ = _1-2(12 - 4)I~lcc + 1-2(12 - 41 + 8)I~ 
+ 1-2(1 - 2)2I~ + . . . (44) 

and 

1~lecI:-1 = (-l)II~lec + 1-2(1- 1)21;_2 

+ 1-\12 
- 21 + 2)1;_1 

+ 1-2( -1)2J+II~ue + . . . . (45) 

It is not difficult to see, more generally, that within 
the two-atom subspace 1;I~, for arbitrary j and k, is a 
linear combination of the I'm. However, to evaluate the 
projection operators a' nue and a' elee' it will not be 
necessary to know the explicit expressions. 

4. EXPLICIT EXPRESSIONS FOR PROJECTION 
OPERATORS AND PROJECTED HAMILTONIAN 

We now have sufficient information to obtain 
explicit expressions for the projection operators and 
projected Hamiltonian correct up to two-atom terms, 
i.e., exact on the two-atom state space. 

Consider first the projection operator a' nue' It is 
surely some function of 1~ue' and from (30) we know 
that on the two-atom subspace it is a linear function 
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of I~uc' In fact, we shall show that 

;]' nue = 1 + t( -1)2J1~ne + ... (46) 

We note first, from (30), that (46) satisfies 

l~ne;]'nne 12) = 0, ;]'~ne 12) = ;]'nne 12), (47) 

where 12) is an arbitrary two-atom state. Equations 
(47) are necessary, but not sufficient, conditions for the 
correctness of (46). In fact, if;],' is any projection 
operator which commutes with I~uc and ;]' nne' then 
(47) remains satisfied if;], nne is replaced by6 ;]";]' nne' 
In order to see that (46) is nevertheless the correct 
expression, we note from (30) that on the two-atom 
state space I~uc has precisely two eigenvalues, 
A~ne = 0 corresponding to states satisfying the sub
sidiary condition and A~uc = -2( _1)2J correspond
ing to eigenstates of I~ue which violate the subsidiary 
condition. Let 12') be any two-atom state with the 
wrong eigenvalue of I~ue' i.e., 

l~ne 12') = _2(_1)2J 12'). (48) 

Then (46) satisfies 

;]'~lIe 12') = o. (49) 

Conditions (47) and (49) are both necessary and 
sufficient for the correctness of (46). 

Determination of ;]' elee is more complicated. We 
expect that;]' elee is some function of I~lec, and hence, 
from the results of Sec. 3, that it is a linear function 
of the I operators I~uc ' I~lec , and I; for 2 S j S I - 1. 
In fact, it is shown in Appendix A that 

!-1 

;]' clec = 1 + cnue1~ne + celeeI~lee + 2 cj lj + ... , 
j=2 

(50) 
where 
Cnuc = (_1)2J/-2d!, 

Celec = -d!, 

c j = (_I)i[(I_ 1)lfj1 (1- j)1]2d!, 2 sj s /- 1 

d! = /2(1!)2/(21)1. (51) 

The derivation is not valid in the simplest cases 
1= 1, 2, and 3, but the expressions (50) and (51) 
remain valid in those cases if correctly interpreted. 
Independent derivations show that 

;]' clee = 1 - tI~lec + ... 
= 1 + t(-1)2JI~ue + ... , 1 = 1, 

;]'elec = 1 + i(-1)2JI~ue 
- iI~lee + ... , 

;]'elee = 1 + :Io(-1)2JI~llc 
1 = 2, 

1=3. 

(52) 

The derivation of (50) and (51) given in Appendix 
A shows that furthermore 

;]' nue;]' clee = ;]' elee . (53) 

Although this appears remarkable at first sight, on 
further reflection one realizes that it is to be expected 
since exchange of nuclei between two atoms is 
equivalent to exchange of the atoms followed by 
exchange of all electrons. The proper symmetry under 
exchange of atoms is ensured by the commutation 
relations (1), and anti symmetry under single electron 
exchanges, ensured by the projection operator ;]' elce 
and the antisymmetry of the CPa' implies antisymmetry 
under multiple electron exchanges, since any permuta
tion is a product of interchanges. Thus (53) is to be 
expected. 

Defining a total exchange operator 

I' = t 2 (0:.81 I' lyo)a!a~aOay, (54) 

where 
a/Jyb 

(0:.81 l' 11'15) = Cnnc(o:f$1 1:,ne 11'15) + Cclec(o:f$1 1~lce 11'15) 
!-1 

+ 2c;(0:.81 Ij 11'15), (55) 
j=2 

one sees from (50) and (53) that 

The two-atom operator l' depends on the details of 
the atomic shell structure via the exchange matrix 
elements in (55). When the atoms overlap strongly, 
terms involving multiple electron exchange make the 
major contribution? for a large atom (l» 1). On the 
other hand, multiple-exchange effects fall off much 
more rapidly with increasing atomic separation than 
does the single-exchange term. 

An expression for the projected Hamiltonian 
which is explicit up to two-atom terms can now be 
derived by substituting (56) and (6) into (13) and 
putting all terms into normal order with the aid of (1). 
The derivation is carried out in Appendix B. The 
resultant expression for the projected Hamiltonian is 

Je = H + Vex + " . = Ho + V' + Vex + "', 
Vex = t 2 (o:f$1 Vex lyd)a~a~aOay, (57) 

a/Jyb 

where the matrix elements of the exchange interaction 
Vex are 

(0:f$1 Vex I yo) 

= cnucCo:fJl Vnue 11'0) + Celcc(o:fJl Velce 11'15) 
1-1 

+ 2clo:fJI Vj 11'15). (58) 
j=2 
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Here 

= J ep:(XXI ' . , Xl)ep~(X'x{ ... x;) 

X H(XX'XI .. 'X1X~ ... x;) 

X [ep/X'x} ... X1)epd(XX{ ... x;) 

- (-1)2Jep/XXl'" x1)eplX'x{'" xD] 

x dX dX1 ••• dXl dX' dx{ ... dx;. 

(O(tll Ve1ec 1 yb) 

= J ep:(XXI ... Xl)ep~(X'x{ ... x;) 

X H(XX'x l ••• xlx{ ... x;) 

X [epy(Xx{x2 ' •• xl)eplX'XIX~' .. x;) 

+ ep1(XXI ' .. x1)eplX'x{ ... x;)] 

x dX dX l ••• dx! dX' dx{ ... dx;, 

(0(1'11 Vj Iyb) 

= J ep:(Xxl ... xl)epp(X'x{ ... xi) 

X H(XX'XI' .. xlx{ ... x;) 

x [epy(xx{ ... X;XJ+l ... Xl) 

X epix'x1 ••• xixj+1 . , . x;) 

- (-l)'epixxl ... xl)epix'x{ ... xD] 

x dX dX l ••• dx! dX' dx~ ... dx; 

(59) 

and H(XX'XI ... XIX~ ... x;) is the total Schrodinger 
Hamiltonian of all the particles in both atoms, treated 
on an equal footing: 

H(XX'xl ... XIX{' .. x;) 

= T(X) + T(X') + V(XX') 

I 

+ L [T(x,) + T(xj) + V(Xxi) 
1=1 

+ V(X'xj) + V(Xxj) + V(X'xi)] 
! ! 

+ 2 2 V(XjX~) + I [V(xjxk ) + V(xix;)] 
1=1 k=1 15 i<k51 

(60) 
[compare with (6) and (7)]. 

5. ATOMIC FIELD OPERATORS 

The physical significance of the various terms in 
(57) becomes clearer when one carries out a center
of-mass separation of the atomic wavefunctions epl% 
and Fourier transforms the operators 01% and o!. The 

index 0( of epl% really stands for a set 0( = (k, 'V), where 
'V is the set of all internal quantum numbers and Ilk 
is the eigenvalue of total linear momentum of the 
atom. This corresponds to the separation 

m (Xx ... x) - n-!eik'ru (Xx .. , x) 
Y'I% 1 I - • 1 I , (61) 

where n is the volume of the system, r is the center-of
mass coordinate 

r = (M + Im)-I[MR + m(r
1 
+ ... + rl)], (62) 

and u. , the wavefunction in the center-of-mass 
system, depends on the nuclear position R and the 
electron positions r, only in the combinations R - r, 
rl - r, ... , rl - r. We define the atomic field opera
tor 'If'.(r) as 

(63) 

where Ok,. is 01% for the case 0( = (k, 'V) and the allowed 
values of k are determined by periodic boundary 
conditions (if n is a cube then all components of k 
are integral multiples of 27Tn-l). The operators tjI.(r) 
and tjlt(r) annihilate and create an atom with internal 
quantum numbers 'V (wavefunction u. in the center
of-mass system) at position r. The commutation or 
anticommutation relations 

tp.(r)'If'.,(r') - (_1)2J+ltp.,(r')tp.(r) = 0, 

'If'.(r)'If'!.(r') - (-1)2J+I'lf'J.(r')'If'ir) = b(r - r')b ... 

(64) 

follow from (1), (63), and completeness of the 
exponential. The Dirac delta function b(r - r') does 
not imply that the atoms have zero size, but merely 
that their centers of mass are points. 

The projected Hamiltonian can be transformed 
into the tjI., tjlt representation by inserting the inverse 
of (63), 

(65) 

into (57). Consider first the single-atom part Ho of.re. 
Assume that the epl% are the single-atom energy eigen
states, so that Ho has the diagonal form (9). The 
decomposition (61) of the atomic wavefunctions 
implies a decomposition 

€k' = [li2k2j2(M + 1m)] + €. (66) 
/ 

of the energy eigenvalues €" [with 0( = (k, 'V)] into a 
translational kinetic energy and an internal energy 
€ •• Substitution of (66) and (65) into (9) and use of 
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the completeness relation for the< exponential yields 

This has an obvious physical interpretation as the sum 
of the translational kinetic energy operator and the 
internal energy operator ~. E.N., where 

(68) 

is the number operator for atoms in internal state u •. 
A similar simplification of the interatomic Coulomb 

interaction Hamiltonian V' in (57) and (6) arises 
through the translational invariance8 of the interaction 
potentials and the Uv ' For the sake of simplicity and 
definiteness, we take these potentials to be nonrela
tivistic Coulomb interactions: 

V(XX') = (Ze)2/IR - R'I, V(XjXk) = e2J1r; - rkl, 

V(Xx;) = -Ze2/IR - rjl. (69) 

Then, assuming the atoms to be electrically neutral 
(l = Z), one finds 

V' = 1"~'4 J d3
rd

3
r'VJ:,(r)VJ:ir ') 

with 
X v~?~!(r - r')VJ •• (r')VJva(r) (70) 

ConI ( ') v"".v, r - r 

= (Ze)2f u!,(Xxi ••• XI)U:2(X'X~ ... X;) 

X (IR - R' + r - r'I-I + Irl - r{ + r - r'l-l 

-IR - ri + r - r'rl 
- Irl - R' + r - r'rl) 

X UViXXl' .. xl)uviX'x{ ... X;) 

X b(MR + m(rl + '" + r z») 
M+ lm 

X b(MR' + m(r{ + ... + r;») 
M+ lm 

X dX dX l ••• dXI dX' dx{ ... dx; . (71) 

where (atJll'lyb) is defined by (55) and where 
(a,B1 vex Iyb) differs from (a,B1 Vex Iyb) [Eqs. (58) 
and (59)] only in replacement of 

H(XX'x l ••• XIX{ ... x;) 

by its interatomic Coulomb interaction part V': 

V'(XX'XI' .. XIX{ ••• X'I) 

= (Ze)2IR - R'r i 

I 

- Ze2~(IR - rirl + IR' - rjl-I) 
j=l 

z z 
+ e2~ 2:lr; - r~l-l. (73) 

;=1 k=l 

The matrix (oc,B1 Vex yb) is Hermitian; however, the 
two pieces into which this matrix is decomposed in 
(72) are not individually Hermitian. One can aJ~o 
write 

(ocP'1 Vex Iyb) = HE« + Ep + Er + Eo)(oc,B1 l' Iyb) 

+ U(octJl Vex Iyb) + (ybl Vex loc,B)*], (74) 

a form in which the two pieces are individually 
Hermitian. However, we shall use the simpler form 
(72) in the subsequent development. Then one finds, 
by substitution of (72) into (57) and use of the 
center-of-mass separation and translational invariance, 

Vex = 1 I fd3rd3r' dar" dar'" 
vr o

' V( 

{J (' " III) X V,""4 rr r r 

+ ex ( ,,, III)} t () t (') (",) (") VY''''Y4 rr r r VJv, r 1jJY2 r VJV4 r VJV3 r , 

where, 
(75) 

+ c Jelee (rr'r"r"') clec v,"'v, 

The expression for the interatomic exchange inter
action Hamiltonian Vex in (57) is simplified by first 
making use of the fact that the Pa are single-atom and 
energy eigenstates, as was done in obtaining (67). One 

1-1 

+ , Ji ('''''') kC; V,"", rr r r 
;=2 

(76) 

then finds 

CocP'1 Vex Iyb) = (Ea + Ep)(octJll' Iyb) + (octJl vex Iyb), 

(72) (77) 
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Here the nuclear exchange matrix is 

Jnuc ( '""') -f *(X .. , ) *(X' , ... ,).s:(MR + m(rl + ... + rl») 
Vl'·' V• rr r r - UV1 Xl Xl UV2 Xl' Xl U 

M+ 1m 

X 15 I I UVa(X' + r' - r, Xl ... Xz)UviX + r - r', X{ ... x;) (
MR' + mer' + ... + r'») [ 

M+ 1m , 

X b(M(R' - R + r' - r) + r _ r") o (M(R - H' + r - r') + r' _ r"') 
M + 1m M + 1m 

- (-1)2Juv.(Xxl ••• xl)UV.(X'x{·· . x;)o(r - r")o(r' - r"'}JdX dX1 ... dxz dX' dx{ ... dx;, 

(78) 

where, e.g., X + r - r' is a symbolic expression for (R + r - r',a) with X = (R, a), a being the nuclear 
spin variable which is summed over as part of f dX. Similarly, the electron exchange matrices are 

-f *(X ... ) *(X' ' ... ').!l(MR + m(rl + .. , + rl») .s:(MR' + m(r{ + ' .. + rD) 
- U'1 Xl XI U'2 Xl Xl U U 

M+lm M+lm 

X [u.
3
(X, X{ + r' - r, .. , , xi + r' - r, Xi+! ' , . xl)u.iX', Xl + r - r', ' , , , Xi + r - r', xi+! .. , X;) 

xo I ,I , +r-r 
(

m(r' + . , . + r~ - r -'" - r.) + J'm(r' - r) If) 
M+ 1m 

X 0 1 j I , + r' _ r'" 
(
m(r +,., + r - r' - .. , - r'.) + J'm(r - r') ) 

M+ 1m 

where J~~~~.v. is the special case j = 1. The Coulomb-exchange potentials ve~~'V4' 
similarly found to be 

V
nuc (rr'r"r"') Vl''' V, 

and 

= (Ze)2fu*(XX '" x)u*(X'x"" X')o(MR + m(rl + '" + rl»)o(MR' + mer; + .,. + r;») 
VI 1, I v2 1 I M + 1m M + 1m 

X (IR - R' + r - r'I-1 
- IR - r{ + r - r'rl - IR' - rl + r' - rl-1 + Ir1 - r{ + r - r'l-l) 

X [Uv.(X' + r' - r, Xl ' . , XI)UV'(X + r - r', X{ , , . xi) 

X o(M(R' - R + r' - r) + r _ rll)o(M(R - R' + r - r') + r' _ r"') 
M + 1m M + 1m 

are 

- (_1)2J U.aCXXl ' . , XI)Uv.(X'x{ , .. x;)o(r - r")o(r' - rIll) ] dX dX1 ' , , dxz dX' dx{ , , . dxi (80) 
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and 

V;t"'V4(rr'r"r"') 

=J *(X .. , ) *(X' I". 1).li(MR + m(rl + ... + r l») .li(MRI + m(r{ + ... + r i») u., Xl Xl U'z Xl Xl U u 
M + 1m M + 1m 

X ( (Ze)2 _ jZe2 _ jZe2 

IR - R' + r - r'l IR - r{ + r - r'l IR' - r l + r' - rl 

Z(Z - j)e2 Z(Z - j)e2 le2 

IR - rj+l + r - r'l IR' - r1+l + r' - rl + Irl - r{ + r - r'l 

j(Z - j)e2 j(Z - j)e2 (Z - Ne2 
) 

+1 I '1+1 I '1+1 'I rl - ri+l + r - r rj+l - r l + r - r rj+l - ri+l + r - r 

Xu +r-r 
.li(m(r{ + ... + r; - r l - ... - r j) + jm(r' - r) ") 

M+ 1m 

X b(m(rl + ... + rj - r{ - ... - rj) + jm(r - r') + r' _ rill) 

M+ 1m 

1807 

- (-1)jU.3(XXl ··· xZ)UV4(X'X{'" x;)b(r - r")b(r' - rill)] dX dXl'" dXzdX' dx{'" dx;, (81) 

where v~~~?'" is the case j = 1. 
The expressions for V' and Vex simplify if one 

takes advantage of the smallness of 1m! M and makes 
the usual approximation of identifying the center of 
mass with the nuclear position. Then the Dirac delta 
functions in (71) reduce to b(R) and b(R'), so that 

= (Ze)2 I Ju;,(O, a, Xl ••• X Z)U;2(O, ai, X{ ••• xi) 
uu' 

X (Ir - r ' I-1 + Irl - r{ + r - r'l-l 

- Ir{ - r + r'l-l - Irl + r - r'l-l) 

X u •• (O, a, Xl ... xz)u •• (O, ai, x{ ... xi) 
X dXl'" dxldx{··· dxi, (82) 

where a and a' are the nuclear spin variables (for 
spin-zero nuclei these arguments and the sum over 
them are to be omitted). u.(O, a, Xl ••• Xl) is just the 
usual form for the internal wavefunction, in which the 
electron positions are measured in a coordinate 

system centered on the nucleus. Similarly, (75)-(81) 
reduce to 

V _I " fd3 d3 
I t () t ( ') ex ( I ') ex - 2.,~.. r r 'If., r 'If'z r V., ..... r - r, p, p 

X 'If.ir')'If •• (r), (83) 

where p = (/i/i)V, pi = (/i/i)V', and 

J., ..... (r - r') = cnueJ~~~ •• (r - r') 
1-1 

+ LcjJ;""v.(r - r'), 
i=l 

v~: ... .(r - r') = cnucv~,~\.(r - r') 
1-1 

(84) 

+ LCjv;, .... lr - r'). (85) 
i=1 

The nuclear and electron exchange matrices are 

J~,~.~.lr - r') = (_1)2J L fU:,(O, a, Xl •.. xl)u:/O, a', x{ ... xi) 
uu' 

X [( -l)lu • .(r' - r, a', Xl •.. x1)u •• (r - r', a, X{ ... xi) 

- u • .(o, a, Xl ... x1)u • .(o, ai, X{ ... xD] dX I ••• dX1 dx{ ... dxi (86) 
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and 

x [uvaCO, a, x{ + r' - r, ... , xi + r' - r, Xi+! ... Xl) 

X Uv.(O, a', Xl + r - r',' ',', Xi + r - r', xl+!'" X;) 

- (-1);u v3(O, a, Xl ... xl)UV,/o, a', xi ... xD] dXI ... dx, dxi ... dx;. (87) 

Similarly, the Coulomb-exchange potentials are 

V~~.~v.(r - r') = (_1)2J(Ze)2! fU~(O, a, Xl' .. xl)u:/O, a', xi' .. x;) 
aa' 

X (Ir - r'1-1 
- Ir{ - r + r'I-I - Irl + r - r'1-1 + Irl - ri + r - r'I-I) 

X [( -l)'uv.(r' - r, a', Xl ... xz)uvaCr - r', a, xi ... x;) 

- uv/O, a, Xl ... xl)UV.(O, a', xi ... x;)] dXI ..• dXI dxi ... dx; 
and 

(88) 

V!1'''V.(r - r') = e2 L fU:1(0, a, Xl ... XI)U:2(0, a', xi ... x;) 
aa' 

( 
Z2 jZ jZ Z(Z - j) Z(Z - j) 

X Ir - r/l - Ir{ - r + r/l - Irl + r - r/l - Irl+! - r + r'l - Irm + r - r'l 

l + j(Z - j) j(Z - j) (2 - N ) 
+ Irl - r{ + r - r'l Irl - r l+! + r - r/l + Irm - r{ + r - r'l + IrHl - r1+! + r - r'l 

X [U
V8

(0, a, X{ + r' - r, ... , xj + r' - r, XHI ... Xl) 

X Uv.(O, a', Xl + r - r', ... ,Xi + r - r', Xl+! ... X;) 

- (-1)iuv3(0, a, Xl ... xl)UV.(O, a', xi ... x;)] dXI ••• dXI dxi ... dx;. (89) 

In deriving (83) partial integrations have been 
performed so as to allow the derivative operators to 
be sandwiched between 1JIt1Jlt and 1JI1JI. In some of the 
terms in Je~?v and ve~?v the names of the summation 

1 4. l' 

indices Va and V, have been interchanged and 1JIvs and 
1JIv. permuted with the aid of (64), so that the rand r' 
arguments of all products 1JIt1Jlt1Jl1Jl are in the standard 
order 1JI!1(r)1JI!2(r')1JIV.(r')1JIv

3
(r). 

The Coulomb-exchange potential V~~"'V4 in (84) is 
a generalization of the exchange integrals of quantum 
chemistry and the theory of magnetism; it arises 
through coupling between interatomic Coulomb 
interactions and interatomic nuclear and electronic 
exchange. The term JV1""v/ £V1 + £V2) arises through 
coupling between interatomic exchange and internal 
degrees of freedom of the atoms, whereas the momen
tum-dependent terms 

jVl'''V'(;~ + ~~) 
represent coupling between interatomic exchange and 

translational motion of the atoms. The explicit expres
sions for the various terms in the projected Hamilton
ian Je furnish the basis for calculation of the properties 
of a system of atoms at low densities, where the 
three-atom, four-atom, ... terms [denoted by ... in 
(57)] are unimportant compared to the one-atom 
terms Ho and the two-atom terms V' and Vex. For a 
system of only two atoms, Ho + V' + Vex is an exact 
expression for Je, so that the formalism developed 
here provides the basis for an exact theory of inelastic 
scattering of atoms. The same approach could be 
applied to systems of molecules or nuclei. 

APPENDIX A: EVALUATION OF 9'elec 

We want to verify the expressions (50) and (51). It 
follows from (21) and the definition of ~ elec that 

(AI) 

Substituting (50) into (AI), making use of the results 
of Sec. 3, and equating the coefficients of I~uc' I~lec' 
and the I; to zero, one finds an inhomogeneous set of 
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llinear equations in the I unknowns Cnue , Celee> and ci : 

Cnue + 1-2(-1)2JHCI_1 = 0, 

-( _1)2J Cnue + 21-2(12 
- 1 + 1)Celec - 1-2(12 

- 4)c2 
Z-1 

+ L - (_1)/C; = -1, 
i=3 

(A2) 

1-2(1 - 1)2Cel ee + 1-2(l2 - 41 + 8)c2 + 91-2C3 = 0, 

1-2(1 - j + 1)2Cj_ 1 + 1-2(12 
- 2jl + 2/)c; 

+ 1-2(j + 1)2CJ+1 = 0, 3 ~j ~ 1 - 2, 

(_1)2J+ZCnue + 4/-2cz_2 + 1-2(12 - 21 + 2)CI- 1 = o. 
The solution can be found by first solving the top 
equation for Cnue in terms of CZ- 1 ' substituting into the 
last equation to obtain CI-2 in terms of CI- 1 , substitut
ing into the j = I - 2 equation to obtain CI- 3 in terms 
of C1- 1 ' etc. Finally, substitution into the second 
equation gives an inhomogeneous equation which is 
easily solved for CZ_l' In this way one finds the expres
sions (51) for Cnue , Celee, and the ci ' with 

dl = [SI + 1,-2(14 - 213 + 512 + 8)r\. 

Z-1( (I _ 1)! )2 SZ=L . 
;=3 j! (I - j) ! 

(A3) 

The sum Sz can be evaluated with the aid of the 
formula 

i (I~ = (21) = (21)! . (A4) 
1=0 j! 1 (11)2 

The expression (51) for dz then follows immediately. 
It follows trivially from (AI) that the operator (50) 

satisfies 

I~lec:J'elec 12) = 0, (AS) 

where 12) is any two-atom state. However, as in the 
case of :J'nue,we note that (AS) is only a necessary 
condition for the correctness of (50). Another necessary 
condition is 

:J'!lee 12) = :J' elec 12). (A6) 

Furthermore, in order to obtain a set of both necessary 
and sufficient conditions one must require, in analogy 
with (49), that 

:J' eleo 12') = 0, (A7) 

where 12') is any two-atom eigenstate of I~lec with an 
eigenvalue different from zeto. A direct proof of (A6) 
and (A7) would be complicated.9 However, it is 
possible to give an indirect proof which at the same 
time verifies (53). Let 

be a simultaneous eigenstate of the mutually commut
ing operators I~ue' 1;lec, 1~, ... ,1;_1 with the indi
cated eigenvalues. Suppose, furthermore, that this 
state is a two-atom state. Then, operating on this state 
with (38), (44), (42), and (45), one finds that 

(A~lec)2 = 21-2(12 - 1 + 1)A~lee + [-2(1- 1)2il~, 

il~leeil~ = -1-\/2 - 4),1~leo 
+ 1-2(12 - 41 + 8),1~ + [-2(1 - 2)2il~, 

il~leoil; = -( -l)jil~lee 
+ (j/l)2Aj_1 + 1-2(12 - 2jl + 2j)Aj (A9) 

+ 1-2(1 - N Ai+! , 3 ~ j ~ 1 - 2, 

il~leoil;-l = (_1)/il~lec + 1-2(1 - 1)2il;_2 

+ 1-2(12 - 21 + 2)il;_1 + 1-2
( _1)2J+lA~uc. 

Suppose that A~leo = O. Then it is easy to show from 
(A9) that also il~uc'= 0 and all the il~ = 0, i.e., the 
only states (A8) with il;lec = 0 are those which also 
have il~uc = A~ = ... = il;_l = O. But the coeffi
cients (51) were determined precisely so that any 
state:J' el~c 12), with :J' elec given by (50), is an eigenstate 
of I~lec with eigenvalue il~loc = 0; such states, there
fore, also have il~uc = il~ = ... = ,1;-1 = O. Con
versely, let Iphys) be any physical two-atom state, 
i.e., any two-atom state satisfying the subsidiary 
conditions (21). Then this state will be of the form 
(A8) with all eigenvalues equal to zero. It then 
follows from (50) that 

:J' cleo Iphys) = Iphys). (AlO) 

This is just the defining property of :J' nuc:J' elec' We 
conclude that, on the two-atom state space, the 
operator defined by (50) and (51) is indeed both 
:J' elec and :J' nuc:J' elec . 

APPENDIX B: EVALUATION OF PROJECTED 
HAMILTONIAN 

Substitution of (56) and (6) into (13) gives 

Je = T + Vo + V' + J'(T + Vo + V') + .. " (Bl) 

where the various terms in 1'(T + Vo + V') remain 
to be normally ordered. Substitution of (54) and the 
expression (6) for T and normal ordering with the 
aid of (1) yields' 

I'T = ! ~ L [(oc,B1 I' IOC1~)(OCll T Iy) 
",{Jy6 "'1 

+ (oc,B1 I' Iyocl)(ocil T 1~)]a:a;a6ay + .. '. (B2) 

Evaluation of the closure sums on rpll/l rp:l in the usual 
way then gives with (55), (I8), (36), (4), and (35) 

I'T = ! 2 (oc,B1 I'T ly~)a~a;a6ay + .. " (B3) 
«{Jy6 
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with 

(ot,81 l'T Iyb) 

= cnucCot,8/ l~ucT /yCl) +CelecCot,8/ l~lecT lyCl) 
1-1 

+ 1 ciot,8 I ljT Iyb) (B4) 
j=2 

and 

(ot,8/ l~ucT lyCl) 

= f rp:(XX1 ... XI)rp~(X'x~ ... xi) 

X T(XX'X1 ... xlx{ ... x;) 

X [rpiX'x1' .. xI)rpiXx~ ... xi) 

- (_1)2J rpy(XX1 ... xz)rpiX'x{ ... xi)] 

x dX dXl ... dXl dX' dx{ ... dx;, 

(ot,81 l~lecT Iyb) 

= f rp:(XX l ... XI)rp~(X'X{ ... xi) 

X T(XX'XI' .. xlx{ ... xi) 

X [rp/Xx{x2 ' •• XI)rp~(X'XIX~' .. xi) (B5) 

+ rpy(XXl ... Xz)rpoCX'x{ ... xD] 

x dX dXl ... dX l dX' dx~ ... dx;, 

(IXtJ/ ljT lyCl) 

= f rp:(XX l ... XI)rp~(X'x{ ... x;) 

X T(XX'xl ' .. XIX{ ... xi) 

x [rpy(Xx~ ... XjXj+l ... Xl) 

X rpb(X'Xl ... XjX;+! ... xi) 

- (-l)'rpy(Xxl ... XI)rp~(X'x{ ... xi)] 

x dX dX1 ••• dXI dX' dx{ ... dx;. 

Here T(XX'Xl'" XIX~ ... x;) is the total kinetic 
energy operator for all the particles in both atoms: 

T(XX'Xl' .. xlx{ ... x;) 
I 

T(X) + T(X') + ~ [T(x i ) + T(x;)]. (B6) 
'=1 

The operator 1'Vo can be evaluated up to two-atom 
terms in a similar fashion, whereas evaluation of 
1'V' involves two closure sums. Combination of the 
results gives (57)-(60). 

* Supported at Norges Tekniske Hllgskole by NORDITA and at 
the University of Oregon by the National Science Foundation, 
Grant GP-01l728. 

1 M. D. Girardeau, J. Math. Phys. 4, 1096 (1963); 11,681 (1970). 
2 This argument fails in the exceptional case E = O. However, this 

does not cause any difficulty, since we are generally not interested 
in the case E = 0, and, even if we were, the origin of energy could 
be shifted by redefinition of H. Independently of any shift of origin, 
the eigenvalue E = 0 of Je will always include the entire "completely 
unphysical" subspace, i.e., the subspace orthogonal to the space of 
states satisfying (2). Hence eigenstates of Je with eigenvalue zero 
should be discarded. 

3 The anitsymmetrization on the right side of the completeness 
relation arises from the fact that the set {<Pa(Xx1 ••• XI)} is complete 
on the space of functions of Xx, ... Xz which are antisymmetric in 
Xl' •• Xz; as always, the meaning of completeness is not absolute, 
but relative to the given space of functions. . 

4 The physical significance of (28) is that exchanging the same 
nuclei twice is equivalent to no exchange. 

S The derivation of (40) is not valid in the trivial case 1= 1, and 
it simplifies for I = 2. It can be shown that for I = 1 

I;uel;lec = 2I~ue + ... = -2(_1)2JI;lec + .. , 
and for 1=2 

• The point is that the operator (46) might be the projection 
operator onto a subspace of the set of eigenstates of I~ue with 
eigenvalue zero. 

7 It follows from the asymptotic formula 

that 

Hence, by (51), Cnue and Celee fall off exponentially for large I. This 
is not the case, however, for all of the coefficients. In fact, the same 
asymptotic formula, with I replaced by !/, shows that the Cj with 
j ~ !I fall off only like I-t for large I. 

S Translational invariance of Uv implies that it is a momentum 
eigenstate with eigenvalue zero, i.e., 

h( (} I (}) 
";' oR +.~ Or- UV(XXI ••• xz) = 0, 
I ,=1' 

or equivalently that Uv depends on R and the rj only in the combi
nations R - r, r1 - r, ., ,rz - r, where r is the center-of-mass 
position (62). 

9 In this connection it should be noted that the formula for the 
eigenvalues of Ielee in the Appendix of the first paper cited in Ref. I 
is incorrect; these eigenvalues are not all integers. This is the reason 
that :relee involves not only J;lee but also I~ue and the 1;. 
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